
Forget Me Not: Reducing Catastrophic Forgetting
for Domain Adaptation in Reading Comprehension

1st Ying Xu
IBM Research Australia

Melbourne, Australia
ying.jo.xu@au1.ibm.com

2nd Xu Zhong
IBM Research Australia

Melbourne, Australia
peter.zhong@au1.ibm.com

3rd Antonio Jose Jimeno Yepes
IBM Research Australia

Melbourne, Australia
antonio.jimeno@au1.ibm.com

4th Jey Han Lau
University of Melbourne

Melbourne, Australia
jeyhan.lau@gmail.com

Abstract—The creation of large-scale open domain reading
comprehension data sets in recent years has enabled the develop-
ment of end-to-end neural comprehension models with promising
results. To use these models for domains with limited training
data, one of the most effective approach is to first pre-train them
on large out-of-domain source data and then fine-tune them with
the limited target data. The caveat of this is that after fine-tuning
the comprehension models tend to perform poorly in the source
domain, a phenomenon known as catastrophic forgetting. In this
paper, we explore methods that reduce catastrophic forgetting
during fine-tuning without assuming access to data from the
source domain. We introduce new auxiliary penalty terms and
observe the best performance when a combination of auxiliary
penalty terms is used to regularise the fine-tuning process for
adapting comprehension models. To test our methods, we develop
and release 6 narrow domain data sets that can potentially be
used as reading comprehension benchmarks.

Index Terms—Domain adaptation, Reading comprehension,
Catastrophic forgetting, Question Answering

I. INTRODUCTION

Reading comprehension (RC) is the task of answering
a question given a context passage. Related to Question-
Answering (QA), RC is seen as a module in the full QA
pipeline, where it assumes a related context passage has
been extracted and the goal is to produce an answer based
on the context. In recent years, the creation of large-scale
open domain comprehension data sets [1]–[6] has spurred the
development of a host of end-to-end neural comprehension
systems with promising results.

In spite of these successes, it is difficult to train these
modern comprehension systems on narrow domain data (e.g.
biomedical), as these models often have a large number of
parameters. A better approach is to transfer knowledge via
fine-tuning, i.e. by first pre-training the model using data
from a large source domain and continously training it with
examples from the small target domain. It is an effective
strategy, although a fine-tuned model often performs poorly
when it is re-applied to the source domain, a phenomenon
known as catastrophic forgetting [7]–[10]. This is generally
not an issue if the goal is to optimise purely for the target
domain, but in real-word applications where model robustness
is an important quality, over-optimising for a development set
often leads to unexpected poor performance when applied to
test cases in the wild.

Methods for reducing catastrophic forgetting are categorised
into three types based on three assumptions, i.e. with full,
partial or no access to the source domain data. When full
access is available, the most straightforward way to reduce
catastrophic forgetting is to perform multitask learning, where
the model is learned to perform well for both source and target
domains [11], [12]. For partial access assumption, the gradient
episodic memory (GEM) [13] was proposed to store a piece
of data from the source domain, which is used to regularise
the fine tuning process. However, in real-world applications,
data became inaccessible for a number of reasons, such as
an expired data sharing agreement, physical damage to data
storage, accidental deletion of data, and the introduction of
new data privacy laws. Here we focus on exploring methods
to reduce catastrophic forgetting assuming no access to the
source domain data.

In this paper, we explore strategies to reduce forgetting for
comprehension systems during domain adaptation. Our goal
is to preserve the source domain’s performance as much as
possible, while keeping target domain’s performance optimal
and assuming no access to the source data. We experiment
with a number of auxiliary penalty terms to regularise the
fine-tuning process for three modern RC models: QANet [14],
decaNLP [15] and BERT [16]. We observe that combining
different auxiliary penalty terms results in the best perfor-
mance, outperforming benchmark methods that require source
data. Technically speaking, the application of the methods we
propose are not limited to domain transfer for reading compre-
hension. We also show that the methodology can be used for
transferring to entirely different natural language processing
tasks. With that said, we focus on comprehension here because
it is a practical problem in real world applications, where
the target domain often has a small number of QA pairs and
over-fitting occurs easily when we fine-tune based on a small
development set. In this scenario, it is as important to develop a
robust model as achieving optimal development performance.

To demonstrate the applicability of our approach, we apply
topic modelling to MSMARCO [2] — a comprehension data
set based on internet search queries — and collect examples
that belong to a number of salient topics, producing 6 small
to medium sized RC data sets for the following domains:
biomedical, computing, film, finance, law and music. We focus
on extractive RC, where the answer is a continuous sub-span in

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

the context passage.1 Scripts to generate the data sets are avail-
able at: https://github.com/ibm-aur-nlp/domain-specific-QA.

Summarising our contributions: (1) we experiment with a
number of penalty terms to regularise the fine-tuning pro-
cess for adapting comprehension systems, and found that a
combination of them produces the most robust model that
both preserves performance in the source domain and achieves
optimal performance in the target domain; and (2) we develop
and release six narrow-domain extractive comprehension data
sets, facilitating research on domain adaptation for reading
comprehension.

II. RELATED WORK

Most large comprehension data sets are open-domain be-
cause non-experts can be readily recruited via crowdsourcing
platforms to collect annotations. Development of domain-
specific RC data sets, on the other hand, is costly due to the
need of subject matter experts and as such the size of these
data sets is typically limited. Examples include BIOASQ [18]
in the biomedical domain, which has less than 3k QA pairs
— orders of magnitude smaller compared to most large-scale
open-domain data sets [2]–[4], [6].

