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Abstract—Identifying anomalous samples from highly complex
and unstructured data is a crucial but challenging task in a
variety of intelligent systems. In this paper, we present a novel
deep anomaly detection framework named AnoDM (standing for
Anomaly detection based on unsupervised Disentangled repre-
sentation learning and Manifold learning). The disentanglement
learning is currently implemented by β-VAE for automatically
discovering interpretable factorized latent representations in
a completely unsupervised manner. The manifold learning is
realized by t-SNE for projecting the latent representations to a
2D map. We define a new anomaly score function by combining
β-VAE’s reconstruction error in the raw feature space and local
density estimation in the t-SNE space. AnoDM was evaluated on
both image and time-series data and achieved better results than
models that use just one of the two measures and other deep
learning methods.

Index Terms—Anomaly detection, disentangled representation
learning, manifold learning.

I. INTRODUCTION

Detecting anomalies in data flow of modern intelligent
systems is an important but challenging problem. Formally
speaking, anomaly detection problems can be statistically
viewed as identifying outliers having low probabilities from
the modelling of data distribution p(x). Practically, since
statistical modelling of the data is often difficult, it degenerates
to domain description [1] or supervised prediction [2] prob-
lems in some cases. The exact explanation of an anomalous
data point depends on the specific domain of focus. In data
centers, it probably indicates an attempt of cyber intrusion.
In recognition systems, it could be an adversarial attack. In
biomedical information systems, it means possible onset of
certain diseases. In Internet of Things (IoT) systems, it may
represent a hardware failure or alarming event captured by

sensors. An anomalous sample is not always associated with
negativity. Sometimes, it leads to novel discoveries in scientific
explorations.

However, from the data analytics perspective, anomaly de-
tection is a difficult task due to the following reasons. (1) Many
forms of data, e.g., images, text, and other types of sequences,
are often highly unstructured and complex. How can these data
be well represented and high-level information be extracted
by an algorithm? (2) The sample sizes of modern data sets
are often extremely large and most of them are unlabelled.
Unfortunately, traditional methods do not scale and perform
well on these data. (3) When data of multiple modalities
are naturally available for same events in a system, a robust
and precise algorithm needs to be designed to integrate these
information for system diagnosis or decision making. (4) Many
intelligent systems, such as IoTs, require real-time detection
and reaction of abnormal events to avoid costly and irrevocable
damages. Thus, anomaly monitoring algorithms to be designed
in these platforms must be highly efficient. In summary,
anomaly detection raises challenges in representability, scala-
bility, multimodality, and time complexity.

Deep learning [3] offers great potentials to overcome these
challenges. (1) Representation learning mechanisms (such as
convolution for images, embedding for discrete symbols, and
recurrence for time-series) have been developed in supervised
and unsupervised deep models to consider the nature of
specific types of input samples and encode them into vectors
of continuous values as corresponding latent representations.
(2) Most deep learning models are trained using stochastic
gradient descent that splits a giant training set into mini-
batches. Thus, learning becomes unrestricted and blessed by a
large sample size. Particularly, stochastic variational inference
[4], [5] has successfully enabled scalable learning and infer-
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ence for deep generative models (DGMs) on a vast amount
of unlablled data. (3) The development of deep learning pro-
gramming packages, such as PyTorch [6] and TensorFlow [7],
greatly eases the assembly of multiple network components
(corresponding to different modalities) together for multimodal
representation learning [8]. (4) Once a deep model is learned,
the inference or encoding step is very efficient, thanks to the
highly parallel computing architectures and techniques.

In some applications, if the domain of anomalous and nor-
mal samples is well defined, anomaly detection can be reduced
to binary classification problems. However, in many situations,
either the domain of anomalous samples cannot be fully
understood or modelled, or the domain of the normal samples
is too complicated to be modelled in one class. DGMs are
more suitable than supervised methods in such cases. DGMs
are concerned with the joint distribution of visible and latent
variables with a hierarchy of stochastic (and deterministic)
layers. With proper emphasis on disentanglement of latent
representations, DGMs have the potential of dissecting hidden
factors that are key to sample generation. Unsupervised disen-
tangled representation learning [9] renders several benefits. (1)
It helps better understand our data, providing a path towards
explainable AI. (2) It gives a better control on the generation
process of novel samples. (3) The disentanglement of latent
factors may provide an opportunity to distinguish anomalies
based on the landscape of latent space, which is our interest
in this paper. It has been shown that the likelihood of a data
point p(x) estimated in DGM is not a reliable measure for
detecting abnormal samples [10]. Instead, reconstruction error
is widely used as an anomaly score function [11].

As a variant of variational autoencoder (VAE) [12], β-VAE
[13] is designed for unsupervised discovery of interpretable
factorized latent representations from raw image data. An ad-
justable hyperparameter β is introduced to balance the extent
of learning constraints (a limit on the capacity of the latent
information channel and an emphasis on learning statistically
independent latent factors) and reconstruction accuracy. It was
demonstrated that β-VAE with appropriately tuned value of β
(when β > 1) qualitatively outperforms VAE (when β = 1,
β-VAE is exactly VAE). [14] proposed a modification to the
training regime of β-VAE by progressively increasing the
information capacity of the latent code during training. This
modification facilitates the robust learning of disentangled
representations in β-VAE, without the previous trade-off in the
reconstruction accuracy. [15] introduced a reformulation of β-
VAE for 0 < β < 1. They argued that, within in this range,
training β-VAE is equivalent to optimizing an approximate
log-marginal likelihood bound of VAE under an implicit prior.

