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Abstract—With the exponential growth of digital multimedia
resources, in the real-world, most of the data are represented as
a multi-modal form and usually with multiple semantic labels.
Nowadays, Multi-modal Multi-label learning has become a very
hot topic. However, previous methods either have not considered
the relation between modalities and labels or the correlation
among labels. In this paper, we considered the following three
questions: (1) How to model the correlation among labels? (2) Is
there a correlation between modality and label? (3) Whether the
modal input order affects the prediction of individual instance,
and how to find the most appropriate modal input sequence for
each instance? To solve above problems, we proposed a novel
method for Multi-modal Multi-label learning(MMML), which
based on Encoder-Decoder with attention framwork named
MMML-Attention(M3LA). The M3LA takes into account all
of these issues. Specifically, benefit from the Encoder-Decoder
with attention structure, on the one hand, M3LA can model the
relation between modalities and labels. On the other hand, we
introduce a correlation matrix to learn the correlation among
labels, which can be obtained as parameter through the training
process. It should be mentioned that label prediction occurs at
every step of the decoder, and the prediction of the label is
constantly corrected and then the most accurate prediction is
obtained. To validate the effectiveness of the proposed method,
we expermiented on widely used several benchmark datasets and
compared with state-of-art approaches.

Index Terms—multi-label, multi-modal, classfication, machine
learning, deep learning

I. INTRODUCTION

In traditional supervised learning, one object is represented
by a single modality and associated with only one label.
However, in real world, a complex object is often composed
of multiple modalities and has multiple semantic labels. e.g.
a news report contains multimodal information such as text,
images and even audio, it can belong to different tags,
such as entertainment, sports, politics etc. Multi-modal Multi-
label(MMML) [1] [2] [3] learning provides a framework for
such complex objects. A multi-modal multi-label problem has
following settings: 1) the set of labels is predefined, meaning-
ful, and human-interpretable. 2)the number of labels is limited
in scope and not greater than the number of attributes. 3) Each
training example has at least two or more modalities, and is

associated with several labels of the label set. 4)labels may be
correelated. Solving a problem with multi-label multi-modal
data involves many challenages, e.g. how to deal with the
correlation among labes and how to get the most appropriate
input order of modalities?

The Encoder-Decoder structure is also called the Sequence
to Sequence structure which is a variant of the RNN [4]
[5] [6]. It has a wide range of applications, such as neural
machine translation, text summarization, reading comprehen-
sion, speech recognition etc. But there is a issue that the
encoder needs to compress all information of sourece sentence
into a fixed-length vector. To solve this issue, Dzmitry et
al. introduced the attention structure to the Encoder-Decoder
model [5]. Inspired by human attention mechanisms, attention
structure was first proposed in the field of image recognition
[7] which greatly improves the accuracy of image recognition.
Hereafter, researchers have used it as a general structure for
various fields due to its excellent performance. In this pa-
per, We innovatively use the attention based encoder-decoder
model for multi-modal multi-label learning.

For Multi-modal Multi-label learning, during the past years,
researchers have proposed a series of methods. However, there
are some problems with these methods that either without con-
sidering the correlation among labels or the relation between
modalities and labels. In addition, these methods input the
modality sequentially when predicting the label, rather than
selectively inputting the appropriate modality.

In this work, aiming at solving above problems, we pro-
posed a novel Multi-modal Multi-label learning method based
on Encoder-Decoder with attention framework(M3LA). We
consider that, for each instance, different input order of modal
will have an impact on the final result. In other words, to
predict an unseen instance as efficient and accurate as possible,
we need to figure out a modal extraction for the concerned
instance individually [8]. Benefit from the Encoder-Decoder
with attention structure, M3LA can model the relation between
modality and labels. It has a modality prediction layer that
can always choose the most appropriate modality at each
step when predicts the label based on result of previous
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step. Meanwhile, the correlation among labels should also be
considered. Based on this reason, M3LA introduces the cor-
relation matrix Wco to model this correlation. The correlation
matrix is obtained as parameters of the neural network through
training. Unlike these classic multi-label methods, it does not
require any prior knowledge and it is constantly updated. After
training phase, the correlation matrix Wco stored information
about correlation among labels. Due to the label correlation
matrix has been introduced to M3LA and it always choose
the most appropriate modal to input the model at each step, in
our model, the prediction of the label is constantly corrected,
finally, the most accurate prediction is obtained.

