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Abstract—Audio tagging aims to assign tags for an audio
chunk, and it has attracted increasing attention as its potential
applications seem to be evident. Deep learning technologies
have been successfully applied to domestic audio tagging task.
However, the performance of deep models is heavily relied on
the hyper-parameters selection such as the filter size in the
convolutional layers. Recently, Neural Architecture Search (NAS)
has been successfully applied to design deep model architectures
for specified learning task. In this paper, we explore the neural
architecture search method for domestic audio tagging. We
propose to use the Convolutional Recurrent Neural Network
(CRNN) with Attention and Location (ATT-LOC) as the audio
tagging model. Then, we apply NAS to search for the optimal
number of filters and the filter size. Finally, we employ a grid
search over the mixup augmentation coefficient, the input size of
the spectrogram and the value of batch size to further improve
the classification results. As demonstrated in our experiments,
the architecture found by automatic searching achieves an equal
error rate of 0.095 on DCASE 2016 task 4 dataset, outperforming
the CRNN baseline of 0.10. In addition, the architecture found
by NAS achieves a faster convergence rate in training than the
CRNN baseline.

Index Terms—audio tagging, convolutional recurrent neural
network, neural architecture search, reinforcement learning

I. INTRODUCTION

Domestic audio tagging aims to tag an audio clip recorded
from home environment. The clips are typically short seg-
ments, and the tags can be one (or more) of pre-determined
sound sources present in the recording, such as, “adult male
speech”, “broadband noise” and “video games”. Domestic
audio tagging has received widespread attention in plenty of
applications, such as audio surveillance [1], lifelogging [2]
and health activity monitoring [3]. The labeled audio data
could be divided into two types: clip level labeled audio data
and event level labeled audio data. The difference between
these two kinds of labeling methods is that the event level
labeled audio clips are labeled with both the corresponding
tags and their occurrence time, while the clip level labeled
audio clips are only labeled with the presence of the tags but
not their occurrence time. In this paper, we focus on the clip
level labeled audio data, which is commonly used in recent
researches [4]–[6]. However, the clip level labeled audio data
is difficult to use for the following reasons. Firstly, the tags
only indicate whether the corresponding events exist in an

audio clip but does not include the specific occurrence times.
Secondly, different events vary in duration dramatically. For
example, some events such as “speech” may last for a few
minutes, while other events such as “gunshot” may only last
for hundreds of milliseconds. Lastly, the overlapping of the
sound events imposes more challenge for the task.

Much research has been investigated on the audio tagging
task. The traditional method for audio tagging relied on
the Gaussian mixture model (GMM) trained on Mel fre-
quency cepstrum coefficients (MFCCs) [7]. Since DCASE
2016 challenge, Deep Neural Networks (DNNs) have been
used to classify the audio clips [8]–[10]. Different from the
GMM method which employs one VS rest policy, DNNs
can distinguish the tags in shared weights simultaneously.
Recently, Convolutional Neural Networks (CNNs) have been
shown to outperform DNNs on this task as CNNs can capture
spatial information from the input representation of the audio
signal [11], [12]. With the aim of modeling the long-term
temporal structure of the audio signal, Convolutional Gated
Recurrent Neural Network (CGRNN) [5] is proposed, which
combines the CNN and the Gated Recurrent Unit (GRU). In
order to locate the occurred acoustic events in an audio clip,
Attention and Location (ATT-LOC) modules are proposed [4].
The attention module is used for frame-level feature selection
for each sound event, while the localization module is used to
find the locations of each event. Recently, the best performing
system [6] applies the mixup augmentation method on the
existing ATT-LOC module. The mixup augmentation method
here aims to expand the training data size by creating new
samples and improve the performance of the trained model.

However, for the domestic audio tagging task, the perfor-
mance of the deep models relied on the hyper-parameters
selection such as the number of filters, the filter height and
the filter width in the convolutional layers. As these hyper-
parameters are not optimal, the CRNN model still has room for
improvement. Therefore, it is of great interest to find a better
configuration for the hyper-parameters, to further improve the
classification results.