Manifold learning is a family of nonlinear dimensionality
reduction techniques. The t-distributed stochastic neighbor
embedding (t-SNE) [16] is an unsupervised manifold learning
method primarily used for data exploration and visualization
by approximating high-dimensional data distribution using a
two or three-dimensional map that could preserve local and
certain global structures of the data. The use of t-SNE for
anomaly detection has been sceptical [16]. However, no com-

prehensive investigation has been made in this topic. Taking
advantages of both disentangled representation learning (using
β-VAE as an implementation) and low-dimensional manifold
learning (using t-SNE as an implementation), we propose a
novel anomaly detection approach named AnoDM, standing
for Anomaly detection based on unsupervised Disentangled
representation learning and Manifold learning. We introduce a
new anomaly score function by combining: (1) β-VAE’s recon-
struction error, and (2) distances between latent representations
of test points and training points in t-SNE map. AnoDM
is a general framework, thus any disentangled representation
learning and manifold learning techniques can be applied.
The choice of a lower-level encoding scheme in β-VAE
depends on data type of interest. For image data, deterministic
convolutional network (CNN) is used in the encoder. In case
of time series (sequence) data, we design an improved version
of β-VAE by replacing CNN with temporal convolutional
network (TCN) [17], a generic architecture for convolutional
sequence prediction, in the encoder. We incorporate TCN
as part of the encoder, because [17] have shown that TCN
outperforms canonical recurrent networks such as LSTMs [18]
across a range of supervised learning tasks and recommended
that CNN should be regarded as the first method to try for
sequence modeling tasks. Regarding the decoding architecture,
we simply choose CNN, because by choosing a simpler CNN
architecture as a part of the decoder, the model can achieve
a comparable even better performance but take much less
running time.

The contributions of this paper are summarized as follows.
(1) We comprehensively explore the capacity of unsuper-
vised disentangled representation learning, using β-VAE as
an implementation, for anomaly detection. (2) We thoroughly
investigate the potential of manifold learning for outlier identi-
fication by taking the disentangled latent representations from
β-VAE as input to t-SNE. To the best of our knowledge, this
is the first attempt to explore t-SNE for anomaly detection.
(3) For sequence anomaly detection, instead of using prevailed
recurrent networks (such as LSTM), as a practical contribution,
we adopt an improved convolution architecture (TCN) to cap-
ture the temporal dependency in the encoder in unsupervised
way.

II. RELATED WORK

In the big data era, the development of deep learning mod-
els, especially DGMs, flourishes due to the need of modelling
and analyzing massive amount of unstructured data (such as
images, time-series, graphs, text, etc.) generated in many appli-
cation domains. Designing DGM-based solutions for anomaly
detection becomes an important topic. Since DGMs, such as
VAE [12], and deep belief net (DBN) [19], [20], aim at mod-
elling the joint distribution of visible and latent variables (that
is p(x,h)), their likelihood p(x) by marginalizing out h may
serve as an abnormality indicator. However, unlike exponential
family restricted Boltzmann machines (exp-RBMs) [21], exact
likelihood is unavailable for most DGMs. Alternatively, recon-
struction error serves as an abnormality measure based on the



intuition that out-of-distribution samples can be reconstructed
badly [11]. Some deep hybrid methods (e.g. VAE+OCSVM
[22] and DBN+OCSVM [23]), successfully combine classical
one-class support vector machine (OCSVM; or kernel-based
support vector domain description (SVDD)) with DGMs by
using DGMs to learn latent representations of samples and
using OCSVM to detect abnormal data points. However, these
methods face the challenge of scalability, because the size of
kernel matrices in dual form of SVDD is quadratic of sample
size.

Generative adversarial net (GAN) has also been applied
for anomaly detection [24]. Since there is no encoder in
GAN, [25] presented the ADGAN algorithm based on the
availability of a good representation of a sample in latent
space of its generator by assuming that the generator is able
to effectively capture the distribution of the training data. [26]
proposed the GAN-AD method for cyber-physical systems
(CPSs). It distinguishes fake data from actual data by taking
into consideration of both discrimination loss calculated by the
trained discriminator and residual loss between reconstructed
and actual test data.

Furthermore, DGM-based algorithms are also devised to
detect anomaly problem on sequence data (e.g. LSTM-VAE
[27] and GAN-AD [26]). Conventionally, canonical recurrent
networks (such as LSTM and GRUs [28]) are considered as the
dedicated methods for sequence modeling. Some recent studies
have also claimed that there was no architecture that could
consistently beat LSTM in some typical sequence modelling
tasks [29]–[31]. On the other hand, some other researchers
insist that CNN [32] should be considered as more appropriate
choice for sequences. Inspired by more recent CNN-based
sequence modelling (such as machine translation [33], [34]
and language modeling [35]), [17] conducted a systematic
evaluation of generic convolutional and recurrent architectures
for sequence modelling across a broad range of tasks that
are commonly used to benchmark recurrent networks, and
concluded that convolutional networks, rather than recurrent
networks, should be respected as a “natural starting point for
sequence modelling tasks”.