In general, the main contributions of this paper are summa-
rized in following four points:

1) We innovatively combined the Multi-modal Multi-label
learning with Encoder-Decoder with attention structure,
and proposed a novel approach named M3LA which
can model the relation between the modality and labels
by choosing the most appropriate modal each time
according to the modality prediction layer.

2) We also considered the label correlation by introducing
the correlation matrix Wco which can be obtained as
a parameter through training, unlike previous classic
multi-label methods, it does not require any prior knowl-
edge and it is constantly updated.

3) The prediction process in M3LA is also innovative. It is
continuously corrected using historical information and
newly entered information.

4) We conducted a exhaustive experiment on several bench-
mark datasets comparing to state-of-art methods, and
comprehensively evaluation on the performance, obtain-
ing consistently superior performance stably.

Section II gives the related work, and our approach is
detailed in Section III. Then Section IV reports our exhaustive
experiments and results. Finally, Section V gives the conclu-
sion.

II. RELATED WORK
The exploitation of multi-modal multi-label learning has

attracted much attention recently. Our method focuses on the
popular Seq2Seq with attention framework to model the multi-
modal multi-label classfication problems, which innovatively
considers the relation between modality and labels. Mean-
while, we also overcome the problem of correlation between
labels by introducing the correlation matrix. Therefore, our
work is related to the multi-modal multi-label learning. In this
Section, we are going to give a brief review about multi-modal
multi-label learning.

Many classic algorithms have been proposed by researchers
in the past few decades, a classic multi-label method named
binary relevance(BR) [9] generates one binary dataset for
each label in which positive patterns are those predicting the
label, and the rest are considered to be negative patterns. But
different from our method, BR assumes labels are independent
which did not consider the correlation between the labels.
Another classic method called label combination(LC) [10] can

model label correlations in the training data which generates
a new class for each possible combination of labels. However,
this appoach only takes into account the distinct labelsets
in the training set, so it cannot predict unseen lablesets that
may also lead to a tendency to overfit the training data [11].
Classifier Chains(CC) [10] is a chain of binary classfication
method. It considers correlation among labels in a random
manner. In addition, due to the order of chain itself can
influence the performance, the authors proposed a Ensemble
of Classifier Chains(ECC) which performs strongly. However,
Like the Multi-label decision Tree(ML-DT) [12] which scale
of binary classifiers constrcted is quadratic because it builds
classifiers for any pair of class labes, the time complexity
is unacceptable, especially for high-dimensional data. In our
model, the contribution of introducing the correlation matrix
lies in the way to obtain it. The correlation matrix is obtained
as parameters of the neural network through training. Unlike
these classic multi-label methods, it does not require any prior
knowledge and it is constantly updated.

Thereafter, with the development of deep learning, some
researchers have proposed multi-modal and multi-label learn-
ing models based on deep learning. Nguyen proposed multi-
modal multi-label Latent Dirichlet Allocation(M3LDA), it
provides a promising way to understand the relation between
input patterns and output semantics [13]. Zhang proposed a
extends algorithm based on Classifier Chians named Multi-
modal Classifier Chains(MCC) [1] which can make each
modality interactions. Discriminative Modal Pursuit(DMP) is
a end-to-end serialized adaptive decision approach based on
neural network that aims to reduce the modal extraction cost.
Meanwhile, DMP can balance the classification performance
and modal feature extraction cost [8]. However, they didn’t
consider the correlation of labels. A Deep multi-modal CNN
network named MMCNN-MIML proposed by Song [14], it
considered the label correlations by grouping labels in its later
layers. But it didn’t consider the input order of the modalities.
We believe that different modal input order for different
samples will affect the final prediction result. Multi-modal
Multi-label Multi-instance Deep Network(M3DN) proposed
by Yang [3]. It learns the label prediction and exploits label
correation simultaneously based on the Optimal Transport. Ye
proposed CS3G algorithm which handles types of interactions
between multiple label, but there is no interaction between
features from different modalities [3]. Although deep learning-
based methods can effectively improve performance, previous
methods don not work well for multi-label multi-modal learn-
ing.