Recently, Neural Architecture Search (NAS) has been suc-
cessfully applied to design model architectures for specified
learning tasks, such as image classification and language
modeling [13]–[17]. NAS aims to find the most promising
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Fig. 1. An overview of Neural Architecture search for audio tagging.

architectures on the task of desire by reinforcement learning
algorithms. In NAS, a Recurrent Neural Network (RNN) is
used as a controller to generate a “child neural network” (a
candidate architecture which has fewer parameters than the
full network for speeding up the training process). Then, the
generated network could be trained on the specified dataset
until convergence to get accuracy as the reward signal for
the controller (see Figure 1). Based on the reward signal, the
controller can be trained with some reinforcement learning
algorithms. Therefore, in the next iteration, the controller can
leave more opportunities to generate the architectures which
can receive higher rewards. The work of NAS is established on
the observation that the architecture of a neural network can
be typically specified by a string (a list of hyper-parameters)
whose length is variable.

In this paper, we explore the Neural Architecture Search
method to search for the models for the CHIME-HOME
dataset of the DCASE 2016 audio tagging challenge [18]. We
first apply the CRNN model with ATT-LOC modules and the
mixup augmentation method as our baseline model, which is
the previous state-of-the-art method [6] for CHIME-HOME
dataset. Then, with the aim of pruning the search space and
improving the search efficiency of NAS, we divide the search
space into two parts: hyper-parameters of the convolutional
layers and hyper-parameters of the training details. After
specifying the architecture of our model, we implement a grid
search over the hyper-parameters for training including the
batch size, the hyper-parameter of mixup approach, and the
input size of the spectrogram, which can better suit the capa-
bility of the found architecture and further improve the training
process. Extensive experiments are conducted to demonstrate
that our approach could find several promising architectures
which achieve better classification results than the previous
state-of-the-art method [6]. The architecture found by NAS
can not only achieve state-of-the-art performance (0.095 EER)
but also maintain a faster convergence speed compared with
the baseline system.

The remainder of this paper is organized as follows. In
section 2, the related work is presented. Section 3 introduces
the Convolutional Recurrent Neural Network with Attention
and Localization Model. The Mixup augmentation method is
also given in this part. Section 4 presents the NAS approach
for audio tagging. Section 5 presents the experimental settings,

training details as well as the analysis of the results. The
discussions of our approach are shown in Section 6.

II. RELATED WORK

Our approach is related to two research fields, including
audio tagging and neural architecture search.

A. Audio Tagging

Audio classification and detection have attracted increasing
attention in recent years [19]. There are many challenges
for audio detection and tagging such as DCASE 2013 [20],
DCASE 2016 [18] and DCASE 2017 [21]. Many approaches
described above rely on the bag of frames (BOF) model [22].
BOF is established on the assumption that tags occur in all
frames. However, this assumption could not be demonstrated
in practice because some audio events like “gunshot” only hap-
pen a short time in audio clips. Another audio tagging method
[23], [24] transforms waveform to the time-frequency (T-F)
representation, which can be regarded as an image. However,
there exist some difference between images and audio clips.
In an image, the objects which need to be recognized usually
occupy a dominant part. However, in an audio clip, audio
events only occur a short time. To solve this problem, some
models with the attention mechanism [4] for audio tagging and
classification have been applied to let the neural networks learn
to focus more on the audio events and ignore the background
noises. Recently, a mixup-based approach with a convolutional
recurrent neural network and attention module [6] have been
proposed to improve the performance of audio tagging.

B. Neural Architecture Search

NAS has made a great contribution to the development
of automatically designing neural networks. The controller in
NAS does not predict all the outputs simultaneously. Instead,
it predicts hyper-parameters once a time relied on the previous
predictions. This idea has some similarity with the decoding
process in end-to-end Sequence to Sequence Learning [17].
A difference with sequence to sequence learning is that the
metric (the accuracy of the child network) NAS optimizes
is non-differentiable. In a sense, NAS is similar to the work
on BLEU optimization in Neural Machine Translation [25].
A significant difference is that NAS learns directly from the
reward signal without any supervised learning mechanism.

Another area which is related to NAS is the idea of learning
to learn or meta-learning [26], whose goal is to use the
information learned in one task to improve a future task.
Besides, the idea of using a neural network to learn the
gradient descent updates for another network [27] and the
idea of using reinforcement learning to find update policies
for another network [28] are also related to NAS.

