
PSO-PS:Parameter Synchronization with Particle
Swarm Optimization for Distributed Training of

Deep Neural Networks
Qing Ye

College of Computer Science
Sichuan University
Chengdu, China

fuyeking@stu.scu.edu.cn

Yuxuan Han
College of Computer Science

Sichuan University
Chengdu, China

yuxuan han@foxmail.com

Yanan Sun
College of Computer Science

Sichuan University
Chengdu, China
ysun@scu.edu.cn

Jiancheng Lv
College of Computer Science

Sichuan University
Chengdu, China

lvjiancheng@scu.edu.cn

Abstract—Parameter updating is an important stage in
parallelism-based distributed deep learning. Synchronous meth-
ods are widely used in distributed training the Deep Neural Net-
works (DNNs). To reduce the communication and synchronization
overhead of synchronous methods, decreasing the synchroniza-
tion frequency (e.g., every n mini-batches) is a straightforward
approach. However, it often suffers from poor convergence. In
this paper, we propose a new algorithm of integrating Particle
Swarm Optimization (PSO) into the distributed training process
of DNNs to automatically compute new parameters. In the
proposed algorithm, a computing work is encoded by a particle,
the weights of DNNs and the training loss are modeled by the
particle attributes. At each synchronization stage, the weights
are updated by PSO from the sub weights gathered from all
workers, instead of averaging the weights or the gradients. To
verify the performance of the proposed algorithm, the experi-
ments are performed on two commonly used image classification
benchmarks: MNIST and CIFAR10, and compared with the peer
competitors at multiple different synchronization configurations.
The experimental results demonstrate the competitiveness of the
proposed algorithm.

Index Terms—Distributed training, PSO, SSGD

I. INTRODUCTION

With the increasing growth of data volume and the complex-
ity of neural networks, the efficient training of Deep Neural
Networks (DNNs) has been becoming a challenging task for
the community of machine learning. To address this issue,
many distributed methods have been proposed to accelerate
the training of DNNs, which can be generally divided into
two different frameworks: data parallelism and model paral-
lelism [1]. Particularly, the data parallelism refers to that the
large dataset is divided into multiple different parts with small
size, and the DNN is simultaneously trained on multiple differ-
ent computational nodes with different dataset parts, while the
model parallelism means that the DNN model is divided into
different small models and each computational node performs

This work is supported in part by the National Key Research and Devel-
opment Program of China under Contract 2017YFB1002201, in part by the
National Natural Science Fund for Distinguished Young Scholar under Grant
61625204, and in part by the State Key Program of the National Science
Foundation of China under Grant 61836006.

Correspondence to Jiancheng Lv

a model on the entire dataset. In practice, the data parallelism
has been attracted more attention because of its simplicity and
easy to implement. In the data parallelism, the key problem is
how to appropriately update the parameters (i.e., the gradients
in terms of the weights of the DNNs) trained from different
dataset parts during each iteration. The synchronous method
is a classical approach to update the parameters, where the
server node distributes the workload to multiple nodes and
then gathers all gradients in each iteration, which is also known
as the Synchronous Stochastic Gradient Descent (SSGD) [2],
[3]. The SSGD method is simple yet efficient. However, due
to the conflicting between the synchronized settings and the
possible variations that needs to compute a batch on different
nodes at each iteration, all nodes have to wait for the slowest
one to finish before entering the next iteration, which is
ineffective. Furthermore, in each iteration, the parameter server
needs to synchronize the multiple nodes, which will bring
the communication and synchronization overhead, especially
when the synchronization frequency is high or the number of
computing nodes is large, which is inefficiency.

To alleviate the burdens aforementioned, Povey et al. [4]
proposed a method by averaging the neural network param-
eters periodically (typically every one or two minutes). In
addition, multiple state-of-the-art methods have also been
developed by focusing on dramatically reducing the size of
the exchanged gradients with slight convergence deterioration,
such as the Asynchronous Parallel Stochastic Gradient Descent
(APSGD) [5], the staleness-aware asyncSGD method [6],
the gradient sparsification method [7], the quantification
method [8], [9], and the compression methods [10], [11].
Furthermore, some other state-of-the-art methods, concerning
about conquering the communication challenge, have also
been proposed, including the high-speed networks [12], such
as the 10GbE and the InfiniBand are used to alleviate the
communication cost. Recently, researchers have also proposed
the approaches based on the communication efficient learn-
ing [13], [14] and the decentralized learning [15]–[17]. Al-
though these methods have experimentally demonstrated their
promising performance in their respective papers, it is still

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

hard to balance the communication overhead and convergence
in the distributed training [4].