Wiese et al. [8] explore supervised domain adaptation for
reading comprehension, by pre-training their model first on
large open-domain comprehension data and fine-tuning it fur-
ther on biomedical data. This approach improves the biomed-
ical domain’s performance substantially compared to training
the model from scratch. At the same time, its performance
on source domain decreases dramatically due to catastrophic
forgetting [7], [19], [20].

This issue of catastrophic forgetting is less of a problem
when data from multiple domains or tasks are present during
training. For example in [15], their model decaNLP is trained
on 10 tasks simultaneously — all cast as a QA problem — and
forgetting is minimal. For multi-domain adaptation, Daumé
III, H. [11] and Kim et al. [12] propose using a K+1 model to
capture domain-general pattern that is shared by K domains,
resulting in a more robust model. Using multi-task learning to
tackle catastrophic forgetting is effective and generates robust
models. The drawback, however, is that when training for each
new domain/task, data from the previous domains/tasks has to
be available.

Several studies present methods to reduce forgetting with
limited or no access to previous data [9], [10], [13], [21],
[22]. Inspired by synaptic consolidation, Kirkpatrick et al. [9]
propose to selectively penalise parameter change during fine-
tuning. Significant updates to parameters which are deemed
important to the source task incur a large penalty. Lopez-Paz et
al. [13] introduce a gradient episodic memory (gem) to allow
beneficial transfer of knowledge from previous tasks. More
specifically, a subset of data from previous tasks are stored in
an episodic memory, against which reference gradient vectors
are calculated and the angles with the gradient vectors for

1Although RC with free-form answers is arguably a more challenging and
interesting task, evaluation is generally more difficult [17].

Partition Domain #Examples #Unique Q Mean C Mean Q Mean A
Length Length Length

Train

MS-BM 22,134 21,902 70.9 6.4 13.7
MS-CP 3,021 3,011 67.2 5.5 18.9
MS-FM 3,522 3,481 65.8 6.4 6.5
MS-FN 6,790 6,720 71.9 6.4 14.0
MS-LW 3,105 3,078 64.7 6.2 18.5
MS-MS 2,517 2,480 68.6 6.4 6.6
BIOASQ 3,083 387 35.4 11.0 2.4

Dev

MS-BM 4,743 4,730 71.2 6.4 13.7
MS-CP 647 646 65.4 5.3 19.6
MS-FM 755 751 65.9 6.6 5.9
MS-FN 1,455 1,453 71.6 6.5 14.4
MS-LW 665 664 65.8 6.2 20.0
MS-MS 539 536 69.2 6.4 6.1
BIOASQ 674 83 39.7 11.1 2.4

Test

MS-BM 4,743 4,728 70.5 6.4 13.5
MS-CP 648 645 66.6 5.6 18.3
MS-FM 755 755 66.7 6.3 6.2
MS-FN 1,455 1,452 70.8 6.5 13.6
MS-LW 666 663 65.1 6.2 18.9
MS-MS 540 540 67.4 6.6 7.0
BIOASQ 631 84 34.9 13.2 2.9

TABLE I: Statistics of our seven target domain data sets (Q:
Question; C: Context; and A: Answer).

the current task is constrained to be between −90° and 90°.
Riemer et al. [10] suggest combining gem with optimisation
based meta-learning to overcome forgetting. Among these
three methods, only that of [9] assumes zero access to previous
data. In comparison, the latter two rely on access to a memory
storing data from previous tasks, which is not always feasible
in real-world applications (, as is mentioned in the previous
section).

III. DATA SET

We use SQUAD v1.1 [3] as the source domain data for
pre-training the comprehension model. It contains over 100K
extractive (context, question, answer) triples with only answer-
able questions.

To create the target domain data, we leverage MSMARCO
[2], a large RC data set where questions are sampled from
Bing™ search queries and answers are manually generated
by users based on passages in web documents. We apply
LDA topic model [23] to passages in MSMARCO and learn
100 topics.2 Given the topics, we label them and select 6
salient domains: biomedical (MS-BM), computing (MS-CP),
film (MS-FM), finance (MS-FN), law (MS-LW) and music (MS-
MS). A QA pair is categorised into one of these domains if
its passage’s top-topic belongs to them. We create multiple
(context, question, answer) training examples if a QA pair
has multiple contexts,3 and filter them to keep only extractive
examples.4

In addition to the MSMARCO data sets, we also experiment
with a real biomedical comprehension data set: BIOASQ [26].

2When collecting the passages, we include only those being selected as
useful for answering a query (i.e. is_selected = 1). We tokenise the
passages with Stanford CoreNLP [24] and use MALLET [25] for topic
modelling.

3We only consider context passages that are marked as being useful by
annotators in the original data (i.e. is_selected = 1).

4A (context, question, answer) triple is defined to be extractive if the answer
has a case-insensitive match to the context.

Each question in BIOASQ is associated with a set of snippets as
context, and the snippets are single sentences extracted from
a scientific publication’s abstract/title in PubMed Central™.
There are four types of questions: factoid, list, yes/no, and
summary. As our focus is on extractive RC, we use only
the extractive factoid questions from BIOASQ. As before, we
create multiple training examples for QA pairs with multiple
contexts.

For each target domain, we split the examples into
70%/15%/15% training/development/test partitions.5 We
present some statistics for the data sets in Table I.