However, a drawback for NAS is the computational expense,
which limits its application range. Therefore, a great number
of methods which aim to improve the efficiency of NAS have
been proposed. Efficient Neural Architecture Search (ENAS)
[29] is a novel method that speeds up NAS by sharing
weights between architectures. This work is established on the



assumption that the computational bottleneck of NAS is the
training of each child model to convergence. ENAS preserves
all the trained weights and optimizes the training process. The
idea of sharing weights between architectures is inspired by the
concept of weight inheritance in neural model evolution [30].
There are other works which focus on improving the search
efficiency of NAS, such as using performance prediction [31],
using iterative search method for architectures of growing
complexity [32] and using a hierarchical representation of
architectures [16].

III. CRNN WITH ATT-LOC MODULES AND THE MIXUP
AUGMENTATION METHOD

The baseline system in our experiments is the Convolutional
Recurrent Neural Network (CRNN) with Attention and Lo-
calization (ATT-LOC) modules and the Mixup augmentation
method, which have achieved state-of-the performance as
claimed in previous studies. The architecture of our baseline
system is shown in Figure 2. In this section, we will divide
the baseline model into two parts (CRNN, ATT-LOC) and
introduce the two parts in detail.

A. Convolutional Recurrent Neural Network

The Convolutional Recurrent Neural Network consists of
two parts: the convolutional layers to extract the features and
the Gated Recurrent Units (GRU) to model the long-term
pattern along the input.

The form of the input data is log mel spectrograms [33],
which is obtained by applying Short-time Fourier transform
(STFT) on the audio waveform. In the process of STFT,
a Hamming window with a size of 1024 is chosen. After
specifying the format of the input, convolutional layers are
specified to extract high-level features. Here, we denote Conv
block as a convolutional operation with N filters and a kernel
size of H ×W , a batch normalization layer, a max-pooling
layer of 1×2 and a dropout layer with ratio 0.1 for preventing
overfitting. Besides, Exponential linear units (ELUs) [34] are
chosen for activation because they can make a contribution to
faster learning and lead to better generalization performance
than ReLUs [34]. The hyper-parameters of the convolutional
layers in the baseline CRNN are manually specified, while we
apply reinforcement learning algorithms to search for the most
promising hyper-parameters. The outputs of the convolutional
layers are fed into the Gated Recurrent Unit (GRU) to model
the long-term pattern along the whole chunk [5]. The loss can
be calculated as:

E = −
N∑
n=1

(Pn logOn + (1− Pn) log(1−On)), (1)

O =
1

T

T−1∑
t=0

(1 + exp (−St))−1, (2)

where E stands for the binary cross-entropy, N stands for the
bunch size, On and Pn denote the estimated and reference tag
vector at sample index n, respectively. The CNN linear output

is defined as St at tth frame. T represents the total number
of frames in the audio chunk.

B. Attention and Localization Modules

Here, we will introduce the attention and location modules
[4] in our baseline model. The diagram of the attention and
localization modules is shown in Figure 3. The attention
mechanism, which is an additional sigmoid layer with one
node output, can effectively reduce the impact of background
noise on the output and force the classifier to focus more on
the frame in which the acoustic events occur. In other words,
the attention module aims to predict the importance of each
frame for the final labels. The predicted attention factor Zatt(t)
at the tth frame indicates the importance of the current frame
for the final labels:

Zatt(t) = σ(Watt ∗Xt + batt), (3)

where Xt is the input feature at the tth frame. σ is the sigmoid
function. Watt and batt denote the weights and bias of the
attention module. Then, the importance of the current frame
is multiplied with the CNN output to make the classifier more
deterministic:

Y ‘
cnn(t) = Zatt)(t)Ycnn(t), (4)

where Ycnn(t) denotes the result processed by the activation
function of CNN. The weighted feature against the background
noise is denoted by Y ‘

cnn(t). This weighting process can make
the classifier focus more on important frames and neglect the
unrelated frames. Finally, the produced attention weight is also
applied to the final acoustic tag outputs at each frame. It is
defined as,

O‘(t) = Zatt(t)O(t), (5)

where O(t) denotes the tag prediction output at the tth frame
and O‘

t denotes the weighted output. The attention weight
Zatt(t) can measure the contribution degree at the tth frame
for the final predicted label.

