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Abstract—Purpose: This study aims to identify EEG
biomarkers that predict the level of depressive personality
(where extreme scores indicate disorder), as opposed to the
presence or absence of a depressive state or a depression
diagnosis.

Methods: Fourier features were extracted from 2-second
epochs of resting state EEG and used by LSBoost to max-
imise the correlation with depressive trait tendencies (PID-5
depressivity index).

Results: Our method accounted for 25.75% of the variance in
PID-5 scores, albeit in females only. The recording channel C3
and frequencies in the gamma band were the most important
contributors to the prediction. The findings are consistent with
previous psychological studies and suggest that our method is a
feasible strategy for developing quantitative EEG biomarkers
for trait depressivity in a neuropsychologically interpretable
form. We have also shown that there might be different markers
for depressivity between males and females.

Index Terms—EEG, depressivity, LSBoost

I. Introduction
The prevalence rates of depression range from 2.2

to 10.4% worldwide [1] and the economic burden of
depression was estimated to be approximately $US210
billion dollars in the United States in 2010 [2]. Yet
the biological causes of depression are largely unknown,
and clinical diagnosis is based on symptoms rather than
underlying causes. Consequently, the NIMH has called for
the development of biomarkers to enhance the diagnosis
of mental health disorders [3].

Electroencephalography (EEG) signals are a potentially
rich source of biomarkers and have been previously used
to characterize different physiological states, such as de-
mentia [4], schizophrenia [5], [6] and obsessive-compulsive
disorder [7], [8]. However, effective treatment of depression
needs the diagnosis to take into account its severity,
its sub-types, and the associated neural basis. Hence,
highly accurate but binary classification, and black-box
biomarkers that are not easily interpretable biologically,

will add limited value to the clinical decision, and are
unlikely to be well-accepted amongst clinicians. In this
paper we use LSBoost regression [9] and Fourier EEG
features to predict trait depressivity (a measure that
varies smoothly in the population with only high values
associated with clinical disorder) and also to highlight
potential interpretable biomarkers extracted from EEG
signals.

II. Related Work
During the past years, EEG studies on depression have

shown that EEG data can be used to effectively distinguish
depressed patients and healthy controls. One method,
called the spectral asymmetry index, calculates the dif-
ference between the higher and lower EEG frequency
bands; and provided effective features to differentiate
depressed patients with 77% classification accuracy [10]
for 17 depressed patients and 17 controls. Mohammadi
et al. [11] used linear discriminant analysis to map the
features into a new feature space, genetic algorithms to
select the most important features and decision trees for
classification. Participants included 53 major depressed
patients and 43 non-depressed healthy controls and pro-
duced an accuracy of 80%. Likewise, Hosseinifard et al.
[12] used several feature extraction methods and machine
learning techniques to classify 45 depressed patients and
45 normal subjects. This study achieved a classification
accuracy of 90%, using a combination of feature extraction
methods (detrended fluctuation analysis, Higuchi fractal
dimension, correlation dimension and lyapunov exponent)
and a Linear Regression classifier.

Unlike previous work, which sees depression as a binary
disease, our focus is to identify biomarkers that are
sensitive to depressive trait tendencies. We use LSBoost
[9] to perform regression against the PID-5 scale [13]
that includes scores through the range of healthy as well
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as depressed individuals. The PID-5 was developed to
improve the capturing of symptoms only specific to the
disease. We expect it to be more specific than the simple
contrasts of healthy controls with patients in the previous
work, which will include non-specific differences between
the two groups. Being a trait rather than a state measure,
biomarkers of PID-5 are also more stable features as they
capture the depressivity tendency of a person regardless
of the current mood. For features, we used the EEG power
spectrum at 0.5Hz intervals at conventional EEG electrode
sites spaced evenly across the top of the head. Such an
approach has two main advantages. It allows for a direct
and purer measurement of depressive severity which can
be used to both guide appropriate treatments and measure
their effectiveness; and it also highlights which features are
most important for measuring depressivity, which could
lead to effective and neuropsychologically interpretable
biomarkers.

III. Materials and Methods
A. Experiment for Data Acquisition

1) Participants: Data were obtained from 73 right-
handed participants (44 females, 29 males; aged 18-37
years with a mean of 21.56 years). All procedures were
approved by the University of Otago Ethics Commit-
tee (approval number: H15/005). All participants were
recruited through the University of Otago Student Job
Search. Informed consent was provided before participat-
ing in the experiment. No participant reported any medical
or psychological treatment for depression, anxiety or other
type of emotional disorder in the last 12 months.