IV. METHODOLOGY

We first pre-train a general domain RC model on SQUAD,
our source domain. Given the pre-trained model, we then per-
form fine-tuning (finetune) on the MSMARCO and BIOASQ
data sets: 7 target domains in total. By fine-tuning we mean
taking the pre-trained model parameters as initial parameters
and update them accordingly based on data from the new
domain. To reduce forgetting on the source domain (SQUAD),
we experiment with incorporating auxiliary penalty terms (e.g.
L2 between new and old parameters) to the standard cross
entropy loss to regularise the fine-tuning process.

We explore 3 modern RC models in our experiments:
QANet [14]; decaNLP [15]; and BERT [16]. QANet is
a Transformer-based [27] comprehension model, where the
encoder consists of stacked convolution and self-attention
layers. The objective of the model is to predict the position
of the starting and ending indices of the answer words in the
context. decaNLP is a recurrent network-based comprehen-
sion model trained on ten NLP tasks simultaneously, all casted
as a question-answer problem. Much of decaNLP’s flexibility
is due to its pointer-generator network, which allows it to
generate words by extracting them from the question or context
passages, or by drawing them from a vocabulary. BERT is a
deep bi-directional encoder model based on Transformers. It
is pre-trained on a large corpus in an unsupervised fashion
using a masked language model and next-sentence prediction
objective. To apply BERT to a specific task, the standard
practice is to add additional output layers on top of the pre-
trained BERT and fine-tune the whole model for the task.
In our case for RC, 2 output layers are added: one for
predicting the start index and another the end index. Devlin
et al. [16] demonstrates that this transfer learning strategy
produces state-of-the-art performance on a range of NLP tasks.
For RC specifically, BERT (BERT-Large) achieved an F1
score of 93.2 on SQUAD, outperforming human performance
by 2 points.

Note that BERT and QANet RC models are extractive
models (goal is to predict 2 indices), while decaNLP is
a generative model (goal is to generate the correct word
sequence). Also, unlike QANet and decaNLP, BERT is not
designed specifically for RC. It represents a growing trend in

5Partitioning is done at the question level to ensure the same question does
not appear in more than one partition.

the literature where large models are pre-trained on big corpora
and further adapted to downstream tasks.

To reduce the forgetting of source domain knowledge,
we introduce auxiliary penalty terms to regularise the fine-
tuning process. We favour this approach as it does not require
storing data samples from the source domain. In general, there
are two types of penalty: selective and non-selective. The
former penalises the model when certain parameters diverge
significantly from the source model, while the latter uses a
pre-defined distance function to measure the change of all
parameters.

For selective penalty, we use elastic weight consolidation
(EWC: [9]), which weighs the importance of a parameter
based on its gradient when training the source model. For
non-selective penalty, we explore L2 [8] and cosine distance.
We detail the methods below.

Given a source and target domain, we pre-train the model
first on the source domain and fine-tune it further on the target
domain. We denote the optimised parameters of the source
model as θ∗ and that of the target model as θ. For vanilla
fine-tuning (finetune), the loss function is:

Lft = Lce
where Lce is the cross-entropy loss.

For non-selective penalty, we measure the change of param-
eters based on a distance function (treating all parameters as
equally important), and add it as a loss term in addition to
the cross-entropy loss. One distance function we test is the L2
distance:

L+l2 = Lce + λl2L2(θ, θ∗)

where λl2 is a scaling hyper-parameter to weigh the contri-
bution of the penalty. Henceforth all scaling hyper-parameters
are denoted using λ.

We also experiment with cosine distance, based on the idea
that we want to encourage the parameters to be in the same
direction after fine-tuning. In this case, we group parameters
by the variables they are defined in, and measure the cosine
distance between variables:

L+cd = Lce + λcd
1

|V |
∑
v

CD(θv, θ
∗
v)

where θv denotes the vector of parameters belonging to
variable v.

For selective penalty, EWC uses the Fisher matrix F to
measure the importance of parameter i in the source domain.
Unlike non-selective penalty where all parameters are consid-
ered equally important, EWC provides a mechanism to weigh
the update of individual parameters:

L+ewc = Lce + λewc
∑
i

(Fi · (θi − θ∗i))

F = E[(
∂Lce(fθ∗ , (x, y))

∂θ∗
)2|θ∗]

where ∂Lce(fθ∗ ,(x,y))
∂θ∗ is the gradient of parameter update in

the source domain, with fθ∗ representing the model and x/y
the data/label from the source domain.

0 50 100 150
Variable

0

20

40

60

80

100
M

ea
n

W
ei

gh
t

(a) EWC

0 50 100 150
Variable

0.0

0.1

0.2

0.3

0.4

M
ea

n
W

ei
gh

t

(b) Normalised EWC

Fig. 1: Mean Fisher Matrix values for variables in QANet on
SQUAD.

In preliminary experiments, we notice that EWC tends to
assign most of the weights to a small subset of parameters. We
present Figure 1a, a plot of mean Fisher values for all variables
6 in QANet after it was trained on SQUAD, the source domain.
We see that only the last two variables have some significant
weights (and a tiny amount for the rest of the variables).
Due to the considerably different contribution of variables in
different layers , using the Fisher matrix above directly may
leads to ignoring the difference in the contribution of different
parameters within the same variable. We therefore propose
a new variation of EWC, normalised EWC, by normalising
the weights within each variable via min-max normalisation,
which brings up the weights for parameters in other variables
(Figure 1b):

F ∗i =
Fi −min({F}vi)

max({F}vi)−min({F}vi)
L+ewcn = Lce + λewcn

∑
i

(F ∗i · (θi − θ∗i))

where {F}vi denotes the set of parameters for variable v
where parameter i belongs.