III. PROPOSED METHOD

This section mainly gives the detailed description of the
M3LA appoach after a preliminary notation explanation.

A. Notation

Suppose X ∈ Rd denotes the feature of instances space, and
d = d1 +d2 + ...+dm, where m is the number of modalities,
and dk represents the dimensional of the k-th modalities. Y =



Fig. 1. The structure of our propsed approach M3LA based on Encoder-Decoder with attention framework

{0, 1}q denotes the label space with q possible class labels. For
the label of instance i, yi ∈ Y , and yi ∈ Rq , the yij = 1(0 ≤
j ≤ q) represents the instance i belong the j-th class, yij = 0
otherwise. The goal of Multi-modal Multi-label learning is to
learn a function H : X → Y from the training set D =
{(xi, yi)|1 ≤ i ≤ N}, where N represents the number of
the training set instances. for each Multi-modal Multi-label
example (xi, yi), xi ∈ X is a d-dimensional feature vector, in
order to facilitate the discussion, we represent the example xi
as {x1

i , x
2
i , ..., x

m
i }, where xki is k-th modality of xi with dk

dimension. Thus, there are m disjoint modal feateures for each
examples. yi ∈ Y is a q dimension label vector associated with
xi. Let T denote the test set, for any unseen instance x ∈ T ,
the Multi-modal Multi-label classifier H(.) predicts H(x) ∈ Y
as proper lables for x.

B. M3LA approach

Firstly, we briefly describle the Encoder-Decoder with at-
tention framework, and upon which we build a novel archi-
tecture for Multi-modal Multi-label Learning. And the overall
framework is shown in figure 1

In the Encoder-Decoder with attention framework, The
main task of the ecoder is to encode the information of
the modalities, it reads the input modalities sequence of
instance, i.e a sequence of vectors {x1

i , x
2
i , ..., x

m
i }, obtain

the hidden state of each modality. Considering the different
dimensions of each modality, we modify the input modality

x̃ki = [0, 0, ..., xki , ..., 0], Formally, at step t,
−→
h t =

−−→
Fen(x̃ti,

−→
h t−1) (1)

←−
h t =

←−−
Fen(x̃ti,

←−
h t−1) (2)

ht = [
−→
h t;
←−
h t] (3)

which ht ∈ R2h is the combination of forward hidden state
and backwrad hidden state at step t, h is the hidden state
dimension which can be set manually.

−−→
Fen,

←−−
Fen are some

nolinear functions, in this paper, we use the GRU [6] as
−−→
Fen,←−−

Fen. The s0 is the initial hidden state of decoder.

s0 = g(h1, ..., hm) ∗Winit + binit (4)

Where g(h1, ..., hm) = hm, and Winit ∈ R2h×h is the
parameter which initializes the initial hidden state of decoder
and binit ∈ Rh is the bias vector.

The attention mechanism is an important part of our model,
because it always focuses on the information that the model
needs to. The detailed attention layer is shown in figure 2 .
And the attention vector can be computed as following:

ai =

m∑
j=1

αijhj (5)

the weight αij of each state hj is computed by

αij =
exp(rij)∑m
k=1 exp(rik)

(6)

where

rij = a(si−1, hj) (7)



si−1 is represented as hidden state of decoder at step i − 1,
and a(.) is a score function which scores how well the encoder
state hj and decoder state si−1 match.

The decoder, in our proposed approach, consists of two im-
portant components: modality prediction and label prediction.

Modality Prediction For a specific instance, we think
that different input order of modal may have an impact on
the final result. therefore, we need consider both the relation
between the modal and labels and the input sequence of
modalities when predict labels of instance. In the M3LA, the
decoder has a modality prediction layer which can always
choose the most appropriate modality to predict label at each
step. In other words, modality prediction layer can model
the relation between modality and labels. The main task of
modality prediction layer is to extract an appropriate sequence
of modalities [o1, o2, ..., om] for label prediction. In details, at
step t, for example, firstly, the decoder computes the attention
vector according to (5), and then calculates the hidden state
st of decoder, finally connect with a fully connected layer to
get the prediction of modality. Formally,

st = Fde(x
t, st−1, at) (8)

ot+1 = arg max σ(Wmodal ∗ st) + bmodal (9)