At the same time, the localization module can localize the
acoustic events which occurred in the whole audio chunk. It
is meaningful to predict the accurate temporal locations (at
frame-level) of the occurred acoustic events. The localization
module is one Softmax layer without any hidden layer. The
localization vector Zloc(t) in Figure 3 denotes the localization
vector at the tth frame. The working process of the localization
module is quite similar to the attention factor calculation
process, and more details can be found at [4].

IV. NEURAL ARCHITECTURE SEARCH FOR AUDIO
TAGGING

In the following section, we will demonstrate the fact that
the convolutional layers of the baseline model are sensitive
to hyper-parameters for audio tagging tasks. Then, we will
describe our method which uses a recurrent neural network
(RNN) as the controller to search for better convolutional



Fig. 2. System architecture for audio tagging. Data augmentation is operated on the log mel spectrogram. There are 7 Conv blocks. The number of filters
and the filter size in the convolutional layers are specified from experience.

Fig. 3. The diagram of the attention and localization modules based on CRNN
for audio tagging. ATT denotes the attention module. LOC represents the
localization module.

architectures. Finally, we will show the details for training
the controller RNN to maximize the expected accuracy of the
sampled architectures by Policy Gradient [35] algorithm.

A. Sensitivity of the Convolutional Layers for Audio Tagging
Tasks

For audio tagging tasks, the hyper-parameters of the convo-
lutional layers will have an impact on the final classification
results. The previous work in [6] chooses different Conv filter
sizes experimentally without instructions on how to design
the hyper-parameters. The ATT-LOC model has only one
convolutional layer with a big kernel size of 30×1. In practice,

TABLE I
EXPERIMENTAL RESULTS OF ADJUSTING HYPER-PARAMETERS IN THE
CONVOLUTIONAL LAYERS ON THE BASIS OF CRNN. Ni DENOTES THE

NUMBER OF FILTERS IN THE ith LAYER.

N1 N2 N3 N4 N5 N6 N7 EER

8 16 32 64 64 64 64 0.104
8 32 64 16 8 64 64 0.141
16 8 32 64 32 64 64 0.131
32 64 32 8 32 64 64 0.115

different layers in CNN can extract the features of different
levels. Therefore, the more layers the convolutional neural
network has, the richer features of different levels can be
extracted. Based on this point of view, the CRNN model
proposed in [6] substitutes the convolutional part in ATT-LOC
with seven convolutional layers which are equipped with a
small kernel size of 3 × 3. Experiments have shown that the
substituted model can further improve the classification results
[6]. However, even though deeper convolutional layers can
improve the classification results, merely increasing the depth
will not always get acceptable results and may result in gradi-
ent dispersion or gradient explosion. Therefore, the models in
audio tagging tasks are sensitive to hyper-parameters. In our
experiments, we search for the promising hyper-parameters
which will make the capability of the model better match the
size of CHIME-HOME dataset, compared with the previous
state-of-the-art model [6].

Here, we demonstrate our assumption by adjusting some
hyper-parameters in the convolutional layers of CRNN [6].
In concrete, we adjust the number of filters in different con-
volutional layers (do not change the other hyper-parameters)
and test the corresponding performance on the evaluation set.
As shown in Table 1, the performance of the CRNN model
fluctuates dramatically (from 0.104 to 0.141) even if we only
adjust a few hyper-parameters.



B. Generate Hyper-parameters of Convolutional Layers by
Policy Gradient

We use a controller to generate architectural descriptions of
neural networks. The controller is implemented as a recurrent
neural network. The model which we focus on is the convo-
lutional layers of the CRNN model. Therefore, we can use
the controller to generate the corresponding hyper-parameters
(filter number, filter width, filter height) as a sequence of
tokens. To make the search process more manageable, we
first follow the experimental settings in [6] and specify the
number of convolutional layers and the size of input data as
constant values. In the following experiments, we will change
the number of layers according to the size of input by grid
search.

Once the controller RNN finishes the process of generating
an architecture, a neural network with this architecture and
the ATT-LOC module is built and trained. At convergence, the
accuracy of the network on the evaluation set is recorded. The
parameters of the controller RNN θc, are then optimized with
the aim of maximizing the expected validation accuracy of the
proposed architectures. In the next section, we will describe a
policy gradient method which we use to update parameters θc
so that the controller RNN can generate better architectures
over time.