Among the four auxiliary penalty terms, L2 and EWC are
proposed in previous work while cosine distance and nor-
malised EWC are novel penalty terms. Observing that EWC
and normalised EWC are essentially weighted l1 distances,
L2 is based on l2 distance and cosine distance focuses on the
vector angle between variables (and ignores the magnitude),
we propose combining them altogether as these different
distance metrics may complement each other in regularising
the fine-tuning process:

L+all = Lce + λl2L2(θ, θ∗)

+ λcd
1

|V |
∑
v

CD(θv, θ
∗
v)

+ λewcn
∑
i

(F ∗i · (θi − θ∗i))

Since EWC and normalised EWC are both weighted l1
distances and our results demonstrate that our proposed nor-

6By variable we intend a parameter matrix in the attention or feed-forward
layers, e.g. the kernel matrix of the 6th layer defined in a BERT model.

malised EWC perform better than the vanilla EWC, we only
incorporate normalised EWC in the combined loss L+all.

V. EXPERIMENTS

We test 3 comprehension models: QANet, decaNLP and
BERT. To pre-process the data, we use the the models’ original
tokenisation methods.7 For BERT, we use the smaller pre-
trained model with 110M parameters (BERT-Base).

A. Fine-Tuning with Auxiliary Penalty

We first pre-train QANet and decaNLP on SQUAD, tuning
their hyper-parameters based on its development partition.8 For
BERT, we fine-tune the released pre-trained model on SQUAD
by adding 2 additional output layers to predict the start/end
indices (we made no changes to the hyper-parameters). We
initialise word vectors of QANet and decaNLP with pre-
trained GloVe embeddings [28] and keep them fixed during
training. We also freeze the input embeddings for BERT.9 To
measure performance, we use the standard macro-averaged F1
as the evaluation metric, which measures the average overlap
of word tokens between prediction and ground truth answer.10

Our pre-trained QANet, decaNLP and BERT achieve an F1
score of 80.47, 75.50 and 87.62 respectively on the devel-
opment partition of SQUAD. Note that the test partition of
SQUAD is not released publicly, and so all reported SQUAD
performance in the paper is on the development set.

Given the pre-trained SQUAD models, we fine-tune them
on the MSMARCO and BIOASQ domains. We test vanilla
fine-tuning (finetune) and 5 variants of fine-tuning with
auxiliary penalty terms: (1) EWC (+ewc); normalised EWC
(+ewcn); cosine distance (+cd); L2 (+l2); and combined
normalised EWC, cosine distance and L2 (+all). As a
benchmark, we also perform fine-tuning with gradient episodic
memory (gem), noting that this approach uses the first m
examples from SQUAD (m = 256 in our experiments).

To find the best hyper-parameter configuration, we tune it
based on the development partition for each target domain
(and report the performance on the their test partitions). For a
given domain, finetune and its variants (+ewc, +ewcn,
+cd, +l2 and +all) all share the same hyper-parameter
configuration.11 Detailed hyper-parameter settings are given
in the supplementary material if requested.

As a baseline, we train QANet, decaNLP and BERT
from scratch (scratch) using the target domain data. As
before, we tune their hyper-parameters based on development
performance. We present the full results in Table II.

For each target domain, we display two F1 scores: the
source SQUAD development performance (“SQUAD (dev)”);

7We use spaCy (https://spacy.io/), revtok (https://github.com/jekbradbury/
revtok), and WordPiece for QANet, decaNLP and BERT, respectively.

8We tune for dropout, batch size, learning rate and number of training
iterations, keeping other hyper-parameters in their default configuration.

9The input embeddings of BERT is a sum of token, segment and position
embeddings; we freeze only the token embeddings.

10If there are multiple ground truths, the maximum F1 is taken.
11The only exception are the scaling hyper-parameters (λewc, λewcn, λcd

and λl2), where we tune them separately for each model.

Model Partition Domain scratch finetune +ewc +ewcn +cd +l2 +all gem

QANet

SQUAD (dev)

MS-BM — 62.92 63.35 63.93 63.49 64.93 65.54 63.22
MS-CP — 39.13 41.62 43.43 41.19 41.61 51.84 43.49
MS-FM — 56.32 58.23 58.46 57.01 58.48 60.79 57.53
MS-FN — 65.08 65.45 67.03 65.36 66.27 68.14 66.53
MS-LW — 68.29 68.64 68.63 68.75 68.38 69.39 69.04
MS-MS — 69.60 69.96 70.11 69.72 69.74 71.13 70.63
BIOASQ — 59.85 62.87 63.57 62.83 62.50 66.11 62.52

Avg. — 60.17 61.45 62.17 61.19 61.70 64.71 61.85

Target (test)

MS-BM 62.75 68.45 67.96 67.85 67.80 68.05 67.33 68.31
MS-CP 60.67 68.86 69.26 69.86 70.27 69.42 70.42 69.17
MS-FM 59.57 73.84 72.70 74.13 73.94 73.50 73.47 72.00
MS-FN 63.62 70.96 70.70 70.60 70.49 70.15 70.27 69.18
MS-LW 61.66 71.29 71.27 71.39 71.25 71.28 71.41 71.49
MS-MS 58.36 69.58 69.94 69.89 69.62 69.92 70.67 71.47
BIOASQ 29.83 65.81 67.17 65.93 67.26 65.57 66.82 66.42

Avg. 56.64 69.83 69.86 69.95 70.09 69.70 70.06 69.72

decaNLP

SQUAD (dev)