Fig. 2. Attention layer in M3LA

where σ can be any activation function, in this work, we
use the softmax as the activation function. Wmodal ∈ Rm×h

is the parameter of modality prediction fully connected layer,
and bmodal ∈ Rm is the bias vector of modality prediction
layer. Fde is same as

−−→
Fen which added attention vector. ot+1

is the index of modality input at step t+ 1.
So, xt+1

i denotes the input modality of instance i at step
t+ 1, which is represented as following:

xt+1
i = [0, 0, ..., xo

t+1

i , ..., 0] (10)

It is notable that the ot+1 may have been chosen at previous
step, in order to ensure that each modality is selected, our

selection way is to select the one with the highest probability
among the modalities that are not selected.

Label prediction Similar to modality prediction, the
decoder has a fully connected Label prediction layer. To
consider the correlation among the labels, we introduce a
correlation matrix Wco ∈ Rq×q which is a parameter obtained
through the training step. After training phase, the correlation
matrix Wco stored all information about the relation among
labels, e.g. Wco[ij] > 0 indicates that label i has a positive
effect on label j, and Wco[ij] < 0 indicates that label i has a
negative effect on label j. At step t, the final label prediction
is the product of the prediction of the previous step and the
correlation matrix Wco plus the result of the current step.
Formally,

ŷt =

{
σ(Wlabel ∗ st + blabel), t = 1

σ(Wlabel ∗ st + ŷt−1 ∗Wco + blabel), t > 1
(11)

Same as above, σ is a activation function which we use the
softmax function in this work, Wlabel ∈ Rq×h is a parameter
of the label prediction layer, and blabel is the bias vector, st
can be obtained according to (8), ŷt−1 ∈ Rq is the prediction
at step t− 1.

The process of predicting label in our model is constantly
corrected, and it thinks like human, corrects the predicted value
of the label after selecting the input modality at every step.
The final label prediction is

ŷ = ŷm (12)

It is worth noting that the model returns ŷ which is a
real-valued resprenting probability for each label , in order
to decide the proper label for each instance, the real-valued
output ŷ on each label should be calibrated. Instead of setting
a fixed threshold, a method set the threshold t by following:

t = arg min
t∈{0,00,0,001,...,1.00}

|LCard(D)− LCard(Ht(T ))| (13)

Label Cardinality(LCard) is a standard measure of ”multi-
labelled-ness” introduced in [10], it is simply the average
number of labels relevant to each instance, it can be computed
by

LCard(D) =

∑|D|
i=1 |yi|
|D|

(14)

and Ht(T ) is the prediction for test set T under threshold t.
we consider that, the better performance can be obtained

if we set different threshold for each label, therefore, we
introduce a measure based on LCard by following:

L(D, j) =

∑|D|
i=1 |yi[j]|
|D|

(15)

where yi[j] is the j-th label of yi, which equal to 0 or 1.
According to (13), (14) and (15), the threshold for each label
is,



TABLE I
DETAILS OF DATASETS. N, L, M RESPRENT THE NUMBER OF INSTANCE,

LABELS, MODALITIES FOR EACH DATASETS RESPECTIVELY, AND D
DENOTE THE DIMENSION OF EACH MODALITY.

DataSets Name N L M D

FCVID 4388 28 5 400,400,400,400,400

MSRA 15000 50 7 256,225,64,144,75,128,7

ML2000 2000 5 3 500,1040,576

TAOBAO 2079 30 4 500,48,81,24

ti = arg min
ti∈{0.00,0.01,...,1.00}

λ1|LCard(D)− LCard(Hti(T ))|+

λ2|L(D, i)− L(Hti(T ), i)|
(16)

Where the λ1, λ2 are trade-off parameters that indicate
which part we prefer focus on. Then,

ŷ[i] =

{
0, ŷ[i] < ti

1, ŷ[i] ≥ ti
(17)