2) Procedure: Prior to EEG testing, each participant
spent 10-15 minutes to complete a computer-delivered
questionnaire program containing scales from the Per-
sonality Inventory for DSM-5 (duration 10-15 minutes).
The experimenter then measured each participant’s head
circumference and marked Fp1 and Fp2 according to the
International 10-20 system [14] using a black marker.
Electrode gel (Electro-Cap International, Eaton, OH,
USA) was inserted into 20 electrodes via a blunt square-
tipped 16-gauge needle (Precision Glide, Needle, Becton
Dickinson, Franklin Lakes, NJ, USA); impedance reduced
to <5KΩ by gentle abrasion of the scalp with the tip of
the needle; and brief relaxation-induced alpha rhythm and
deliberate eye-blink traces assessed by the experimenter
to ensure good recording, with adjustments as necessary
(preparation time ∼ 30 minutes).

A relaxation test was then performed by instructing the
participants to remain relaxed, with their eyes open and
then closed for one-minute intervals, the order was O-C-O-
C-C-O-C-O (C: eyes closed, O: eyes open). Resting EEG
was recorded throughout this period (8 minutes duration).
This database includes 18 primary recorded channels: Fp1,
Fpz, Fp2, F7, F3, Fz, F4, F8, T7, C3, Cz, C4, T8, P7,
P3, Pz, P4 and P8, which were referenced to CPz when
recording, and the average of ‘A1’ and ‘A2’ was used to

re-reference (see Fig. 1). The sampling rate for analysis
was 256Hz.
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Fig. 1. The extended International 10-20 system position of scalp
electrodes. Electrodes are placed at 5%, 10% and 20% spacings
relative to standard skull measurements (e.g. nasion-inion). Figure is
CC0 from https://commons.wikimedia.org/wiki/File:International_
10-20_system_for_EEG-MCN.svg. Abbreviations: A = Auxiliary
(Ear lobe, shown, or mastoid, in our experiments), C = central, P
= parietal, F = frontal, Fp = frontal polar, O = occipital.

3) PID-5 depressivity scores: The Personality Inventory
for DSM-5 (PID-5) questionnaire includes 14 questions
related to depressivity on a 4-point scale (Score 0-3)
representing the depressivity level [15], [16]. The scores
are summed across these questions to generate the PID-
5 depressivity score (PID-5-d). Low values mean far
from clinical. Medium is normal for the middle of the
population and high is in the clinical range. A score above
a particularly high threshold can be taken as clinical [17],
[18]. In our database, the highest PID-5-d score is 27, the
lowest is 0. Fig. 2 shows the PID-5-d score’s distribution
for females and males, separately. The participants of this
database were not clinical patients, so there were more low
PID-5 depressivity score participants than high score ones.
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Fig. 2. The figure illustrates the PID-5 depressivity scores’ distri-
bution of our data samples. We can see that most cases have low
scores, with a small number of cases having high scores.

B. Data Preprocessing
Data preprocessing was used to improve signal quality

and included six steps: baseline drift removal, mains
noise removal, eye blink removal, data splitting, and



rejecting extremely contaminated epochs automatically
and manually.

1) Baseline Drift Removal: Baseline drift can be caused
by variations in temperature, instrumentation bias and so
on [19]. To remove baseline drift, a 1Hz high-pass filter
was applied to the raw signal.

2) Mains Noise Removal: EEG signals are contami-
nated by mains power from electrical equipment. The
mains power causes a local peak in the EEG signal
around the frequency of electricity. Our dataset recorded
EEG data from several channels synchronously, therefore,
mains power should have a fixed phase all through the
record and be synchronous across all channels whereas real
brain signals are not the same phase as each other and
should not be synchronous. Therefore, to remove the mains
noise, a phase-fixed method was designed to evaluate the
component of mains noise in EEG signal and removed.
This method is reported in [20].

3) Eye Blink Removal: Eye blinks affect EEG signals
but are not hypothesised to be related to depression. We
use the method proposed in [21] to remove the effects of
eye blinks from the signal.

4) Data Splitting (Open/Closed): Since EEG recording
is related to eye state [22], the eyes-open data and eyes-
closed data are treated separately. The first and last
second of each eye state recording were discarded leaving
232 seconds of EEG for each eye state (4 minutes each
minus 8 seconds for transition). Each recording was then
split into 1-second-length epochs.

5) Rejection of Contaminated Epochs: Because of head
movements and other interference, sometimes extremely
high EEG values are recorded, therefore epochs with
amplitudes greater than 500 µV or less than -500 µV
were discarded.