MS-BM — 62.99 63.00 63.26 63.27 62.43 63.82 64.95
MS-CP — 56.48 58.19 59.44 61.96 60.73 62.61 63.37
MS-FM — 58.69 59.21 59.18 62.66 58.32 64.04 63.36
MS-FN — 58.21 61.63 63.43 59.25 58.80 66.55 62.47
MS-LW — 57.86 58.14 59.73 58.17 56.89 60.75 61.76
MS-MS — 59.75 64.92 62.01 62.00 60.06 63.62 63.89
BIOASQ — 67.42 67.19 67.21 67.44 67.46 67.49 68.94

Avg. — 60.20 61.75 62.04 62.11 60.67 64.13 64.11

Target (test)

MS-BM 62.01 66.90 67.39 67.52 67.61 67.19 67.41 67.02
MS-CP 63.7 66.67 67.11 68.15 66.37 67.82 67.55 67.90
MS-FM 63.28 70.45 70.47 70.83 69.08 70.36 68.04 69.73
MS-FN 64.41 64.59 64.57 64.35 64.32 64.87 64.32 64.88
MS-LW 66.36 73.43 73.28 73.34 73.42 74.13 73.04 72.89
MS-MS 64.65 68.67 67.12 67.93 67.34 69.40 66.51 68.28
BIOASQ 43.25 63.80 63.89 63.89 63.96 63.96 64.70 66.36

Avg. 61.09 67.79 67.69 68.00 67.44 68.25 67.37 68.15

BERT

SQUAD (dev)

MS-BM — 72.55 74.24 76.51 72.36 74.14 77.32 74.14
MS-CP — 68.41 69.63 75.65 76.92 75.98 77.86 73.37
MS-FM — 73.82 75.175 79.75 75.28 74.71 81.42 76.89
MS-FN — 72.59 74.27 75.52 73.22 74.84 78.18 76.16
MS-LW — 71.93 81.11 81.05 78.77 77.97 83.11 75.90
MS-MS — 72.59 78.06 83.56 75.67 74.29 83.54 76.99
BIOASQ — 75.04 85.28 85.62 85.76 84.23 86.88 75.89

Avg. — 72.42 76.82 79.67 76.85 76.59 81.19 75.62

Target (test)

MS-BM 66.83 68.30 68.20 68.00 68.04 68.24 67.87 68.02
MS-CP 65.99 70.57 71.21 71.41 69.33 69.57 69.49 70.40
MS-FM 72.59 74.73 74.75 74.36 73.73 74.85 75.78 74.63
MS-FN 66.70 69.13 70.42 70.60 69.07 70.05 69.15 69.54
MS-LW 67.38 69.99 70.73 71.59 70.57 70.91 68.59 68.87
MS-MS 70.45 73.56 73.19 73.07 72.97 73.43 72.50 72.73
BIOASQ 54.09 71.62 75.84 78.50 79.47 78.86 76.93 68.87

Avg. 66.29 71.13 72.05 72.50 71.88 72.27 71.47 70.44

TABLE II: RC results over all domains. Pre-trained QANet/decaNLP/BERT performance on SQUAD (dev) =
80.47/75.50/87.62. Boldface indicates optimal performance for SQUAD (dev) and Underline indicates best performance for
target domains (test).

and the target domain’s test performance (“Target (test)”)12.
We first compare the performance between scratch and
finetune. Across all domains for QANet, decaNLP and
BERT, finetune substantially improves the target domain’s
performance compared to scratch. The largest improvement
is seen in BIOASQ for QANet, where its F1 improves two-fold
(from 29.83 to 65.81). Among the three RC models, BERT has
the best performance for both scratch and finetune in
most target domains (with a few exceptions such as MS-FN
and MS-LW). Between QANet and decaNLP, we see that
decaNLP tends to have better scratch performance but
the pattern is reversed in finetune, where QANet produces
higher F1 than decaNLP in all domains except for MS-LW.

12Since we are evaluating different auxiliary penalty terms in terms of their
effectiveness in reducing catastrophic forgetting, we intentionally tuned the
hyper-parameters for different auxiliary penalty terms to generate similar per-
formance on target domains. Therefore, we are more interested in comparing
the performance on the source domain, e.g. SQUAD (dev).

In terms of SQUAD performance, we see that finetune
degrades it considerably compared to its pre-trained perfor-
mance. The average drop across all domains compared to
their pre-trained performance is 20.30, 15.30 and 15.07 points
for QANet, decaNLP and BERT, respectively. For most
domains, F1 scores drop by 10-20 points, while for MS-CP
the performance is much worse for QANet, with a drop of
41.34. Interestingly, we see BERT suffers from catastrophic
forgetting just as much as the other models, even though it is
a larger model with orders of magnitude more parameters.

We now turn to the fine-tuning results with auxiliary penal-
ties (+ewc, +ewcn, +cd and +l2). Between +ewc and
+ewcn, the normalised versions consistently produces better
recovery for the source domain (one exception is MS-MS for
decaNLP), demonstrating that normalisation helps. Between
+ewcn, +cd and +l2, performance among the three models
vary depending on the domain and there’s no clear winner.

44 65 86 107 128 149 170
Training iterations (K)

40

45

50

55

60

65

70

75

80

F1
 sc

or
e

(a) SQUAD

44 65 86 107 128 149 170
Training iterations (K)

50.0

52.5

55.0

57.5

60.0

62.5

65.0

67.5

70.0

F1
 sc

or
e

(b) MS-BM

44 65 86 107 128 149 170
Training iterations (K)

50

55

60

65

70

75

80

F1
 sc

or
e

FT
+L2
+CD
+EWCN
+ALL

(c) MS-CP

Fig. 2: decaNLP’s F1 performance during continuous learning.