Algorithm 1 The persudo code of M3LA
Input: Training dataset D

hyperparameters λ1, λ2, λ3

the number of modalities m
the number of epoches Nepo

Output: classifier H(.)
for i = 0→ Nepo do

for j = 0→ m do
get hj by equations (1), (2), (3)

end for
initial hidden state s0 of decoder by (4)
for t = 0→ m do

compute attention vector at by (5)
calculate decoder hidden state st by 8
get label prediction ŷt at step t by (11) and next input
modality xt+1

i by 9, (10)
compute weight W (t)

loss for each label by (18)
end for
compute Loss by (20)
compute the derivative ∂Loss

Φ
update all parameters in Φ

end for

Loss Function Considering the cost-sensitive of each
label in Multi-label classification problem [15], we set the im-
portance of each label differently by measuring the difference
between the label predicted correctly and incorrectly. At step
t, ŷ(t)[k]0, ŷ(t)[k]1 represent the predict vector ŷ(t) when the

k-th label is set to 0 and 1 respectively. In addition, for t = 1,
the weight of each label is set to 1. Formally,

W
(t)
loss[k] =

{
1, t = 1

|K(y, ŷ(t−1)[k]0)−K(y, ŷ(t−1)[k]1)|, t > 1

(18)

where k = 1, ..., q, y is the real label of instance, and function
K(.) is a cost function that measures the difference between
the label predicted correctly and incorrectly.

Like most Multi-label algorithm, we use the Cross Entropy
Loss as the loss function.

loss = −[y log p(ŷ) + (1− y) log p(1− ŷ)] (19)

Finally, our loss function is showed as (20)

Loss =

m∑
t=1

q∑
j=1

−W (t)
loss[j](y[j] log p(ŷ(t)[j])+

(1− y[j]) log (1− p(ŷ(t)[j])) + λ3||Φ||22

(20)

Where Φ represents all parameters in our model, and λ3 is
the regularization factor.

The specific process of the M3LA is summarized in per-
sudo.

IV. EXPERIMENTS

In this section, we validate the effectiveness of proposed
M3LA approach by experimenting on 4 widely used bench-
mark datasets for multi-modal multi-label learning and com-
pare with state-of-art approaches.

A. Datasets and Configurations

M3LA approach innovatively introduces the Encoder-
Decoder with attention structure into multi-modal multi-label
learing that can not only model the relation between labesl
and modalities, but also the correlation among labels. We
experiment on 4 public real-world datasets, i.e. FCVID [16],
MSRA [17], ML2000 [18], TAOBAO [2], and we multi-
modally process these datasets by following [2]. In detail,
FCVID is the Fudan-Columbia Video Datasets, which con-
sists of 4388 videos and 28 categories, the 5 operations we
conducted are HOF, HOG, CNN, SIFT and Trajectory, then
we use PCA to reduce the dimension of each modality to
400. MSRA is a object recognition database which contains
15000 instances and 50 categories, its 7 modalities including
256 RGB color histogram, 225 dimension block-wise color
moments, 64 HSV color histogram, 144 color correlogram,
75 distribution histogram, 128 wavelet features and 7 face
features. ML2000 is an image datasets for natural scene
classfication which consists of 2000 images and 5 categories,
we extract BoW, FV and HOG features from each images.
TAOBAO is a shopping items classfication Dataset from China
E-commerce platform which contains 2079 instances and 30
categories, we also conduct 4 modalities from BoW, Gabor,
HOG, HSVHist. All information of datasets are shown in Table
I.



TABLE II
Result(mean±std) of M3LA, and compared approach on 4 benchmark datasets. Including 10 commonly used evaluation criteria on multi-label

learning, we bolded the best resutl of each criteria, and ↑ / ↓ indicate the lower / higher value of indicator, the better performance.

methods
macro AUC ↑ macro F1 ↑

FCVID MSRA ML2000 TAOBAO FCVID MSRA ML2000 TAOBAO
BR 0.793±0.009 0.627±0.006 0.793±0.017 0.682±0.020 0.674± 0.015 0.124±0.003 0.647±0.019 0.148±0.007
CC 0.726±0.011 0.573±0.005 0.789±0.014 0.540±0.012 0.565± 0.020 0.118±0.006 0.644±0.019 0.088±0.023