After all automatic processing, each data sample was
visually inspected, and contaminated epochs that had
been missed by the algorithms were rejected. The main
types of EEG artefacts (e.g. Rapid eye movement, chewing
artefact, and tongue movement) are listed in [23] and the
records were visually searched for this and then discarded.

C. Feature Extraction
To reduce spectral leakage, a Hanning window was ap-

plied to each channel in each epoch (2-second-length epoch
with 1 second overlap) and the discrete Fourier transform
used to extract frequency features. Since our sampling rate
(Fs) is 256 Hz and the length (N) of each epoch is 512
time points (2 second × 256 Hz), the frequency resolution
(Fs/N) is 0.5Hz. This results in 256 frequency components
from 0.5 to 128Hz (the DC component is discarded).
Finally, the square of each component (power spectrum)
is log transformed to normalize error variance and used
to compute a feature. Since there are 18 channels and 256
frequency samples per channel, each epoch is represented
as a 4608 dimensional vector. Generally, EEG signals are
divided into five different frequency bands, their frequency

range is from 1 Hz to 80 Hz [24]. Therefore, the segment
from 1 to 80 Hz of the vector was selected to be the feature
vector with a length of 2862 ( 18× 159). For this paper,
each dimension is considered a feature.

D. Feature Selection and Regression
As stated in the introduction, our research goals are

twofold: to develop an automatic, quantitative method
for measuring depressivity based on biomarkers; and
that those biomarkers are easily interpretable biologically.
Therefore we need to use methods that use relatively
few features and those features should be interpretable.
Using Fourier features deals with the latter problem, but
produces thousands of features. We have chosen the LS-
Boost algorithm [9] to deal with the former. At each step,
LSBoost fits a new weak learner to the difference between
the observed response and the aggregated prediction of all
previous weak learners to minimize mean-squared error.

There are approximately 200 epochs per participant for
each of the eyes-open and eyes-closed experiments. The
ground truth target score for each participant is their
PID-5-d score, which is a single number. For regression
training purposes, we assume that each epoch from the
same participant has the same target value. This is based
on the definition of depressivity as a trait, i.e. a property
of the brain that does not vary with time and that
depressivity as a trait can give rise to persistent (or
frequently occurring), rather than intermittent, distinctive
brain states [25]–[28]. Nevertheless, at identification time,
we do not expect each epoch to produce the same LSBoost
score, and so we simply average the scores for all epochs
to assign a score to a new participant. As is common
with boosting algorithms, we choose decision stumps with
a single feature as the weak learner. LSBoost therefore
chooses the most significant features to fit to the target
value. Here we use up to 100 weak learners. Adding more
features/weak learners did not improve regression results.
We call the depressivity score predicted by LSBoost the
ML-d score.

E. Experimental Design
Barry et al. [29] demonstrated that the eyes closed

and eyes open states provide EEG measures differing
in topography and power levels. When the eyes are
closed, cortical activation is decreased [30]. Because the
alpha power is usually more dominant when the eyes are
closed [31], [32] and the previous depression study usually
focussed on the alpha band, some research only used the
eyes closed data [33]–[35].

There are also many reports of gender differences in the
causes of depression, and gender differences in the EEG of
depressed people. Halbreich et al. [36] suggested that the
differences in mechanisms of depressive symptoms between
male and female might be related to the central nervous
system. Bryden [37] reported that gender may modulate
hemispheric EEG asymmetry, while [38] suggested that



EEG asymmetry may only relate to depression in young
females rather than males. Ahmadlou et al. [39] found
significant differences between male and female adults
with major depressive disorder in relative convergence of
delta band EEG in the intraleft temporal and frontoleft
temporal lobe. Males and females with depression also
appear to have different slow-wave activities during non-
rapid eye movement sleep [40]–[42].

Therefore, to demonstrate the eye states and gender
states difference, in our research, the data was split into
three categories relating to eye condition (open, closed,
all), and three categories relating to gender (male, female,
gender-mixed), resulting in nine experiments in total. The
“all” conditions include both open and closed epochs, and
the “gender-mixed” condition includes male and female
participants. There were 44 females and 29 males in the
sample.

For each experiment, k-fold cross validation was used
to pick training and testing data sets. Each fold consisted
of 4 participants except for the last fold in the male
experiments which had 5 participants. Therefore, for male
group, k = 7; for female group, k = 11; for gender-mixed
group, k = 18. For a given training or test run, all epochs
from a single participant were used in either the training
set or the test set. Pearson’s correlation coefficient (R)
between the ML-d and PID-5-d score was used to evaluate
the effectiveness of ML-d. R-values between 0.4 and 0.6
would normally be considered indicative of a moderate
positive correlation.