Evolutionary computation is a class of nature-inspired com-
putational paradigm and has shown their promising perfor-
mance related to DNNs [18], such as the design of neural ar-
chitectures [19]–[21] because of their superiority performance
for addressing complex optimization tasks. In this paper, we
proposed to address the parameter updating problems by using
the Particle Swarm Optimization (PSO) algorithm that is a
widely used evolutionary computation method. To the best of
our knowledge, this is the first time to use the evolutionary
computation methods to tackle the parameter updating in the
distributed training of DNNs. Specifically, in the proposed
algorithm, the training parameters of the distributed neural
network are encoded into each particle of the PSO, and then
the new parameters are calculated based on the particle updat-
ing mechanism, which is a completely different strategy from
the existing methods that aggregate parameters or gradients at
each synchronization. The goal of this paper is to discuss the
potentiality of the proposed parameter synchronization method
with PSO (PSO-PS) and treat it as an alternative approach
to effectively solving the parameter updating problems in the
distributed training. The contributions of the proposed PSO-PS
algorithm are shown below:

• Propose an encoding strategy, which can incorporate
the characteristics of PSO to well address the problems
during distributed training the DNNs.

• Propose an improved version of PSO to calculate the
parameters because the neural network is sensitive to
the variation of parameters. The improved PSO has an
adjustable local and global search ability, which is very
similar to the adjustable learning rate.

• Experimentally investigate the proposed PSO-PS algo-
rithm and demonstrate its competitive performance in
distributed training the image classification benchmark
datasets.

The remainder of this paper is organized as follows. The
literature of the distributed deep learning (including the DNNs
and the synchronous approaches with data parallelism for dis-
tributed training of DNNs) and PSO is reviewed in Section II.
Section III illustrates the details of the proposed PSO-PS
algorithm. The experiment design and the result analysis are
documented in Section IV. Finally, the conclusions and future
work are drawn in Section V.

II. LITERATURE REVIEW

A. Deep Neural Networks (DNNs)

DNNs are generally stacked with many hierarchical layers,
and each layer represents a transformer function of the input.
Mathematically, the DNNs can be formulated by Equation (1)

a(l) = f(wl, xl) (1)

where xl and al denote the input and the output of the l-
th layer, and the input of the current layer is the output of
its previous layer (i.e., xl=al−1). f(·) denotes the transformer

function which consists of an operation (e.g., inner product
or convolution) and an activation function (e.g., Sigmod).
wl denotes the trainable model parameters, which could be
iteratively updated during the model training using mini-batch
stochastic gradient descent (SGD) optimizers and the back
propagation algorithm [22].

Specifically, the SGD uses a small set of training samples
(mini-batch), provides stable convergence at fair computational
cost on a single node and can be formulated by Equation (2):

wl = wl−1 − η∇w (2)

In Equation (2), wl−1 represents the current iteration (e.g.,
weights), η indicates the learning rate which is adjustable
and ∇w is computed from a given loss-function (e.g., cross-
entropy) over the forward results of the mini-batch. There are
two ways to speed up the SGD: a) computing updates∇w with
a faster way, and b) making a large batch size. Unfortunately,
both methods will result in the unaffordable computation cost.

B. Synchronous Approaches with Data Parallelism

Data parallelism is a classical framework to reduce the
training time by keeping a copy of the entire DNN model on
each worker (i.e., the computing node), processing different
parts of the training data set on each worker. The data
parallelism training approaches require well-designed methods
to aggregate the results and synchronize the model parameters
between each worker. Typically, there are two typical meth-
ods to achieve it: Parameter Averaging(PA) and Synchronous
Stochastic Gradient Descent (SSGD).

Fig. 1. Parameter averaging with data parallelism framework.