DMP 0.982±0.002 0.879±0.001 0.943±0.010 0.882±0.023 0.740±0.018 0.096±0.009 0.782±0.019 0.169±0.058
CS3G 0.990±0.005 0.754±0.007 0.924±0.009 0.754±0.028 0.690±0.015 0.071±0.001 0.742±0.022 0.147±0.017
MCC 0.922±0.004 0.766±0.003 0.898±0.012 0.826±0.013 0.646±0.016 0.073±0.004 0.781±0.022 0.228±0.028
M3LA 0.972±0.007 0.885±0.004 0.944±0.010 0.875±0.025 0.765±0.016 0.157±0.009 0.811±0.018 0.273±0.052

methods micro AUC ↑ micro F1 ↑
FCVID MSRA ML2000 TAOBAO FCVID MSRA ML2000 TAOBAO

BR 0.792±0.012 0.642±0.005 0.794±0.017 0.746±0.007 0.688± 0.019 0.148±0.002 0.651±0.019 0.201±0.009
CC 0.722±0.012 0.626±0.010 0.789±0.015 0.581±0.022 0.601± 0.022 0.204±0.009 0.646±0.019 0.192±0.043

DMP 0.975±0.002 0.882±0.002 0.952±0.003 0.871±0.012 0.759±0.013 0.395±0.021 0.788±0.019 0.381±0.060
CS3G 0.978±0.005 0.872±0.002 0.925±0.009 0.849±0.010 0.723±0.015 0.418±0.004 0.744±0.021 0.336±0.019
MCC 0.981±0.003 0.882±0.002 0.932±0.010 0.862±0.010 0.667±0.015 0.405±0.001 0.767±0.023 0.356±0.009
M3LA 0.973±0.003 0.892±0.003 0.939±0.004 0.889±0.012 0.791±0.012 0.432±0.010 0.812±0.018 0.476±0.049

methods example AUC ↑ example F1 ↑
FCVID MSRA ML2000 TAOBAO FCVID MSRA ML2000 TAOBAO

BR 0.790±0.012 0.639±0.007 0.807±0.014 0.745±0.006 0.565± 0.023 0.160±0.004 0.667±0.019 0.247±0.013
CC 0.720±0.012 0.619±0.008 0.801±0.014 0.583±0.021 0.438± 0.025 0.182±0.007 0.659±0.023 0.188±0.039

DMP 0.972±0.003 0.873±0.004 0.923±0.014 0.865±0.011 0.682±0.016 0.298±0.023 0.775±0.020 0.283±0.063
CS3G 0.974±0.006 0.863±0.004 0.907±0.012 0.839±0.010 0.679±0.016 0.368±0.003 0.705±0.024 0.343±0.023
MCC 0.968±0.016 0.853±0.001 0.887±0.014 0.829±0.010 0.646±0.016 0.376±0.002 0.765±0.022 0.346±0.024
M3LA 0.966±0.003 0.878±0.001 0.932±0.012 0.866±0.024 0.729±0.016 0.352±0.014 0.818±0.021 0.425±0.047

methods RankingLoss ↓ HammingLossm ↓
FCVID MSRA ML2000 TAOBAO FCVID MSRA ML2000 TAOBAO

BR 0.416±0.024 0.625±0.010 0.337±0.021 0.465±0.011 0.019± 0.001 0.445±0.006 0.212±0.013 0.197±0.012
CC 0.557±0.025 0.678±0.015 0.344±0.023 0.802±0.041 0.021± 0.001 0.158±0.002 0.216±0.012 0.059±0.003

DMP 0.027±0.003 0.126±0.004 0.076±0.014 0.134±0.011 0.016±0.001 0.048±0.001 0.101±0.009 0.032±0.001
CS3G 0.025±0.006 0.136±0.004 0.092±0.012 0.160±0.010 0.020±0.001 0.064±0.001 0.119±0.010 0.073±0.002
MCC 0.051±0.006 0.195±0.005 0.082±0.011 0.230±0.024 0.026±0.001 0.047±0.001 0.105±0.012 0.063±0.002
M3LA 0.023±0.003 0.121±0.005 0.067±0.012 0.133±0.024 0.014±0.001 0.044±0.001 0.092±0.010 0.033±0.002

methods Coverage ↓ SubAcc ↑
FCVID MSRA ML2000 TAOBAO FCVID MSRA ML2000 TAOBAO

BR 12.309±0.667 36.008±0.530 2.580±0.106 14.653±0.334 0.525± 0.021 0±0 0.354±0.034 0.031±0.012
CC 16.15±0.685 41.88±0.719 2.62±0.094 24.28±1.198 0.422± 0.023 0±0 0.341±0.036 0.169±0.036