Combining all of these losses (+all) however, produces the
best SQUAD performance for all models across most domains.
The average recovery (+all- finetune) of SQUAD perfor-
mance is 4.54, 3.93 and 8.77 F1 points for QANet, decaNLP
and BERT respectively, implying that BERT benefits from
these auxiliary penalties more than decaNLP and QANet.

When compared to gem, +all preserves SQUAD per-
formance substantially better, on average 2.86 points more
for QANet and 5.57 points more BERT. For decaNLP,
the improvement is minute (0.02). Also, as gem requires
partial access to the training data from the source domain
(SQUAD training examples in this case), the auxiliary penalty
techniques are more favourable for real world applications.

Does adding these penalty terms harm target performance?
Looking at the “Test” performance between finetune and
+all, we see that they are generally comparable. We found
that the average performance difference (+all-finetune)
is 0.23, −0.42 and 0.34 for QANet, decaNLP and BERT
respectively, implying that it does not (in fact, it has a small
positive net impact for QANet and BERT). In some cases
it improves target performance substantially, e.g. in BIOASQ
for BERT, the target performance is improved from 71.62 to
76.93, when +all is applied.

Based on these observations, we see benefits for incorpo-
rating these penalties when adapting comprehension models,
as it produces a more robust model that preserves its source
performance (to a certain extent) without trading off its target
performance. In some cases, it can even improve the target
performance.

B. Continuous Learning

In previous experiments, we fine-tune a pre-trained model
to each domain independently. With continuous learning, we
seek to investigate the performance of finetune and its
four variants (+l2, +cd, +ewcn and +all) when they are
applied to a series of fine-tuning on multiple domains. For the
remainder of this paper, we experiment only with decaNLP.

We have one model for each of the five fine-tuning methods,
e.g. finetune, +l2, +cd, +ewcn, and +all. Including the
pre-training on SQUAD, all five models are trained for a total of

170K iterations: SQUAD (0–44K), MS-BM (45K–65K), MS-CP
(66K–86K), MS-FN (87K–107K), MS-MS (108K–128K), MS-
FM (129K–149K) and MS-LW (150K–170K). When computing
the penalties, we consider the trained model for the previous
domain as the source model.13 Figure 2 (a)-(c) demonstrate
the performance of the five models on the development set
of SQUAD and test sets of MS-BM and MS-CP, respectively,
when they are adapted to MS-BM, MS-CP, MS-FN, MS-MS,
MS-FM and MS-LW in sequence.14 We exclude plots for the
latter domains as they are similar to that of MS-CP.

We first look at the recovery for SQUAD in Figure 2a. +all
(black line; legend in Figure 2c) trails well above all other
models after a series of fine-tuning, followed by +ewcn and
+cd, while finetune produces the most forgetting. At the
end of the continuous learning, +all recovers more than 5 F1
points compared to finetune. We see a similar trend for MS-
BM (Figure 2b), although the difference is less pronounced.
The largest gap between finetune and +all occurs when
we fine-tune for MS-FM (iteration 129K–149K). Note that we
are not trading off target performance when we first tune for
MS-BM (iteration 45K–65K), where finetune and +all
produces comparable F1.

For MS-CP (Figure 2c), we first notice that there is con-
siderably less forgetting overall (MS-CP performance ranges
from 65–75 F1, while SQUAD performance in Figure 2a ranges
from 45–75 F1). This is perhaps unsurprising, as the model
is already generally well-tuned (e.g. it takes less iterations to
reach optimal performance for MS-CP compared to MS-BM and
SQUAD). Most models perform similarly here. +all produces
stronger recovery when fine-tuning on MS-FM (129K–149K)
and MS-LW (150K–170K). At the end of the continuous
learning, the gap between all models is around 2 F1 points.

C. Task Transfer

In decaNLP, curriculum learning was used to train models
for different NLP tasks. More specifically, decaNLP was

13The implication is that we have to re-compute the Fisher matrix for the
last domain before we fine-tune the model on a new domain.

14In terms of hyper-parameters, we choose a configuration that is generally
good for most domains.

Partition Task finetune +ewc +ewcn +cd +l2 +all

SQUAD (dev)

SUM 8.60 11.65 12.48 11.28 9.34 14.00
SRL 50.51 51.30 56.99 55.40 51.56 57.64
SP 6.95 9.69 10.20 10.61 19.39 28.36
MT 3.55 4.03 4.29 3.48 3.15 3.59
SA 1.74 2.69 2.38 3.63 2.51 6.43

Target (test)

SUM 20.06 19.79 19.99 20.01 20.38 20.12
SRL 71.69 71.80 71.74 72.12 71.90 72.56
SP 92.52 92.77 92.70 92.62 92.59 91.11
MT 24.99 25.10 25.04 25.00 24.90 24.90
SA 84.79 86.38 84.84 85.06 86.27 85.89

TABLE III: decaNLP’s SQUAD and target performance for
several tasks.

first pre-trained on SQUAD and then fine-tuned on 10 tasks
(including SQUAD) jointly. During the training process, each
minibatch consists of examples from a particular task, and they
are sampled in an alternating fashion among different tasks.

In situations where we do not have access to training
data from previous tasks, catastrophic forgetting occurs when
we adapt the model for a new task. In this section, we
test our methods for task transfer (as opposed to domain
transfer in previous sections). To this end, we experiment
with decaNLP and monitor its SQUAD performance when we
fine-tune it for other tasks, including semantic role labelling
(SRL), summarisation (SUM), semantic parsing (SP), machine
translation (MT), and sentiment analysis (SA)15. Note that we
are not doing joint or continuous learning here: we are taking
the pre-trained model (on SQUAD) and adapting it to new tasks
independently. Description of these tasks are detailed in [15].