The PA is shown in Fig. 1. Supposing there are n workers,
where w indicates the parameters (weights, biases) of the
DNN, the subscripts represent the iteration orders of the
parameters, and the step refers to the synchronization period.
As can be seen from Fig. 1, all the parameters are aggregated
on the parameter server first, and then the new weights are
produced. Next, the new weights are redistributed to the n
workers for the next iteration.

Specifically, the steps of the PA are provided below:
1) Initialize the network parameters wi randomly based on

the DNN configuration.
2) Distribute a copy of the current parameters to each

worker.

3) Train each worker on a small part of the training dataset
and get the sub weights.

4) Collect and average all sub weights from each worker.
5) Produce new weight by 1

n

∑
wk

i and distribute new
weight wi+1 to all workers. k represents the index of
a worker, and i represents the version of parameters.

6) Go to Step 3 until the termination is not satisfied.
SSGD is similar to PA, the primary difference between

SSGD and PA is that the SSGD transfers the gradient ∇wk
i

instead of the PA transferring parameters, i.e., in Step 5, the
wi+1 is updated by wi +

1
nα

∑
∇wk

i in the SSGD, and α is
a scaling factor (analogous to a learning rate).

It is straightforward to prove that a restricted version of PA
is mathematically identical to the SSGD during the training
on a single machine when step = 1. As can be seen from the
details of the PA and the SSGD, the synchronous approaches
are conceptually simple and are easy to synchronize the data
after each iteration. However, in practice, the overhead of
doing so is prohibitively high because the network communi-
cation and the synchronization cost may overwhelm the benefit
obtained from the extra machines. Moreover, if the frequency
of the synchronization is not reasonably specified, the local
parameters in each worker may diverge too much, resulting in
a poor model after the averaging.

C. Particle Swarm Optimization(PSO)

PSO is a population-based stochastic optimization approach,
which was proposed by Eberhart and Kennedy in 1995 [23],
[24], by simulating the swarm behavior of birds and fish
when they cooperatively search for the food. Especially, each
member of the group (i.e., the particle) changes its search
mode by learning its own experience and the experience of
other members. The PSO algorithm initializes with a fix-
sized set of particles that distribute across the solution space.
On every step of the iterations, the locations of particles are
passed to a shared function F (·) which calculates the fitness
values. The particle with the highest value is marked, and the
other particles should update its personal best record if the
current value outperforms the values in its history. After that,
all the particles are moved based on their previous locations
according to the position updating mechanism formulated by
Equations (3) and (4).

vtid =
inertia︷ ︸︸ ︷
m ∗ vt−1

id

+
local search︷ ︸︸ ︷

c1r1 ∗ (pBestid − pt−1
id)

+
global search︷ ︸︸ ︷

c2r2 ∗ (gBestd − pt−1
id)

(3)

ptid = pt−1
id + vtid (4)

In Equation (3), i represents the index of the particle and t
is the iteration counter. m denotes non-negative inertia weight,
c1 and c2 are the acceleration, constant r is the random number
between 0 and 1, pBestd denotes the fitness of local optimum
particle in the dth dimension, and gBestd denotes the fitness
of the global optimum particle in the dth dimension. The

calculation of vtid consists of three elements: inertia, local
search and global search. Constants m, c1, r1 and c2, r2 are
factors regulating the impact of three elements on the result,
it means that three elements of current speed are adjustable in
different application. The advantages of PSO are often viewed
as its fast search speed and high efficiency, and the overall
framework of the standard PSO is detailed as follows:

1) Initialize particles: population size n, particle veloc-
ity vi, particle position pi, iteration counter t = 1;

2) Evaluate the fitness of each particle: fi;
3) Calculate the gBest from the history of all particles by

fi;
4) For each particle, calculate the best one pBesti from its

memory by fi;
5) Updating velocity vi and position pi by Equations (3)

and (4);
6) Judge termination conditions. If t > Max t (maximal

generation number) or fi satisfy optimization target, go
to step 7. else, repeat steps from 2 to 6. t = t+ 1;

7) Return the best position of the particle whose fitness
value is gBest.

In order to let PSO be more suitable for the distributed
training of DNNs, we have made two improvements upon
the standard PSO, and the improvement details are shown in
Subsection III-B.