III. METHOD

In this paper, we propose a novel generic anomaly detection
framework named AnoDM, which the first time combines un-
supervised disentangled representation learning (implemented
using β-VAE as an example) and low-dimensional manifold
learning (currently using t-SNE as implementation) together
to detect outliers via effectively taking the advantages of
reconstruction at raw feature space and disentangled latent
distribution in t-SNE map. Fig. 1 shows the architecture of
AnoDM which includes two main phases: (1) unsupervised
disentangled representation learning and (2) anomaly detec-
tor. After β-VAE is learned using unlablled training normal
samples, it then can be employed by the anomaly detector to
efficiently obtain latent encoding and reconstructed version of
a sample. Once latent embeddings of both training samples (or
a representative subset from the training data) and a test sample

Fig. 1: Architecture of AnoDM implemented by β-VAE and t-SNE for
anomaly detection. First, β-VAE is learned using normal training data (upper
part of the framework). Then it is employed by the anomaly detector (lower
part of the framework) to efficiently obtain latent encodings of training
samples (or a representative subset from the training set) and test samples,
and corresponding reconstructed versions using the decoder. Meanwhile, t-
SNE is used to map the deterministic latent embeddings (µtr for training
and µte for test samples) to the 2D space (we call it t-SNE space or map),
such that the average distance between the 2D representation of a test sample
and its k nearest neighbors from the 2D representations of training samples
is calculated. Finally, the distance is combined with the reconstruction error
of the test sample to define its anomaly score.

are obtained, t-SNE is used to map the latent representations of
these samples further to the 2-dimensional space (called t-SNE
space or map), such that the average distance between the 2D
representation of the test sample and its k nearest neighbors
from the 2D representations of training samples is calculated.
Finally, this distance is combined with the reconstruction error
of the test sample to define its anomaly score. The essential
parts of this framework are discussed below in details. Full
AnoDM approach is given in Algorithm 1.

A. Unsupervised Disentangled Representation Learning

The unsupervised disentangled representation learning com-
ponent in our architecture is implemented but not limited by β-
VAE [13]–[15], [36]. The objective function to be maximized
for β-VAE is defined as [14]:

L = Eqφ(z|x)[log pθ(x|z)]− β|DKL(qφ(z|x)||p(z))− C|.
(1)

The first term of this objective function corresponds to recon-
struction error in the raw feature space. The KL divergence
characterizes the discrepancy between approximate posterior
and isotropic prior of latent representations. A small discrep-
ancy between them indicates high disentanglement of latent
representations in independent variables. C is a hyperparam-
eter which is used to improve the quality of reconstructed
images. The loss function of the original β-VAE proposed
in [13] does not have this hyperparameter. The value of β
trades off reconstruction error and disentanglement. Unlike
[13] and [14], we consider β > 0 rather than just β > 1,
because it is unnecessary to bound the value of β by 1, β > 0
allows us search for a more appropriate disentanglement.
The special case β = 0 could make the model learning



Algorithm 1: AnoDM Algorithm
Result: Anomaly scores of test samples
Inputs: Xtr: training samples, Xte: test samples,

β > 0: hyperparameter for β-VAE
1 while epoch no more than training iterations do
2 Encoder net maps Xtr into µtr and σtr;
3 Ztr = µtr + σtr � ε, ε ∼ N (0, I);
4 Decoder net reconstructs Xtr to X′

tr using Ztr;
5 Update β-VAE’s parameters θ and φ;
6 end
7 For Xtr and Xte, obtain µtr and µte respectively using

trained β-VAE;
8 Use t-SNE to map µtr and µte to 2D representations
ltr and lte;

9 for x(i)
te within Xte do

10 DRE(x
(i)
te ) , NSE(x(i)

te ,x
′(i)
te ) =

‖x(i)
te −x

′(i)
te ‖

2
2

‖x(i)
te ‖2

;
// reconstruction error

11 DktSNE(x
(i)
te ) , 1

k

∑
j∈N(i,k)‖l

(i)
te − l

(j)
tr ‖2 ;

// N(i, k) is the set of indices of l
(i)
te ’s k

nearest neighbors from ltr

12 SβVAE+tSNE(x
(i)
te ) = αDRE + (1− α)DktSNE ;

// α ∈ [0, 1]

13 end

very unstable, because the variance of inference distribution
loses control. It worth highlighting that other unsupervised
disentanglement models can be used as well in AnoDM. For
example, [36] interpreted disentanglement as decomposition
instead of independence by adding an additional regularization
term to reduce the discrepancy between the aggregate posterior
and a desired structured prior. However, designing a properly
structured prior could be practically challenging. The adoption
of β-VAE in our framework is sufficient to prove the concept
that unsupervised disentanglement helps anomaly detection.

B. Effectivity of t-SNE Algorithm

In addition to β-VAE’s reconstruction error, we use the
average distance between a test sample and its k-nearest
neighbors from the collection of training samples in the t-SNE
[16] map to score the outlierness of a test sample. As t-SNE is
significantly influenced by perplexity, the nature of complexity
in data distributions makes it impossible to utilize a uniform
criteria to define optimal perplexity for all data. Moreover, [37]
mentioned several weaknesses of t-SNE, for examples, (1) it
naturally expands dense clusters and contracts sparse ones,
evening out cluster sizes, and (2) distances between clusters
might not reflect global geometry. However, it is likely that
k-nearest neighbors still work for local clumps, because, with
proper value of perplexity, local topological information of
latent distributions can be preserved by the t-SNE plot. Thus,
in t-SNE space, the measure of k-nearest neighbors is more
suitable than full density estimation which is very sensitive
with the sizes of clusters. Furthermore, as to be shown in
Section IV, distancing in the 2D t-SNE map could be more

robust than distancing in β-VAE’s latent space where many
non-determinative factors may influence the calculation of
distances. Finally, it worth clarifying that we do not directly
learn a 2D latent representation from β-VAE, because it will
bottleneck too much the information flow for reconstruction.
Instead, a lower-dimensional representation is learned through
t-SNE for density estimation only.