C. Training with REINFORCE
The list of tokens that the controller predicts can be viewed

as a list of actions a1:T to design an architecture for a child
network. Early stopping mechanism is used in the training
process. In other words, if the validation loss has not been
improved after 20 epochs, the training process will be in-
terrupted. Then, the child network will achieve an eer on
the evaluation set. We can transform it to 1 − eer as the
reward signal R and use the reinforcement learning algorithm
REINFORCE [36] to train the controller. REINFORCE does
not complete the back-propagation process by the loss. Instead,
it adjusts the probability of choosing a specific action by the
value of rewards. The controller will give higher possibilities
to the actions that get high rewards. To find the promising
architecture, the controller needs to maximize its expected
reward, represented by J(θc):

J(θc) = EP (a1:T ;θc)[R] (6)

where θc represents the parameters of the controller. Here,
REINFORCE directly optimizes the parameterized stochas-
tic policy P (a1:T ; θc) by performing gradient ascent on the
expected reward. The expectation is implicitly taken over all
possible trajectories. Denote d(x) as the possibility distribution
under the policy P (at|a(t−1):1; θc). Denote A as the action
space of the current state a(t−1):1. The function above can be
rewritten as:

J(θc) =

T∑
t=1

(d(a(t−1):1)
∑
at∈A

P (at|a(t−1):1; θc)R) (7)

since the reward signal R is non-differentiable, we need to use
a policy gradient method iteratively update θc.

In this work, we use the REINFORCE rule:

∇θcJ(θc) = ∇θc
T∑
t=1

(d(a(t−1):1)
∑
at∈A

P (at|a(t−1):1; θc)R)

(8)

∇θcJ(θc) =
T∑
t=1

(d(a(t−1):1)
∑
at∈A

∇θcP (at|a(t−1):1; θc)R)

(9)
Here, we suppose that the function above is differen-
tiable when P (at|a(t−1):1; θc) is zero. In the case of
∇θcP (at|a(t−1):1) is already known, we could use the method
of likelihood to ratio to define ∇θcD(at|a(t−1):1) as the score
function. Due to the reason that the function d() denotes the
probability distribution under the policy P (at|a(t−1):1; θc) and
a(t−1):1 denotes a specific state in the exploration process, we
can get

∑T
t=1 d(a(t−1):1) = 1. Therefore, Equation (12) could

be re-written as:

∇θcJ(θc) =
T∑
i=1

EP (a1:T ;θc)[∇θc logP (at|a(t−1):1; θc)R]

(10)
An empirical approximation of the above quantity is:

1

m

m∑
k=1

T∑
t=1

∇θc logP (at|a(t−1):1; θc)Rk (11)

where m is the number of different architectures that the
controller samples in one batch and T is the number of hyper-
parameters our controller has to predict to design a neural
network architecture. The validation accuracy that the kth
neural network architecture achieves after being trained on
a training dataset is Rk.The above update is an unbiased
estimate for our gradient but has a very high variance. In order
to reduce the variance of this estimate, we employ a baseline
function:

1

m

m∑
k=1

T∑
t=1

∇θc logP (at|a(t−1):1; θc)(Rk − b) (12)

In our experiments, the baseline b is an exponential moving
average of the previous architecture accuracy. Based on this,
the controller can judge whether the current reward is valuable
compared with the previous results. First, we should initialize
the controller class and build the corresponding modules.
Then, we should collect the actions predicted by the controller
with the corresponding rewards. Finally, we update the param-
eters of the controller based on the experience we store.

V. EXPERIMENTS AND RESULTS

In this section, we will first introduce the experimental
settings from the following two aspects: dataset and baseline
models, search space and training details. Then, we will show
the results of our experiments and the corresponding analyze.