III. THE PROPOSED PSO-PS ALGORITHM

PSO serves as a tool for optimization when different so-
lutions to a problem are given and an evaluation metric is
defined. The similarity between neural network training and
swarm optimization lies in the fact that we don’t know where
the global optimization is, but we can keep approaching it,
which inspires us to use PSO to facilitate the distributed
training of DNNs. The purpose of aggregating all parameters
in the distributed training is to make use of the training
results of all workers. As mentioned in the Subsection II-B, if
the synchronization executes at each iteration, the distributed
training is equal to a single machine training, this is also the
most time-consuming phase. As the synchronization period
grows, the communication overhead decreases, but averaging
parameters may lead to a poor model. To this end, using PSO
to update parameters instead of average can leave the best
parameters and optimize other parameters at the same time,
it is beneficial that all workers approach the optimal solution
with lower communication cost.

A. Encoding Strategy

Developing an encoding strategy between the PSO and the
distributed training of DNNs is the first step to use PSO.

As have mentioned above, the problem investigated in this
paper is about the parameter updating for the data parallelism
by using PSO. To achieve this, firstly, the whole input dataset
is divided into equally sized chunks, where n indicates the
number of workers in the cluster. In the PSO, the size
of the particle swarm is specified as the number of the
workers n. Secondly, a different subset of data is fed into

TABLE I
DETAIL OF THE ENCODING STRATEGY

Distributed deep learning PSO
particle population N distributed scale n

wi pi
training loss fitness

gBest min {lossi}, i ∈ n
pBesti min {lossit}, t:from 0 to current iteration

different workers, and each worker performs its forward pass
and backward pass individually. Because the parameters of
the DNN trained on each work will change as the training
progresses. The parameters w trained on the worker are
modelled as the position of a particle. Clearly, the solution
space is defined as all the possible weight combinations for
the network needed to be trained. The fitness function is
defined as the loss function of the network, so the loss on
the current mini-batch corresponds to the fitness of a particle.
The lower the fitness is, the closer the particle is to the global
optimum, which is consistent with the goal of training the
DNNs. Thirdly, when the calculation on several iterations is
done, gradients are gathered up, averaged and synchronized
across the cluster. At this step, PSO calculates new weights
according to Equations (3) and (4), instead of averaging and
synchronous operation. Finally, new weights are redistributed
to each worker to continue training. Table I shows the detail
of the encoded parameters of the proposed PSO-PS.

B. Parameter Synchronization with PSO (PSO-PS)

In this section, we will introduce the algorithm flow of PSO-
PS in detail. In the standard PSO, many hyper-parameters
such as c1, c2, and m, are constants. It means that global
and local search capabilities remain constant throughout the
calculation. At the early stage, the fixed parameters benefit
convergence, while the value of the loss function will hover
around the minimum value during the later phase, and it is
difficult to reach the global optimal value all the time. To
avoid the algorithm crossing the global optimum of DNN and
slower convergence, two improvements have been proposed in
this paper to enhance PSO-PS.

a) To speed up the convergence of PSO, the linear decline
of weight proposed by Shi et al. [25] will be applied to
the proposed PSO-PS algorithm. In Equation (5), mmax and
mmin are hyper-parameters. t represents the current iteration,
tmax represent the maximum number of iterations. At the
initial iteration, because the t is small, the inertia weight m is
relatively large. It is advantageous to locate the approximate
position of the optimal solution quickly. With the accumulation
of iteration times, the value of m becomes small, and particles
slow down, which benefits local search.

m = mmax − t ∗
mmax −mmin

tmax
(5)

b) To decrease the randomness of PSO-PS, we introduce
an additional variable λ (range 1 to epoch size) to adjust
the offset of parameters on every mini-batch (i.e., weaken

random variability of weights in DNN training). As the epoch
number increases, the random variable factor decays, and the
local and global search abilities are weakened. Finally, each
particle updates its speed and location (weights) according to
Equations (6) and (7) :

vtid = m∗vt−1
id +

c1r1
λ

(pBestid−wt−1
id)+

c2r2
λ

(gBestd−wt−1
id)

(6)
wt

id = wt−1
id + vtid (7)

Algorithm 1 Parameter Synchronization With PSO
1: Initialize raw weights (w)of the DNN according to con-

figuration of DNN.
2: Initialize particles population by Algorithm 2
3: iteration size = training−size

batch−size , Max t← epoch-size ∗
iteration size

4: t = 1
5: while t < Max t do
6: if t%step == 0 then
7: calculate gBest by Algorithm 3
8: for each particle i ∈ N do
9: if lossti < pBest lossi then