C. Deterministic or Stochastic Latent Representations for t-
SNE

Either the mean µ or a sample z from the approximate
inference distribution q(z|x) can be passed to t-SNE to
calculate the k-NN distance of a test sample. There is triv-
ial difference between performances achieved by these two
methods in our framework. Generally, the µ-based method
achieved slight better performance. The comparison of these
two methods can be found in Table I. Furthermore, from
the latent representations’ t-SNE maps (see Fig. 2), one can
interestingly see that when β is small (not overly large), the t-
SNE maps for both methods are quite similar. As β becomes
overly large, some normal classes can still form their own
clusters (even though some similar classes, such as classes 3
and 8 in MNIST, tend to mingle together) in µ-based method,
but in z-based method all classes are entangled with each
other. Same phenomena can be observed on the other datasets.
Therefore, the µ-based method is used in current design of
AnoDM.

(a) β = 0.01 (µ-
based)

(b) β = 0.8 (µ-
based)

(c) β = 5.0 (µ-
based)

(d) β = 10.0 (µ-
based)

(e) β = 0.01 (z-
based)

(f) β = 0.8 (z-
based)

(g) β = 5.0 (z-
based)

(h) β = 10.0 (z-
based)

Fig. 2: Comparison of µ-based method or z-based method on MNIST data
(anomalous class is 3) for inferring latent representations that are visualized
in t-SNE map.

D. TCN Encoder for Unsupervised Sequence Modelling

[17] distilled superior design in convolutional network into
a simple architecture and referred it as a temporal convolu-
tional network (TCN) with two distinctive characteristics: (1)
the convolutions in the architecture are causal, and (2) the
architecture can take a sequence of any length and map it to
an output vector of fixed length, just as with an RNN. [17] also
explained that TCNs capture significantly longer history than
recurrent networks. Inspired by [17], we replace CNN with
TCN in the encoder of β-VAE when evaluating the proposed



TABLE I: AuROCs for both µ-based and z-based techniques.

Dataset Class µ-based z-based

auROC β α auROC β α

MNIST

0 0.984 0.01 0.8 0.985 0.8 0.1
1 0.986 0.01 0.6 0.987 0.01 0.6
2 0.990 0.4 0.9 0.991 0.2 0.9
3 0.969 0.05 0.9 0.968 0.05 0.9
4 0.974 0.01 0.95 0.975 0.1 0.95
5 0.975 0.01 0.95 0.976 0.01 0.95
6 0.983 0.01 0.8 0.980 0.01 0.8
7 0.975 0.01 0.9 0.977 0.01 0.9
8 0.980 0.01 0.9 0.982 0.01 0.9
9 0.928 0.4 0.8 0.925 0.05 0.8

avg. 0.974 – – 0.975 - –

Fashion-MNIST

0 0.844 0.05 0.2 0.840 0.05 0.0
1 0.977 0.01 0.8 0.978 0.01 0.8
2 0.783 0.01 0.0 0.783 0.05 0.0
3 0.886 0.01 0.8 0.884 0.01 0.8
4 0.760 0.1 0.0 0.763 0.3 0.0
5 0.990 0.2 0.95 0.990 0.2 0.95
6 0.713 0.05 0.0 0.709 0.05 0.0
7 0.952 0.01 0.8 0.950 0.01 0.8
8 0.980 0.05 0.8 0.980 0.05 0.8
9 0.940 0.3 0.8 0.944 0.3 0.7

avg. 0.883 – – 0.882 - –

CIFAR-10

0 0.635 0.4 0.0 0.634 0.2 0.0
1 0.752 0.6 0.99 0.754 0.05 0.99
2 0.589 1.0 0.0 0.558 0.7 0.0
3 0.608 10.0 0.95 0.606 10.0 0.99
4 0.564 0.01 0.0 0.563 0.4 0.0
5 0.638 0.4 0.95 0.627 0.7 0.95
6 0.600 0.3 0.0 0.590 0.7 0.0
7 0.648 0.1 0.95 0.644 0.01 0.95
8 0.642 0.3 0.0 0.624 1.2 0.0
9 0.717 1.0 0.95 0.718 0.01 0.95

avg. 0.639 – – 0.632 - –

Small-Norb

0 0.512 0.1 0.0 0.520 7.0 0.0
1 0.656 0.01 0.0 0.647 0.01 0.0
2 0.771 0.05 1.0 0.771 0.05 1.0
3 0.581 10.0 1.0 0.581 10.0 1.0
4 0.564 0.5 1.0 0.564 0.5 1.0

avg. 0.617 – – 0.617 - –

ECG (Arrhythmia)

0 0.911 0.05 0.95 0.906 0.01 0.95
1 0.924 0.01 0.95 0.925 0.01 0.95
2 0.970 0.01 0.99 0.970 0.01 0.99
3 0.905 0.01 0.95 0.910 0.01 0.95
4 0.991 0.01 0.99 0.991 0.01 0.99

avg. 0.940 – – 0.940 - –

AnoDM framework on time-series data, while we still use
CNN in the decoder, because our preliminary experiments
demonstrated that keeping decoder as simpler CNN can help
achieve comparable even better results, and take much less
computing time. In the architecture of TCN, the kernel size
is set to 4 and dilation factors are set to [1, 2, 4, 8, 16, 32]. In
Section IV, the comparison among TCN, CNN, and LSTM
encoders in our framework also shows that TCN outperforms
CNN and particularly LSTM to a great extent for ECG signal
anomaly detection.