TABLE II
SEVEN AUDIO EVENTS IN THE CHIME-HOME DATASET

Audio Event Event Descriptions

’b’ Broadband noise
’c’ Child speech
’f’ Adult female speech
’m’ Adult male speech
’o’ Other identifiable sounds
’p’ Percussive sound events
’v’ TV sounds or Video games

A. Dataset and Baseline Models

We apply the neural architecture search method to the
CHIME-HOME dataset of the DCASE 2016 audio tagging
challenge [37]. The audio recordings are produced in a
domestic environment [38]. The dataset is composed of 4-
second audio chunks at a sampling rate of 16kHz and their
corresponding multi-label annotations or ground truth labels
[39]. As shown in Table 2, there are seven acoustic event
tags, including adult male speech, child speech, adult female
speech, video game / TV, percussive sounds, broadband noise,
and other identifiable sounds. There are 4387 recordings in
the development set and 816 recordings in the evaluation set.
Besides, five-fold sets are configured in the development set.
The target is to predict the presence of absence of audio tags
in each audio chunk.

For the format of the input features, we choose log-mel
features because they compute directly from the mel-frequency
spectral coefficients for each frame of raw audio. We select
CGRNN [5], CRNN with mixup [6] and ATT-LOC [4] as
baseline models. CGRNN and ATT-LOC.

B. Search Space and Training Details

The NAS search process is based on the baseline model
shown in Section 3. For the NAS, we only search the hyper-
parameters of the convolutional layers including filter height,
filter width and the number of filters. We retain the ATT-
LOC modules and the mixup augmentation method. Besides,
the search space is divided into two parts with the aim of
pruning the search space and improving the search efficiency.
The first part is the hyper-parameters of the convolutional
layers in our baseline model. For each convolutional layer,
the controller RNN selects a filter height from {1, 3, 5}, a
filter width from {1, 3, 5}, and the number of filters from
{8, 16, 32, 64}. The second part is to perform a grid search
over the hyper-parameters for the training process including
the coefficient of mixup, batch size, and the number of mel
frequency bins. For the coefficient of the mixup augmentation
method, we select a value from {0.1, 0.2, · · · , 2.0}. For the
batch size of the training process, the value needs to be
selected from {16, 32, 64, 96, 128, 160}. The number of mel
frequency bins is selected from {64, 96, 128, 160, 240}. To be
mentioned, the existing experiments have shown that deeper
networks, such as VGG [40], could not get satisfactory results.
This may be caused by the fact that the size of the CHIME-
HOME dataset does not match the model capability. Therefore,

we do not take the skip connection approach into the model,
which is designed for solving the gradient back-propagation
problem on deeper neural networks.

The controller RNN for NAS is modeled by a two-layer
LSTM with 32 hidden units in each layer. The controller RNN
is trained with the ADAM optimizer [41] with a learning
rate of 0.001. The weights of the controller are initialized
uniformly between −0.08 and 0.08. During the search process,
the controller samples 250 architectures, which are specified
experimentally. The time for training a “child network” to
convergence is 20 minutes, and the training process is im-
plemented on 4 GeForce GTX 1080 GPUs with three days.

Once the controller RNN samples an architecture, a child
model with ATT-LOC module is constructed and trained for
100 epochs. Early stopping is used to monitor the validation
loss. Training is interrupted if the validation loss has not
decreased after 20 epochs. The reward used for updating the
controller is the opposite value of the average equal error
rate (EER) for five-fold cross-validation. EER is the official
evaluation method for the challenge, and we followed the 5-
fold cross-validation setting with the original fold splits. To
be mentioned, the EER is defined as the error rate at the ROC
operating point where the false positive and false-negative
rates are equal, and a lower EER represents better classification
performance.

C. Results

The first part of our experiments is to search for the archi-
tecture that achieves the best validation accuracy. The second
part is to run a small grid search over batch size, α hyper-
parameter of mixup approach, and the value of frequency bins
(input size).

We first explore NAS with the hyper-parameter α=0.0 to
show the effectiveness of our approach. Several architectures
discovered by NAS achieve better performance than CRNN
[6] with the same experimental settings including learning
rate, batch size and so on. To be mentioned, the reason
for choosing CRNN for comparison is that our searching
process is established on CRNN. Therefore, it is meaningful to
demonstrate the effectiveness of our approach by the accuracy
improvement from CRNN. A notable discovery is that the
selected architectures prefer a larger number of filters at
bottom layers with square kernel size. The kernel filters with
the size of “1× 1” are hardly used and the “ConV 32, 3× 3”
block is selected the most frequently. Compared with CRNN,
the best value of EER is decreased from 0.13 to 0.11, which
indicates the effectiveness of our method.