DMP 1.790±0.096 12.683±0.303 1.553±0.060 5.062±0.329 0.650±0.015 0.067±0.008 0.635±0.015 0.267±0.064
CS3G 1.726±0.168 13.481±0.317 1.636±0.063 5.772±0.315 0.575±0.019 0.053±0.003 0.573±0.028 0.072±0.019
MCC 1.618±0.123 16.481±0.254 1.548±0.013 5.223±0.212 0.524±0.020 0.076±0.008 0.663±0.032 0.219±0.027
M3LA 1.953±0.102 12.258±0.287 1.532±0.069 5.032±0.736 0.703±0.017 0.096±0.007 0.677±0.031 0.382±0.043

TABLE III
To validate effectiveness of modality prediction layer, the result(mean±std) of M3LA, M3LA-order(no modality prediction layer), M3LA-Wco(no

correlation matrix) and compared approach on ML2000 dataset. Including 10 commonly used evaluation criteria on multi-label learning, we
bolded the best resutl of each criteria, and ↑ / ↓ indicate the lower / higher value of indicator, the better performance.

methods macro-AUC ↑ micro-AUC ↑ example-AUC ↑ macro-F1 ↑ micro-F1 ↑ example-F1 ↑ RankingLoss ↓ hammingLoss ↓ Coverage ↓ SubAcc ↑
DMP 0.943±0.010 0.952±0.003 0.923±0.014 0.782±0.019 0.788±0.019 0.775±0.020 0.076±0.014 0.101±0.009 1.553±0.060 0.635±0.015
CS3G 0.924±0.009 0.925±0.009 0.907±0.012 0.742±0.022 0.744±0.021 0.705±0.024 0.092±0.012 0.119±0.010 1.636±0.063 0.573±0.028
MCC 0.898±0.012 0.932±0.010 0.887±0.014 0.781±0.022 0.767±0.023 0.765±0.022 0.082±0.012 0.105±0.012 1.548±0.013 0.663±0.032

M3LA-order 0.917±0.068 0.932±0.031 0.924±0.071 0.753±0.022 0.729±0.013 0.699±0.137 0.075±0.071 0.123±0.058 1.590±0.409 0.560±0.183
M3LA-Wco 0.918 ±0.057 0.923 ±0.342 0.928 ±0.056 0.733 ±0.068 0.771 ±0.126 0.775 ±0.138 0.071 ±0.056 0.116 ±0.066 1.583 ±0.381 0.588 ±0.196

M3LA 0.944±0.010 0.939±0.004 0.932±0.012 0.811±0.018 0.812±0.018 0.818±0.021 0.067±0.012 0.092±0.010 1.532±0.069 0.677±0.031

For each dataset, we randomly select 90% for training set,
and remaining instances are used for testing, and the batch
size is set as 64, the dimension of hidden state is set as 256.
Besides, we set the learning rate as 0.01, and we set the decay
rate as 0.99 to avoid the excessive learning rate. λ3 = 0.0001,

λ1 = λ2 = 0.5, After dozens of experiments, we suggest
that setting the epoch to 300. In order to verify the robustness
of our approach, we repeat experiment ten times following
above setting on each dataset with the implementation of an
environment on NVIDIA 1080TI GPUs server.



B. Evaluation Measures

In order to comprehensively evaluate our approach, we
use both the example-based metrics and label-based metrics.
example-based metrics work by evaluating the learning algo-
rithm’s performance on each test example separately and then
returning the mean value across the test data, while label-
based metrics work by evaluating the learning algorithm’s
performance on each class label separately, and then returning
the macro/micro-averaged value across all class labels [19].