E. Anomaly Score Function in AnoDM

In the anomaly detector, the reconstruction error of a test
sample in the original feature space and the average distance
from its k-nearest-neighbors in training samples within the 2D
t-SNE map are combined as a final anomaly score function:

SβVAE+tSNE(xte) = αDRE(xte) + (1− α)DktSNE(xte), (2)

where the first term is defined using normalized squared error
(NSE):

DRE(xte) , NSE(xte,x
′
te) =

‖xte − x′te‖22
‖xte‖2

, (3)

where xte is a test sample, and x′te is its reconstructed version
by sending the stochastic latent encoding through the decoder

of β-VAE. The second term in Equation (2) is defined using
β-VAE’s deterministic latent encoding (mean from the encoder
of learned β-VAE) as input to t-SNE:

DktSNE(x
(i)
te ) ,

1

k

∑
j∈N(i,k)

‖l(i)te − l
(j)
tr ‖2, (4)

where l(i)te is the 2D representation of the i-th test sample in
t-SNE map, N(i, k) is the set of indices of l(i)te ’s k nearest
neighbors from training samples’ 2D representations ltr in t-
SNE map. In Equation (2), α ∈ [0, 1] is the combination hyper-
parameter such that the two terms can effectively complement
each other. To allow the anomaly score function to achieve its
full potential, α value should be sensitively searched, because
the values of DRE and DktSNE can stay at different magnitudes,
a very small change of α value may dramatically alter the
contributions of these two terms. Alternatively, the distance
score in Equation 4 can be normalized by average distance
of training samples in t-SNE map, which may alleviate the
magnitude difference, thus ease search of optimal value of α.
The use of this normalized distance is investigated in Section
IV-C.

IV. EXPERIMENTS

We evaluated our framework on four public image datasets,
including MNIST [38], Fashion-MNIST [39], Small-Norb
[40] and CIFAR-10 [41], as well as one collection of ECG
heartbeat categorization time-series data named Arrhythmia
[42]. The detail of β-VAE architecture is given in Table
III in appendix. The number of epochs was set to 20 for
experiments on MNIST and Fashion-MNIST datasets, and
50 for CIFAR-10, Small-Norb, and Arrhythmia datasets;
batch size was set to 100 for experiments on all these
datasets. When using t-SNE, the dimension of t-SNE map
was set as 2 for all datasets, perplexity 30, the learning rate
200, and maximum number of iterations 1000. The value
of α in the anomaly score function is searched from set
{0.0, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,
0.95, 0.99, 1.0}. We used k = 1 for calculating k-nearest-
neighbors distance in t-SNE map (we also tried to set k to
3 or 5, the results were similar).

A. Comparison with CapsNet, GANs, and VAE

We compared AnoDM with state-of-the-art algorithms in-
cluding a supervised method – CapsNet [43], and two types of
generative models – GANs (including AnoGAN and ADGAN)
[25] and β-VAE (implemented by setting α = 1 thus using
only reconstruction error as anomaly score). As shown in
Table II, on average, AnoDM achieved either comparable
(on MNIST) or better (on Fashion-MNIST and CIFAR-10)
performance in terms of receiver operating characteristic
curve (auROC). On Fashion-MNIST, CapsNet (prediction-
probability-based), as the best benchmark method, obtained
an average auROC of 0.765, while AnoDM achieved 0.883.
On MNIST, both AnoDM and CapsNet obtained the highest
performance. However, CapsNet is a supervised method that



takes advantages of class information, while ours is completely
unsupervised that is more suitable in many practices as class
information is either incomplete or unavailable. Furthermore,
by comparing AnoDM with β-VAE that only considers re-
construction error as anomaly score, AnoDM dramatically
improved the performance in all cases. In other words, t-
SNE makes a prominent contribution to improve β-VAE for
anomaly detection problems. However, all generative models
did not work well on Small-Norb, mainly because these
models used convolution to extract features from image,
but convolution is only able to capture translation but not
other affine transformations. Although CapsNet learns these
transformations as a supervised method, it worth exploring
unsupervised learning of affine transformations as a future
topic.

TABLE II: Performance of AnoDM in comparison with other methods in
terms of auROC on image data. The results for AnoDM were obtained by
either the µ-based or z-based algorithm. In the column for β-VAE, only
reconstruction error is used as anomaly score. The results for AnoGAN and
ADGAN were obtained from [25]. The results for CapsNet were obtained
from [43].

Dataset Class CapsNet AnoGAN ADGAN β-VAE AnoDM
PP-based RE-based

MNIST

0 0.998 0.947 0.990 0.999 0.890 0.985
1 0.990 0.907 0.998 0.992 0.841 0.987
2 0.984 0.970 0.888 0.968 0.967 0.991
3 0.976 0.949 0.913 0.953 0.947 0.969
4 0.935 0.872 0.944 0.960 0.968 0.975
5 0.970 0.966 0.912 0.955 0.966 0.976
6 0.942 0.909 0.925 0.980 0.907 0.983
7 0.987 0.934 0.964 0.950 0.899 0.977
8 0.993 0.929 0.883 0.959 0.946 0.982
9 0.990 0.871 0.958 0.965 0.794 0.928