IV. Results and discussion
A. R-values

Table I shows the correlation (R2) between PID-5-d
and ML-d scores, and the statistical significance of the
correlation (p). We can see from the table that for the
female group, the best result (25.75%) was obtained by
using all eye states epochs. This result is also the best one
of all experiments. Figure 3 shows the scatter plots of the
ML-d score and the matched PID-5-d score for Experiment
1.3. For the male group, no results were statistically
significant. For the gender-mixed group, the best result
(18.28%) was obtained by using eyes open epochs.

B. Genders
The results obtained by our experiments show that for

different genders, the performance of the male group is
much worse than the female and the gender-mixed groups
(Gender, F (2,8) = 163.26, p < 0.001). However, the
main possible reasons are we only have 29 data sets in
the male group and the PID-5-d range of the male group
in our dataset was narrow. Therefore, it cannot easily
demonstrate a gender difference or lack thereof.

The results also show that the performance of the
gender-mixed group is worse than the female group. To
an extent, this result confirmed the existence of a gender
difference. The different EEG patterns from different

TABLE I
Correlation values between PID-5-d and ML-d for each of the

experimental conditions.

Gender Eyes Ex R2 p
Open E1.1 24.52% 0.0006

Female Closed E1.2 22.51% 0.0011
All E1.3 25.75% 0.0004

Open E1.4 1.57% 0.5179
Male Closed E1.5 2.84% 0.3820

All E1.6 1.97% 0.4675
Open E1.7 18.28% 0.0002

Gender-Mixed Closed E1.8 16.31% 0.0004
All E1.9 14.37% 0.0009

Values in the table are R2-values and the corresponding p-
values of each experiment. In this set of experiments, R-values
were all positive and can be got back by taking the square root
of the R2-values. Here, ‘Ex’ refers to ‘Experiment’.

y = 0.2718x + 5.3563
R² = 0.2575
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Fig. 3. Figure shows the scatter plots of the ML-d score and the
matched PID-5-d score of the experiment E1.3 which is the best
result of all experiments.

genders lower the model’s depressivity prediction ability
at least for regression models.

C. Eye states

There is good evidence that EEG signals are different for
eyes-open and eyes-closed conditions [29], [31]. However,
the results obtained from our research show that the same
depressivity features are present in both states. This is
consistent with PID-5 being a measure of a trait and
suggests that our methods have identified trait-like EEG
features that are stable across different states. This may
provide a benefit for designing EEG collecting experiments
because participants don’t need to be constrained to close
their eyes. However, in recent EEG collecting experiment,
the participants were required to open and close their eyes
for one-minute intervals. In future, these two methods
would need to be directly compared in case eye closure
changes the eyes open EEG during relaxation testing.



D. Features
The LSBoost method has a good characteristic that it

can compute features’ importance by summing all esti-
mates over all weak learners in the ensemble. The highest
value indicates that this feature is the most important one
[43]. After establishing an ensemble, a vector of weight
values that indicates the relevant importance of each
feature was obtained. The vector was then normalised
between 0 to 1. The highest value in the vector indicates
the most important feature. Because we implemented ex-
periments with k-fold cross-validation, in each experiment,
we established k ensembles. Therefore, we averaged the
weight values across the k ensembles in the experiment to
get the final rank of features’ importance.

According to the components of FFT’s feature vector,
each point of a feature vector contains two types of
information: frequency and channel. The importance of
different frequencies and channels were sorted by weight
values separately.

1) Channels: The distribution of important channels
is shown in Figure 4. The figure shows that the most
important channels of the female group are C3 and T8;
the most important channels of the gender-mixed group
are C3 and T7.

These results, taken together, shows a specific location
– C3 – which is the most important for prediction of
depressive trait tendencies.. This result is consistent with a
previous research [44] which investigated neuromodulatory
effects of repetitive transcranial magnetic stimulation
(rTMS) on resting EEG and their clinical and cognitive
correlates in depressed patients. Their results showed that
after rTMS, depressed patients demonstrated significant
increases of resting theta–gamma coupling (TGC) at
channel C3.

Our research also found that the EEG of channel T7
and T8 may be important for predicting depressivity. This
result is consistent with recent research by [45]. They also
found temporal electrodes were important.

2) Frequency: The distribution of important frequen-
cies is shown in Figure 5. The figure shows that the most
important frequencies are around 50Hz. For the female
group, there are also peaks around 10Hz and 35Hz; for
the gender-mixed with eyes open group, as well as 50Hz,
the importance frequencies also distributed in 10Hz, 20Hz,
30Hz, and 40Hz. 30Hz, 35Hz, 40Hz, and 50Hz are within
the gamma band. The Gamma band is linked to memory,
attention, and cognition. 10Hz is within the alpha band.
This band is a frequently-used band for psychological
study. 20Hz which only occurs in the gender-mixed group
belongs to the beta band. The R2-values obtained by the
male group are all non-significant, therefore, the important
features of the male group are not discussed here.