10: pBesti = wt
i ; pBest lossi = lossti

11: end if
12: calculate the new weights: wt+1

i according to
Equations (6), (7)

13: end for
14: distribute new weights wt+1

i to workers
15: else
16: update w by SGD
17: end if
18: t = t+ 1
19: end while
20: return gBest

Algorithm 1 shows the procedure of the PSO-PS algorithm.
Step 1 completes the initialization of clusters with the same
initialized parameters. Every work holds a replica of the
entire DNN model and a different part of the dataset. Step 2
completes the initialization of particles population. At step 3,
Max t represents the maximum iterations, training size
indicates the size of training dataset. To decrease the training
time and utilize the gradients and the SGD optimizer, which
has become the mainly used method in optimizing neural
networks, and control the frequency of synchronization. step is
applied to make the optimizer switch between PSO and SGD.
On every step iteration, PSO-PS carries out once. Step 10
complete the local search. All the workers execute key steps
from 7 to 12 of PSO-PS to update new weights. i represents
the index of the worker, t represent the version of parameters.
On other iterations, each worker just applies the gradients on
its mini-batch at step 16, ignoring other workers. New weights
are redistributed to workers at step 14. When step = 1, the

algorithm falls back to be a full synchronous method, and
when step = tmax, it can be viewed as a cluster of workers all
running SGD separately on their subset of the data, step can
be exploited to adjust the communication cost of the cluster.

C. Initialization of PSO-PS

The typical PSO initialization method is based on random
initialization with the whole search space. In the PSO-PS,
the population is initialized by the parameters of a worker.
The initialization is detailed in the Algorithm 2. At step 1,
the population size is set as the size of the cluster scale.
For example, If the cluster has 16 workers, this means that
the particle population size is 16. At step 4, each particle
information pi will completely clone parameters wi of DNN
on a worker, including the structure and the value. The
dimension of particle and parameters are the same. At the
initialization stage, every worker hosts a replica of the DNNs
model, so all particles have the same information.

Algorithm 2 Particle Initialization
1: Particle population← distributed scale n
2: i = 1 //index of worker
3: for each worker i ∈ n do
4: pi ← wi

5: end for
6: return Initialized population P

D. Global Search

Since each worker holds a different subset of the dataset,
parameters wi of each work will be changing as the training
continues, the parameter of each network is constantly ap-
proaching the global optimal. It means the particle population
is moving to the global optimal solution in the searching
space. It is generally known that the loss function is used to
measure the performance of the current model in the process
of DNN training. In the PSO-PS, we need a function to
validate the fitness of a particle. According to the encoding
strategy in Table I, the fitness function is modelled by the loss
function, the training loss of the DNN represents the fitness
of a particle. Accordingly, the global search of PSO means to
find the minimum training loss of all workers. The calculation
of gBest is detailed in Algorithm 3. There is no server in the
cluster, all processes are equal. The communication operation
adopts the AllReduce Algorithm [26], which is an efficient
way to communicate and implemented by Pytorch. Step 2
gathers all particles and fitness by AllReduce. Step 7 gets the
index of minimum loss by a function agrmin. Step 8 gets the
best parameters in the cluster, which is the best particle at the
current iteration.

IV. EXPERIMENT DESIGN

In this section, we provide the details of the benchmark
dataset chosen, the classical neural network model and the
parameter settings used in the experiments for investigating
the performance of PSO-PS.

Algorithm 3 Global Search
1: Initialize two lists, the size of a list is n: parameter list

and loss list,
2: Gather parameters and loss values of all workers by

AllReduce.
3: for each worker i ∈ n do
4: parameter list[i] = wi

5: loss list[i] = lossi
6: end for
7: Get the index of the worker which has the minimum

training loss: gBest index = agrmin(loss list)
8: return parameter list[gBest index]