avg. 0.977 0.925 0.937 0.968 0.913 0.975

Fashion-MNIST

0 0.620 0.454 – – 0.500 0.844
1 0.851 0.871 – – 0.860 0.978
2 0.818 0.486 – – 0.459 0.783
3 0.895 0.693 – – 0.730 0.886
4 0.790 0.394 – – 0.379 0.763
5 0.691 0.982 – – 0.985 0.990
6 0.801 0.480 – – 0.501 0.713
7 0.619 0.787 – – 0.842 0.952
8 0.912 0.885 – – 0.876 0.980
9 0.656 0.754 – – 0.701 0.944

avg. 0.765 0.679 – – 0.683 0.883

CIFAR-10

0 0.622 0.371 0.610 0.661 0.368 0.635
1 0.455 0.737 0.565 0.435 0.746 0.754
2 0.671 0.421 0.648 0.636 0.397 0.589
3 0.675 0.588 0.528 0.488 0.604 0.608
4 0.683 0.388 0.670 0.794 0.387 0.564
5 0.635 0.601 0.592 0.640 0.611 0.638
6 0.727 0.491 0.625 0.685 0.500 0.600
7 0.673 0.631 0.576 0.559 0.614 0.648
8 0.513 0.410 0.723 0.798 0.399 0.642
9 0.466 0.671 0.582 0.643 0.698 0.718

avg. 0.612 0.531 0.612 0.634 0.532 0.640

B. Impact of Beta to Performance

As discussed in [13], β (> 1) functions as a controller
to encourage most efficient latent representation learning via
limiting the capacity of latent information channel. [36] how-
ever interpreted the objective of β as tuning a proper level of
overlap of encodings by working with another term that regu-
larizes the divergence of the aggregate posterior qφ(z) and the
desired prior p(z). The main intuition is that purely increasing
β induces too much overlap which actually discourages the
disentanglement of data (information which is necessary for
expressing desired structure is lost). [13] demonstrated that
β-VAE with β > 1 leads to interesting results when learning

(a) MNIST, digit 7. (b) Fashion-MNIST,
“Dress” class.

(c) Small-Norb, “Human”
class.

(d) CIFAR-10, “Dog”
class.

(e) Arrhythmia, “F” class.

Fig. 3: Performances (measured in terms of auROC) of AnoDM evaluated on
five datasets: MNIST, Fashion-MNIST, Small-Norb, CIFAR-10 and Arrhyth-
mia. On each dataset, the anomalous class is indicated in the corresponding
subcaption while treating the rest classes as normal classes. Note that β = 0
doesn’t work for CIFAR10 and Arrhythmia, because it makes learning highly
unstable. As displayed in (d) and (e), missing values were indicated in white
color at the top of corresponding heatmaps for β = 0.

(a) β = 0.01. (b) β = 0.3. (c) β = 1.0.

(d) β = 2.0. (e) β = 4.0. (f) β = 10.0.

Fig. 4: The impact of β’s value to t-SNE map of latent representations of
MNIST samples. Class 7 is treated as anomalous class data. Each map displays
10000 data points identical in all maps including 5000 training data points
and 5000 test data points.

interpretable factorized latent representations on a variety of
datasets. Surprisingly, our investigation demonstrates that by
setting 0 < β < 1, it actually achieved the state-of-the-
art results for anomaly detection problems on a range of
datasets, such as MNIST, Fashion-MNIST and Arrhythmia.
Fig. 3 illustrates the impact of values of β and α in our
anomaly score function. Interestingly, best performances were
achieved when β < 1 and the performances generally degrade
as β increases, resonating with [36] that overly large values
of β actually causes a mismatch between qφ(z) and p(z)
(resulting in inappropriate level of overlap in the latent space).
This phenomenon can be further seen in the t-SNE maps of
latent embeddings in Fig. 4. When β becomes extremely larger
than the appropriate value, the anomalous class becomes en-



tangled with its normal neighboring classes and the boundaries
between normal classes become unclear. Theoretically, adding
the divergence of the aggregate posterior qφ(z) and the desired
structured prior p(z) is an effective way to limit the level of
overlap when β is too large. However, it is practically chal-
lenging to design an appropriate structured prior. Therefore,
in our investigation, we focused on exploring the full range
of β’s value in β-VAE for the impact of disentanglement to
anomaly detection. Since our framework is quite general, it
can be easily extended to other unsupervised disentangled
representation learning models for anomaly detection.

C. Anomaly Scores with Normalized k-NN Distance in t-SNE
Maps

Since the normalised reconstruction error in input space and
the k-NN distance in t-SNE maps may have very different
magnitudes (as mentioned in Section III-E), some values of
α in Equation (2) are close to (but not exactly equal to) 1.
The reader may have the intuition that t-SNE is not useful in
AnoDM. A simple way, to find out whether large α value is
due to magnitude difference or useless of t-SNE, is to replace
k-NN distance of a test sample in t-SNE map (Equation (4))
with a k-NN distance normalized by average distance among
training samples in the t-SNE map as defined below:

N k
tSNE(x

(i)
te ) ,

DktSNE(x
(i)
te )

c ∗ DtSNE(xtr)
, (5)

DtSNE(xtr) ,
1

n

∑
i,j∈{1,2,...,n}

‖x(i)
tr − x

(j)
tr ‖2, (6)

where c > 0 is normalization hyperparameter (we set it to
0.5 in our experiment); xtr is a training sample; n is the total
number of training samples in a t-SNE map. The heatmaps
in Fig. 5 depict performances of AnoDM on Fashion-MNIST
(“Dress”class is considered as anomaly) and Arrhythmia (“F”
class is treated as anomaly) using normalized k-NN distance
in t-SNE maps in combination reconstruction error. By com-
paring Fig. 5 with Fig. 3, one can see that the optimal values
of α shift upper right corner area to the upper left corner area.
It thus implies that, the optimal value of α is affected by the
magnitude difference, and t-SNE indeed plays an essential role
in AnoDM.