Then, we explore the NAS with the hyper-parameter α=1.5,
which achieved the best performance in the CRNN model [6].
In the initial stage of training, the architectures found by the
controller have a large variance due to the reason of randomly
initialized weights and large exploration rate (to sample more
architectures in the search space). The exploration rate here
measures the probability for the controller to predict the
architectures from experience (or randomly). If the architecture
is chosen randomly, the performance of the “child network”



will deviate the expected level. With the training process
progresses, the exploration rate is decreased to make the
predictions more deterministic. In the final 50 epochs, the
exploration is set to 0, and we can find that the controller
shows a stable performance. The controller finally converges
to the state NASα=1.5“32, 3, 3, 32, 3, 3, 64, 3, 3, 16, 3,
3, 64, 3, 3, 64, 3, 3, 64, 3, 3”. To be mentioned, if we
denote Ni as the number of filters, Hi as the filter height,
Wi as the filter width in the ith layer, the state here refers to
“N1, H1,W1, · · · , N7, H7,W7”. Compared with CRNN, we
can find that NAS prefers a larger number of filters at the
bottom layers. Besides, in order to make the results more
robust, we test the trained controller 100 times and find that
the architecture NASbest with state “16, 5, 5, 32, 5, 5, 64,
3, 3, 32, 3, 3, 64, 3, 3, 64, 5, 5, 64, 3, 3” gets the best
performance with EER of 0.095.

We select the best mixup hyper-parameters of CRNN (α =
1.5, α = 2.0) and keep all the other hyper-parameters the
same to make a fair comparison. It can be seen that NAS
outperforms CRNN in both α = 1.5 and α = 2.0. The
superiority benefits mostly from the “b” and “o” classes. As
shown in Figure 4 and Figure 5, under the mechanism of early
stopping, CRNN needs to be trained for almost 80 epochs to
reach a steady state with the validation loss of 0.325 (with
final EER of 0.102). In comparison, the architecture NASbest,
only requires 50 epochs to early stop at the validation loss of
0.272 (with final EER of 0.095). We further demonstrate the
superiority of NAS on the training speed by comparing the
time for NAS and CRNN to reach the same accuracy on the
evaluation set. We can see that to reach the best accuracy
of CRNN (0.915), CRNN needs 68 epochs while NAS only
needs 49 epochs. This indicates that NAS can not only find the
architecture with a lower validation loss but also has a faster
convergence speed.

In order to further improve the performance of NAS,
we implement a grid search over the batch size from
{16, 32, 64, 96, 128, 160}, the coefficient of mixup from
α = {0.1, 0.2, · · · , 2.0} and the frequency bins from
{64, 96, 128, 160, 240}. To be mentioned, the previous exper-
iments were implemented with batch size = 44 and frequency
bins = 128. We find the best combination of these hyper-
parameters (batch size = 64, α = 1.7 and frequency bins =
128), which will make NASα=1.5 (shown as NASgridsearch
in Table 3) achieve the EER of 0.096. For the NASbest
architecture, the improvements are not so obvious, fluctuating
at the value of 0.095.

VI. CONCLUSIONS

In this paper, for the audio tagging task, we explore the
neural architecture search method to search the filter number
and the filter size of convolutional layers on the basis of
CRNN model with ATT-LOC module and mixup augmentation
method. Experiments are conducted on DCASE 2016 (Task 4)
task. When α hyper-parameter is set to 0.0, our method could
search several promising architectures which can decrease
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Fig. 4. The comparison on model training curves of the accuracy on the
evaluation set between NASbest(with final eer of 0.095) and CRNN
(with final eer of 0.105).
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Fig. 5. The comparison on model training curves of the loss on the
evaluation set between NASbest(with final eer of 0.095) and CRNN
(with final eer of 0.105).

EER from 0.13 to 0.11, compared with the previous state-
of-the-art method. When α hyper-parameter is set to 1.5, the
architecture found by our method can get not only a lower
validation loss but also a faster convergence speed. Combined
with a grid search on other influencing hyper-parameters, our
method could gain the best performance with 0.095 EER,
which is the state-of-the-art performance on the evaluation set
of the challenge. For our future work, we aim to apply neural
architecture search to larger audio datasets, such as DCASE
2019 Task1 and AudioSets.
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