TABLE II
THE PARAMETER SETTINGS OF PSO-PS

mmax 0.9
mmin 0.3
c1 0.2
c2 0.9
r1,r2 random(0, 1)
λ epoch-size

All experiments are performed on a single Tesla V100 ma-
chine with 4 GPUs. Multi-processes are used to simulate the
multi-nodes in the distributed environment, i.e., each process
runs as a single node. We validate the effectiveness of the
proposed algorithm with two image classification benchmark
datasets: MNIST [27] and CIFAR10 [28]. The MNIST dataset
is a hand-written digit recognition dataset to classify the
numeral numbers between 0 and 9, including a training set
of 60,000 examples, and a test set of 10,000 examples. The
CIFAR10 dataset comprises of a total of 60,000 RGB images
of size 32∗32 pixels partitioned into the training set (50,000
images) divided into five training batches and the test set
(10,000 images) containing exactly 1000 randomly selected
images from each class. Each image belongs to one of the 10
classes, with 6000 images per class.

We use two classical convolutional neural network(CNN)
models: Let-Net [29] and ResNet [30] to verify the effec-
tiveness of the proposed PSO-PS algorithm. The Let-Net is
often viewed as the first successful CNN model, which was
designed to identify the hand-written digits in the MNIST
dataset and it has 0.665 million parameters. The ResNet was
proposed to address the depth issue by training a slightly
different inter-layer interaction: instead of composing layers,
every convolutional module would add its input to the output.
Residuals are implemented as “shortcut identity connections
in the ResNet network. It is possible to train networks with
depths from 50 to 152 layers with ResNet, further increasing
the quality of the results by allowing higher-level features
to be learned. The ResNet model used in the experiments
has 11.1 million parameters. The DNN model is trained By
Adam optimizer [?] with momentum, and the loss function
is specified to the cross-entropy. The dataset is partitioned
according to the number of processes n and each process holds

Fig. 2. Test error of SSGD and PSO-PS on MNIST with different scales.

Fig. 3. Test error of SSGD and PSO-PS on CIFAR10 with different scales.

one piece of the dataset. The parameters setting of the PSO-PS
used for the experiment are detailed in Table II.

A. Evaluation on MNIST

To the best of our knowledge, it is the first time that the PSO
is used to optimize parameter synchronization in distributed
training, so the most important goal in this paper is to verify
whether the PSO-PS has the same convergence effect as that of
SSGD or not, which is achieved by conducting the experiments
for verifying the accuracy.

We train the Let-Net using both SSGD and PSO-PS on
MNIST, where SSGD is used to provide the target model
accuracy baseline for PSO-PS since it guarantees zero gradient
staleness and achieves the best model accuracy. The variable
n represents the distributed scale. As suggested in [4], we

TABLE III
THE CLASSIFICATION ACCURACY (IN %) OF PROPOSED PSO-PS AND

PEER COMPETITOR SSGD ON THE MNIST DATASET

Algorithm Avg(%) Max(%) min(%)
SSGD n=4 98.25 99.0 98.0

PSO-PS,n=4 99.0 99.0 99.0
SSGD,n=8 98.0 98.0 98.0

PSO-PS,n=8 98.0 98.0 98.0
SSGD,n=16 97.0 97.0 97.0

PSO-PS,n=16 97.93 98.0 97.0

set step = 10, batch-size = 256, and epoch-size = 25.
Especially, the scale of the distributed cluster (i.e.,) can be
changed according to specific computing resources. In the lab
environment, the scale size is specified as 4, 8, and 16.

The experimental results are shown in Table III, where the
first column indicates the SSGD and PSO-PS with different
distributed cluster scale n, the second column indicates the
average accuracy of the cluster, and the best accuracy and
the worst accuracy of all workers are in the third and fourth
columns, respectively. As can be seen from Table III, the
accuracy of PSO-PS is better than SSGD, when scale size
n = 4 and 16. Meanwhile, Fig. 2 shows the records of test
error during the training process on MNIST using PSO-PS and
SSGD with different scales. As shown in Figs. 2(a) and 2(b),
the accuracy of PSO-PS is comparable to SSGD on MNIST
dataset. Moreover, when the distributed scale becomes large,
the accuracy of the PSO-PS outperforms SSGD in the training
process as shown in Fig. 2(c), which is consistent with the
characteristics of PSO, i.e., increasing the population properly
is beneficial to the convergence of PSO, but the accuracy of
PSO-PS do not improve with the increase of n. For example,
scale 8 means the cluster extends 2 nodes compared to scale
6, but the accuracy of PSO-PS and the SSGD is equal. We
think the main reason is that PSO is a random optimization
approach with instability. In general, the PSO-PS and SSGD

have the same convergence while the performance of the PSO-
PS slightly outperforms the SSGD.