For example-based metrics, we use Subset Accuracy which
evaluates the proportion of correctly classified examples, e.g,
for a given multi-label sample, if the predicted label set exactly
matches the true label set of the sample, then the sample is
considered to be correctly classified. Hamming Loss indicates
the proportion of error samples in all labels, and the smaller
the value, the stronger the classification ability of the model.
Coverage evalutes how many steps are needed on average, to
move down the ranked label list so as to cover all the relevant
labels of the example. RankingLoss evalutes the fraction of
reversely ordered label pairs. In other words, it indicates the
case where unrelated label are more relevant than related label.

For label-based metrics, AUC and F1-score are used, AUC
is the area under ROC curve, which has the ability to ob-
jectively the comprehensive prediction for each category, and
F1-score is definited based on harmonic mean of precision and
recll, both of them are widely used evaluation indicators.

C. Experiments Results

We compared some traditional and advanced appoaches in
multi-modal multi-label learning, e.g. BR [9], CC [10], MCC
[1], DMP [8], CS3G [2]. BR and CC are classic multi-label
learning algorithm, in this compared experiments, we treat all
modalities as a single modal as the input of BR and CC.
MCC is a extends algorithm based on Classifier Chians which
can make each modality interactions. DMP is a end-to-end
serialized adaptive decision approach based on neural network
that aims to reduce the modal extraction cost. Meanwhile,
DMP can balance the classification performance and modal
feature extraction cost. And it is notable that the DMP is a
multi-modal single-label algorithm, but it can also be used
for multi-modal multi-label learning problem as long as we
simply modify the way of label prediction. CS3G is designed
for scholarships and subsidies allocation, it is also a general
multi-modal multi-label learning algorithm which can handle
types of interactions among multiple label.

In order to compare these approaches objectively, we re-
peated experiment for ten times, the data set division according
to IV-A, and average value of each evaluation metrics and stan-
dard deviation are shown in Table II.The results shows that, BR
and CC, the traditional multi-label algorithm’s performance is
poor, a major reason is that they do not take into account
the relation between modalities and labels. DMP and MCC
considered the effect of modalities, and CS3G considered the
correlation among labels, their performance is much better
than the traditional method. However, our method considers
both and it can be found that our method has achieved the

best results on almost all dataset with different performance
measures, which validates the effectiveness of our appoach
solving multi-modal multi-label learning problem. We note
that the F1 and SubAcc of the MSRA dataset are lower
than other datasets because there are 50 labels , and the
criterion for the SubAcc is overly strict that required the
prediction results for each of the 50 labels are the same as
the ground-truth. In contrast, the ML2000 dataset has only 5
labels and the evaluation results are much better. Another thing
that we are surprised about is, for all dataset, our proposed
approach has a significant improvement in some performance
measures(e.g F1-socre, HammingLoss, SubAcc). This also
shows that M3LA approach is a high-competitive multi-modal
multi-label learning method.

D. Modality prediction and Label correlation Exploitation

We consider that different input order of modalities can
affect performance for different instances, in other words,
there is a relation between modality and labels that lables
have varying degrees of denpendence on each modality. To
verify this, we conducted a comparative experiment on the
ML2000 dataset. The results of experiment are shown in Table
III, M3LA-order indicates that we input modalities in order in
decoding phase. It is obvious that the modality prediction part
in our model has a great impact on performance.

Meanwhile, we also conducted a comparative experiment on
the ML2000 dataset to identify the impact of the correlation
matrix Wco on our model. We slightly modified our model
where the M3LA-Wcoindicates the M3LA model without
correlation matrix Wco. And the results are shown in Table III.
It can be found that the performance of the model for removing
the correlation matrix Wco is far less than the original M3LA
model.

V. CONCLUSION

In this work, we innovatively combined the Multi-modal
Multi-label learning with Encoder-Decoder structure, and pro-
posed a novel approach named M3LA. On one hand, M3LA
can model the correlation among labels that solved the prob-
lem of association between labels. On the other hand, benefit
from the relation between modality and labels is innovatively
considered that the model can always choose the most appro-
priate modality to predict each label. Experiments on 4 widely
used benchmark datasets and comparation with the model
which have not modality prediction show the effectiveness
of our model. However, in real-world, instances may have
different numbers of modalities, so how to extend the appoach
to this scenario is a very promising work in the future.
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