D. Impact of Beta to t-SNE Representations

The t-SNE plots in Fig. 4 reflect the impact of β’s value
on latent representations in the case of identifying anomalous
digit 7 from MNIST. In this example, the best performance
(auROC = 0.975) was achieved when β = 0.01. Clearly, as
β increases, all latent clusters become less dense, and more
anomalous latent data points move to neighboring clusters.
Furthermore, Fig. 4 also corroborates that, even though in t-
SNE maps distances between clusters might not reflect global
geometry and cluster sizes might not mirror the true sizes [37],
using averaged distance from a test sample to its k nearest
normal data points represented in t-SNE space to qualify
outlierness still is a very effective way for distinguishing
anomalous samples when β is tuned properly.

(a) Fashion-MNIST, “Dress” class. (b) Arrhythmia, “F” class.

Fig. 5: Performances (measured in terms of auROC) of AnoDM evaluated
on Fashion-MNIST and Arrhythmia when using normalized k-NN distance
in t-SNE maps in combination with reconstruction error. On each dataset, the
anomalous class is indicated in the corresponding subcaption while treating
the rest classes as normal classes.

E. Evaluation of Anomaly Score Function

In order to better evaluate our anomaly score function, as
formulated in Equation (2), we conducted a comprehensive
comparison with methods only based on either distance in
t-SNE map (DktSNE) or reconstruction-error in raw feature
space (DRE). To see the contribution of t-SNE, it is also
compared with the method that calculates nearest neighbor
distance directly in latent space of β-VAE. Fig. 6 displays
the ROC curves of these four approaches when assuming
anomalous classes are respectively 1 (“Trouser/pants”), 3
(“Dress”), 5 (“Sandal”), and 7 (“Sneaker”) on Fashion-MNIST.
It is obvious that AnoDM achieves best results among them
by taking advantages of both β-VAE reconstruction and t-SNE
embedding. The β-VAE reconstruction reflects whether useful
information is captured by the model through recovering the
input x; the t-SNE embedding indicates the disentanglement
of latent representations z. Both measures effectively comple-
ment each other. Besides, comparing the auROCs between t-
SNE-based and latent-distance-based score functions, one can
clearly see that the former dramatically outperforms the latter.
Same conclusion can be drawn for MNIST, CIFAR-10, and
Arrhythmia. To further show that the optimal values of α are
close to 1 (see Fig. 3) is due to magnitude difference rather
than less usefulness of t-SNE, we replaced the distance score
(Equation (4)) with normalized distance score (Equation (5))
in the weighted final anomaly score function (Equation (2)).
We found that the optimal values of α shift to the lower end
of the spectrum (see Fig. 5). It implies that t-SNE does play
a critical role in our framework.

F. AnoDM for Time-Series

As mentioned in Section III, our method uses a TCN
encoder in β-VAE for time-series anomaly detection. Fig. 7
displays the comparison among TCN, CNN and LSTM en-
coders in the AnoDM framework on Arrhythmia. As a special
case of LSTM-β-VAE, LSTM-VAE was presented in [27] for
state-of-the-art sequence modelling. For the five classes in
Arrhythmia, iteratively one class was treated as anomalous
class, while the other classes were used as normal classes.
The TCN-encoder-based method outperforms the other two



(a) Anomalous class: 1. (b) Anomalous class: 3.

(c) Anomalous class: 5. (d) Anomalous class: 7.

Fig. 6: ROC curves of four methods on Fashion-MNIST. These four examples
illustrate the results of using four different anomaly score functions: t-
SNE+Recon-error-based (SβVAE+tSNE = αDRE + (1 − α)DktSNE), t-SNE-
based (DktSNE), Reconstruction-error-based (DRE) and latent-distance-based
(calculating distances in latent space of β-VAE). The α values for these four
plots are 0.8, 0.8, 0.95, and 0.8, respectively.

methods significantly in all five cases. Even though the CNN
encoder achieved impressive results when detecting anomalous
class “S”, “V”, “F” and “Q” respectively, it did not work quite
well when class “N” was treated as anomaly. One possible
reason might be that comparing with TCN and LSTM, the
performance of CNN is more sensitive on the training sample
size. Taking the above case as an example, as class 0 (“N”)
accounts for over 80% of training data, when considering it
as anomaly, normal training data hence become less sufficient
for learning β-VAE. Nevertheless, in TCN-based β-VAE, each
hidden unit of the last deterministic hidden layer before latent

Fig. 7: AuROCs on Arrhythmia.

encoding at the bottleneck is calculated based on much longer
sequence dependency, such that it is less sensitive to the
limitation of small sample size. Conclusively, as mentioned
in [17], TCN should be regarded as a natural starting point
for sequence modeling tasks.

As a case study, Fig. 8a shows the original EGG signals and
reconstructed signals by TCN-based β-VAE when considering
class “Q” as anomaly. Normal samples can be reconstructed
very well, whereas abnormal samples suffer from larger recon-
struction errors. Meanwhile, the corresponding t-SNE plot in
Fig. 8b displays two distinctive clusters of abnormal samples.
The combination of these two measures thus leads to the best
performance as seen in Fig. 8c.

(a) Reconstructed signals by β-VAE.