A core novelty of decaNLP is that its design allows it to
generate words by extracting them from the question, context
or its vocabulary, and this decision is made by the pointer-
generator network. Based on the pointer-generator analysis
in [15], we know that the pointer-generator network favours
generating words using: (1) context for SRL, SUM, and SP;
(2) question for SA; and (3) vocabulary for MT.

As before, finetune serves as our baseline, and we have 5
variants with auxiliary penalty terms. Table III displays the F1
performance on SQUAD and the target task; the table shares the
same format as Table II. In terms of target task performance
(“Test”), we see similar performances for all five models. This
is a similar observation we saw in previously, and it shows
that the incorporation of the auxiliary penalty terms does not
harm target task or domain performance. For the source task
SQUAD, +all produces substantial recovery for SUM, SRL,
SP and SA, but not for MT. We hypothesise that this is due to
the difference in nature between the target task and the source
task: i.e. for SUM, SRL and SP, the output is generated by
selecting words from context, which is similar to SQUAD; MT,
on the other hand, generate using words from the vocabulary
and question, and so it is likely to be difficult to find an optimal
model that performs well for both tasks.

15We did not test task transfer on QANet or BERT because they are
designed only for reading comprehension.

0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-1
0

10
-11

11
-12

12
-13

13
-14

14
-15

15
-16

16
-17

17
-18

18
-19

19
-20

Training Steps (K)

0.06

0.05

0.04

0.03

0.02

0.01

0.00

G
ra

di
en

t C
os

in
e

Si
m

ila
ri

ty

ft
+l2
+cos
+ewc
+ewcn
+all
gem

Fig. 3: Averaged gradient cosine similarities on MS-FN.

VI. DISCUSSION

A. Gradient angle analysis

The improved performance achieved by the combined aux-
iliary loss leads us to question that why it performed better
than individual penalty losses. An intuitive explanation is that
different distance penalties, e.g. l1-distance, l2-distance and
vector angles, form different constraints to prevent the model
from being tuned too far away from the pre-trained model.
Combining these distance penalties result in a more strict con-
straints that helps further reducing the catastrophic forgetting.
In addition to this, we hypothesise that the combined loss may
be better at minimising the angle between the gradient vector
w.r.t the target domain data and the gradient vector w.r.t the
source domain data, during the process of fine-tuning, which
is essentially the rationale behind the gem method [13].

To validate this hypothesis, we conduct gradient analysis for
all five auxiliary penalty terms. During fine-tuning, at each step
t, we calculate the gradient cosine similarity sim(gt, g

′
t),

gt =
∂L(fθt ,M)

∂θt

g′t =
∂L(fθt , (x, y))

∂θt

where M is a memory containing SQUAD examples, and x/y
is training data/label from the current domain. According to
[13], when the gradient cosine similarity is ≥0, the fine-tuning
process is unlikely to harm the performance of the model
on original domain. We smooth the scores by averaging over
every 1K steps, resulting in 20 cosine similarity values for
20K steps. Figure 3 plots the gradient cosine similarity scores
for the five models in MS-FN.

Curiously, our best performing model +all produces the
lowest cosine similarity at most steps (the only exception
is between 0-1K steps). finetune, on the other hand,
maintains relatively high similarity throughout. Similar trends
are found for other domains. These observations imply that
the approach gem adopted — i.e. constraining a positive dot

product between gt and g′t — is sufficient but not necessary
for reducing catastrophic forgetting.

B. Decaying auxiliary loss scale

Conventionally, the λ scaling hyper-parameter for control-
ling the contribution of the penalty terms has a static value.
In preliminary experiments, we notice that this loss starts at a
very low value (close to zero), as initially there is little change
to the model parameters. As such in the early iterations of fine-
tuning, the model tends to focus on optimising for the target
domain/task, and that results in a sharp drop of performance
for the source domain/task.

In light of that, we explore using a dynamic λ scale that
starts at a larger value that decays over time. With just simple
linear decay, we found substantial improvement in +ewc
for recovering SQUAD’s performance, although the results
are mixed for other penalties (particularly for +ewcn). We
therefore only report results that are based on static λ values
in this paper. With that said, we contend that this might be an
interesting avenue for further research, e.g. by exploring more
complex decay functions.

VII. CONCLUSION

To reduce catastrophic forgetting when adapting compre-
hension models, we explore several auxiliary penalty terms
to regularise the fine-tuning process. We experiment with
selective and non-selective penalties, and found that a combi-
nation of them consistently produces the best recovery for the
source domain without harming its performance in the target
domain. We also found similar observations when we apply
our approach for adaptation to other tasks, demonstrating its
general applicability. To test our approach, we develop and
release six narrow domain reading comprehension data sets
for the research community.

REFERENCES

[1] Y. Yang, W.-t. Yih, and C. Meek, “Wikiqa: A challenge dataset for open-
domain question answering,” in Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing, 2015, pp. 2013–
2018.

[2] T. Nguyen, M. Rosenberg, X. Song, J. Gao, S. Tiwary, R. Majumder,
and L. Deng, “MS MARCO: A human generated machine reading
comprehension dataset,” CoRR, vol. abs/1611.09268, 2016.

[3] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “Squad: 100,000+
questions for machine comprehension of text,” in Proceedings of the
2016 Conference on Empirical Methods in Natural Language Process-
ing, Austin, Texas, 2016, pp. 2383–2392.