In previous EEG research on depression, the alpha
band (8–13Hz) has been most used e.g., [33], [35], [46],
[47]. Consistent with this, we found that signals in the
region of 10Hz, which is in the alpha band, contributed

Female

Mixed

Eyes Open Eyes Closed All

Fig. 4. This figure shows the distribution of importance of different
channels on the scalp. From the figure, we can see that the most
important channels of the female group are C3, T7 and T8; the
most important channels of the gender-mixed group are C3 and T7.
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Fig. 5. This figure shows the distribution of importance of different
frequencies. From the figure, we can see that the most important
frequencies are around 50Hz. For the female group, there are also
peaks around 10Hz and 35Hz; for the gender-mixed of eyes open
group, except for 50Hz, the importance frequencies also distributed
in 10Hz, 20Hz, 30Hz, and 40Hz.

to depressivity prediction. There is little research on the
relationship between the beta band and depression. Merkl
et al. [48] found difference in the beta band between
depressed patients’ reported with emotional empathy
for negative stimuli and patients reported to have no
empathy. Sheikhani et al. [49] reported that the signal
obtained from the beta band can be used to distinguish
Autism disorders from controls. We found that signals
around 20Hz, which is in the beta band, are also useful to
predict depressivity.

Previous study indicated that the gamma band is
suitable for EEG-based emotion classification [50]. Webb



et al. [51] found that the EEG of the gamma band was
highly associated with three promising endophenotypes
of depression. The results from [45] also showed that the
EEG of the gamma band is a good indicator for classifying
depressed patients and controls. From the results of our
research, the gamma band (around 30Hz, 35Hz, 40Hz,
50Hz, 70Hz) was found to be an important band for
measuring depressivity. This result is consistent with
previous research.

3) Channels across Frequency: The highest weighted
single point of each feature vector in different conditions
(different genders and different eye states) was also picked.
The highest weighted points obtained in all conditions all
referred to 50Hz at C3. This means that the 50 Hz resting
EEG signal detected at C3 is the most important signal
for predicting depressivity. This result is also consistent
with the previous research [44] that resting theta–gamma
EEG at channel C3 is highly related to depression.

V. Conclusion
In this paper, we introduced a method to predict depres-

sivity scores using EEG signals via the LSBoost algorithm.
We are able to produce a measure that is moderately
correlated with a trait measure of depressive tendencies. It
is important to point out that the PID-5 is a rather blunt
tool linked to multiple different types of depression and
it would generally not be expected to be able to produce
correlations much higher than those reported here. In our
lab, the same dataset used in this research with an ad-
ditional 28 participants was tested using traditional EEG
alpha asymmetry and HFD (Higuchi’s fractal dimension)
with stepwise regression. The correlations obtained by
the traditional EEG alpha asymmetry method were very
low and showed no significant correlation between alpha
asymmetry and depressivity. The best R2-value was ob-
tained by HFD and was 4%. In previous research, Stewart
and Allen [52] reported a longitudinal pilot study where
they examined the relationship between resting frontal
EEG asymmetry and BDI (Beck Depression Inventory)
scores, the highest R2-values obtained by their female
group was only 11%; the result reported by Carvalho et
al. [53] showed that the highest R2-values between frontal
alpha asymmetry and BDI was only 8.41%. Our results
are based on the PID5-d scale which covers the normal
range (maps to personality, not just sickness), while BDI
is a clinical scale for depression. Therefore, our method
seems more suitable for detecting depressivity as a trait
than the previously reported ones.

Furthermore, our method gives insights into neural
correlates of depressivity, both in terms of brain location
and signal frequency. We have produced results indicating
that the gamma band and especially the 50Hz brain signal
is important for measuring depressivity. 50Hz is in the
range of the mains power noise. However, we had taken
a lot of care to remove the mains noise, while retaining
50Hz EEG; and mains noise would be consistent across

all patients and therefore not correlated with depressivity.
Therefore, this result clearly relates to the 50Hz brain
signal rather than the mains power noise. The most
important brain location related to depressivity was also
narrowed to C3, T7 and T8. We have also shown that there
might be different markers for depressivity between males
and females – although this could reflect the different
ranges of their PID-5-d values.

In the future, we plan to increase the experimental
size and also investigate new methods for learning the
correlations such as convolutional neural networks.
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