(b) t-SNE plot. (c) ROC plot.

Fig. 8: Reconstructed signals, t-SNE map, and ROC curves on Arrhythmia
with class “Q” as anomaly.

V. CONCLUSIONS

We propose a new methodology which successfully inte-
grates t-SNE with disentangled representation learning for
anomaly detection. This approach achieved state-of-the-art
performances on both image data (MNIST, Fashion-MNIST
and CIFAR-10) and Arrhythmia time-series data. Specifically,
best performance is accomplished when 0 < β < 1 for almost
all cases involving β-VAE. We also defined an anomaly score
function by effectively taking the advantages of both low-
dimensional t-SNE embedding and β-VAE reconstruction. Our
algorithm demonstrated that t-SNE plays an essential role for
measuring abnormality. This research initiates the research on
anomaly detection using unsupervised disentangled represen-
tation learning and lower-dimensional manifold learning. Be-
sides, our model uses TCN network as encoding architecture
for detecting anomalous time-series data and the experimental
results convince us that TCN consistently outperforms CNN



and LSTM. As a proof of concept, our current framework
automatically inheres advantages of deep learning to address
anomaly detection’s issues in representability and scalability
as discussed in the beginning of this paper. The extension of
our framework to multimodal data is straightforward. It is also
possible that a neural t-SNE component could be designed
and integrated into the learning of β-VAE to achieve real-
time efficiency. Other new well-performing manifold learning
methods, such as UMAP [44] which is faster and keeps global
topologies, could be employed as replacement of t-SNE.

APPENDIX

A. Beta-VAE and Beyond for Disentangled Representation
Learning

[13] proposed a novel deep generative model, named β-
VAE, a modification of VAE by introducing an adjustable
hyperparameter β to learn an interpretable disentangled rep-
resentation of the data generative latent factors. Specifically,
β functions as a controller to trade off between the ex-
tent of learning constraints and reconstruction accuracy. The
constraints impose a limit on the capacity of the latent in-
formation channel and an emphasis on learning statistically
independent latent factors. [13] demonstrated that β-VAE with
appropriately tuned β (β > 1) qualitatively outperforms VAE
(β = 1) as well as state of the art unsupervised (InfoGAN) and
semi-supervised (DC-IGN) approaches to disentangled factor
learning on a variety of datasets (celebA, faces and chairs).

[13] assumed that an image x is generated by the true
world simulator using ground truth data generative factors:
p(x|v,w) = Sim(v,w), where v is set of conditionally
independent factors and w is set of conditionally dependent
factors. Therefore, the joint distribution of the data x and a
set of generative latent factors z is: p(x|z) ≈ p(x|v,w) =
Sim(v,w). The aim of this generative model is then to ensure
that the inferred latent factors from qφ(z|x) capture the gen-
erative factors v in a disentangled manner. The conditionally
dependent data generative factors w can remain entangled
in a separate subset of z that is not entangled with v .
Considering the prior p(z) is set to be an isotropic unit
Gaussian p(z) = N (0, I), a constraint δ is introduced to
encourage the matching between qφ(z|x) and p(z) such that
the disentangling property in the inferred qφ(z|x) can be
realized. Following the same incentive as in VAE: maximizing
the probability of generating real data, while minimizing the
distance between the generative and approximate posterior
distributions, as formulated below

max
φ,θ

Ex∼X
[
Eqφ(z|x)[log pθ(x|z)]

]
(7)

s.t. DKL
(
qφ(z|x)||p(z)

)
< δ, (8)

where X = {x1,x2, . . . ,xn} is the training data set. The
objective function to be maximized in β-VAE is thus defined
as:

Lβ(θ, φ) = Eqφ(z|x)[log pθ(x|z)]− βDKL
(
qφ(z|x)||p(z)

)
,

(9)

where the Lagrangian multiplier β is the regularisation coef-
ficient that constrains the capacity of the latent information
channel z and puts implicit independence pressure on the
learnt posterior due to the isotropic nature of the Gaussian
prior p(z). When β = 1, β-VAE corresponds to the original
VAE formulation of [12]. When β > 1, it applies stronger
constraint which limits the capacity of z and encourages
the model to learn the most efficient representation of the
data. Theoretically, a higher β encourages more efficient
latent encoding and further encourages the disentanglement.
However, a higher β may lead to poorer reconstructions due
to the loss of high frequency details when passing through a
constrained latent bottleneck.

Mathieu et al. [36] argued that overly large β is not univer-
sally beneficial for disentanglement, Since this in turn causes
a mismatch between marginal posterior qφ(z) and the prior
p(z). Thus they proposed a generalization of disentanglement
in VAE by explicitly separating such a decomposition as
two tasks: a) the latent encoding of data should achieved
an appropriate level of non-negligible overlap in aggregate
encoding qφ(z), and b) the aggregate encoding of data qφ(z)
should match the prior p(z) which demonstrates the desired
dependency structure between latent variables. [36] developed
a new objective that incorporates both a) and b) by introducing
an additional divergence term D

(
qφ(z), p(z)

)
.

Lα,β(x) = Eqφ(z|x)[log pθ(x|z)]− βKL(qφ(z|x)||p(z))
(10)

− αD(qφ(z), p(z)).

By appropriately setting β and α, it allows direct control
over the level of overlap and the regularization between
the marginal posterior and the prior. However, a practical
challenge of this method is how to define a proper structured
prior when the structure of real hidden factors is poorly known.
For this reason, our computational experiment in this paper is
based on [14]’s β-VAE.
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