[4] M. Joshi, E. Choi, D. Weld, and L. Zettlemoyer, “Triviaqa: A large
scale distantly supervised challenge dataset for reading comprehension,”
in Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), 2017, pp. 1601–
1611.

[5] P. Rajpurkar, R. Jia, and P. Liang, “Know what you don’t know:
Unanswerable questions for squad,” in Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 2:
Short Papers), 2018, pp. 784–789.

[6] T. Kocisky, J. Schwarz, P. Blunsom, C. Dyer, K. M. Hermann, G. Melis,
and E. Grefenstette, “The narrativeqa reading comprehension challenge,”
Transactions of the Association for Computational Linguistics, vol. 6,
pp. 317–328, 2018.

[7] R. M. French, “Catastrophic forgetting in connectionist networks,”
Trends in cognitive sciences, vol. 3, no. 4, pp. 128–135, 1999.

[8] G. Wiese, D. Weissenborn, and M. Neves, “Neural domain adaptation
for biomedical question answering,” in Proceedings of the 21st Con-
ference on Computational Natural Language Learning (CoNLL 2017),
Vancouver, Canada, 2017, pp. 281–289.

[9] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins,
A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska,
D. Hassabis, C. Clopath, D. Kumaran, and R. Hadsell, “Overcoming
catastrophic forgetting in neural networks,” Proceedings of the National
Academy of Sciences, vol. 114, pp. 3521–3526, 2017.

[10] M. Riemer, I. Cases, R. Ajemian, M. Liu, I. Rish, Y. Tu, and G. Tesauro,
“Learning to learn without forgetting by maximizing transfer and
minimizing interference,” arXiv preprint arXiv:1810.11910, 2018.

[11] H. Daume III, “Frustratingly easy domain adaptation,” in Proceedings
of the 45th Annual Meeting of the Association of Computational Lin-
guistics, 2007, pp. 256–263.

[12] Y.-B. Kim, K. Stratos, and R. Sarikaya, “Frustratingly easy neural
domain adaptation,” in Proceedings of COLING 2016, the 26th Inter-
national Conference on Computational Linguistics: Technical Papers,
2016, pp. 387–396.

[13] D. Lopez-Paz et al., “Gradient episodic memory for continual learning,”
in Advances in Neural Information Processing Systems, 2017, pp. 6467–
6476.

[14] A. W. Yu, D. Dohan, M. Luong, R. Zhao, K. Chen, M. Norouzi, and
Q. V. Le, “Qanet: Combining local convolution with global self-attention
for reading comprehension,” CoRR, vol. abs/1804.09541, 2018.

[15] B. McCann, N. S. Keskar, C. Xiong, and R. Socher, “The natural
language decathlon: Multitask learning as question answering,” CoRR,
vol. abs/1806.08730, 2018.

[16] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[17] T. Kwiatkowski, J. Palomaki, O. Redfield, M. Collins, A. Parikh,
C. Alberti, D. Epstein, I. Polosukhin, M. Kelcey, J. Devlin, K. Lee,
K. N. Toutanova, L. Jones, M.-W. Chang, A. Dai, J. Uszkoreit, Q. Le,
and S. Petrov, “Natural questions: a benchmark for question answering
research,” Transactions of the Association of Computational Linguistics,
2019.

[18] G. Tsatsaronis, G. Balikas, P. Malakasiotis, I. Partalas, M. Zschunke,
M. R. Alvers, D. Weissenborn, A. Krithara, S. Petridis, D. Poly-
chronopoulos et al., “An overview of the bioasq large-scale biomedical
semantic indexing and question answering competition,” BMC bioinfor-
matics, vol. 16, no. 1, p. 138, 2015.

[19] M. McCloskey and N. J. Cohen, “Catastrophic interference in connec-
tionist networks: The sequential learning problem,” in Psychology of
learning and motivation. Elsevier, 1989, vol. 24, pp. 109–165.

[20] M. Riemer, E. Khabiri, and R. Goodwin, “Representation stability as a
regularizer for improved text analytics transfer learning,” arXiv preprint
arXiv:1704.03617, 2017.

[21] M. Riemer, T. Klinger, M. Franceschini, and D. Bouneffouf, “Scal-
able recollections for continual lifelong learning,” arXiv preprint
arXiv:1711.06761, 2017.

[22] J. Serra, D. Surı́s, M. Miron, and A. Karatzoglou, “Overcoming
catastrophic forgetting with hard attention to the task,” arXiv preprint
arXiv:1801.01423, 2018.

[23] D. Blei, A. Ng, and M. Jordan, “Latent Dirichlet allocation,” Journal of
Machine Learning Research, vol. 3, pp. 993–1022, 2003.

[24] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, and
D. McClosky, “The Stanford CoreNLP natural language processing
toolkit,” in Association for Computational Linguistics (ACL) System
Demonstrations, 2014, pp. 55–60.

[25] A. K. McCallum, “Mallet: A machine learning for language toolkit,”
2002, http://mallet.cs.umass.edu.

[26] G. Tsatsaronis, M. Schroeder, G. Paliouras, Y. Almirantis, I. An-
droutsopoulos, E. Gaussier, P. Gallinari, T. Artieres, M. R. Alvers,
M. Zschunke et al., “Bioasq: A challenge on large-scale biomedical
semantic indexing and question answering,” in 2012 AAAI Fall Sympo-
sium Series, 2012.

[27] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems 30, 2017, pp. 5998–6008.

[28] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Empirical Methods in Natural Language
Processing (EMNLP), 2014, pp. 1532–1543.