B. Evaluation on CIFAR10

In this part, we will investigate the performance of PSO-PS
on a more complex network and benchmark dataset. Specifi-
cally, the experiments are designed on the training of ResNet
on CIFAR10. In order to obtain the results in an acceptable
training time, we set step = 10, batch-size = 256, epoch-size
= 30, and make a comparison between PSO-PS and SSGD on
the optimization process with different distributed scales. In
particular, the scale size is specified as 4, 6, and 8 in the lab
environment.

The convergence curves are shown in Fig. 3 with differ-
ent scales. In Fig. 3(b), although PSO-PS shows a slightly
worse result than the baseline, PSO-PS converges faster than
SSGD during the first several epochs, and runs the similar
performance to the baseline when the scales are 4 and 8
(as shown in Figs. 3(a) and 3(c)). The main reason behind
this is that the local and global search capability of PSO-PS
can accelerate the training early, but this acceleration effect
can not be constantly kept, especially in the later epochs
when the network parameters are getting closer to their global
minimum thus optimization becomes harder. In addition, the
dimension of the ResNet parameters is up to millions, thus it’s
difficult to optimize well. To summarize, the convergence of
a complex DNN trained by PSO-PS is competitive to those of
the baseline.

According to the above experiments, we can summarize the
following points:

• When the parameter scale of the neural network is small,
the performance of PSO-PS slightly outperforms the
SSGD.

• As the parameter scale of the neural network increases, it
means the data dimension that particles need to optimize
increases, sometimes up to millions, it makes optimiza-
tion more difficult. PSO-PS can accelerate the training
at the early several epochs faster than SSGD, but this
acceleration is unstable.

• In general, with the increase of the cluster size, the
advantages of PSO-PS are more significant, but it is also
affected by the size of neural network parameters and the
partition of the dataset.

V. CONCLUSIONS AND FUTURE WORK

The goal of this paper is to design a novel parameter
synchronization algorithm to accelerate the convergence of
the neural networks in the distributed training. To achieve
this, the PSO is introduced into distributed training (PSO-
PS), which could be an alternative method to the parameter
synchronization in distributed training. Specifically, we first
proposed an encoding strategy to applies the PSO to DNN
distributed training, then developed an improved PSO, which is
more suitable for DNN distributed training. Finally, several ex-
periments had been conducted to investigate the performance
of PSO-PS. PSO-PS can work well with different scales of

neural networks. Particularly, when the DNN scale is small, its
convergence rate is faster than SSGD. Despite the interesting
results we have obtained, the proposed PSO-PS also suffers
from several drawbacks, for example, the acceleration effect
of PSO-PS is not always stable, and the scale of the cluster
simulating the population size of the particle is small relatively.
These potential improvements are left for future work.

REFERENCES

[1] J. Dean, G. S. Corrado, R. Monga, C. Kai, and A. Y. Ng, “Large scale
distributed deep networks,” Advances in Neural Information Processing
Systems, 2012.

[2] A. Coates, B. Huval, T. Wang, D. Wu, A. Ng, and B. Catanzaro,
“Deep learning with cots hpc systems,” 30th International Conference
on Machine Learning, ICML 2013, pp. 2374–2382, 01 2013.

[3] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu, “1-bit stochastic gradient
descent and its application to data-parallel distributed training of speech
dnns,” pp. 1058–1062, 01 2014.

[4] D. Povey, X. Zhang, and S. Khudanpur, “Parallel training of DNNs
with Natural Gradient and Parameter Averaging,” arXiv e-prints, p.
arXiv:1410.7455, Oct 2014.

[5] J. Keuper and F.-J. Pfreundt, “Asynchronous parallel stochastic gradient
descent - a numeric core for scalable distributed machine learning
algorithms,” Computer Science, p. 1, 2015.

[6] W. Zhang, S. Gupta, X. Lian, and J. Liu, “Staleness-aware Async-SGD
for Distributed Deep Learning,” arXiv e-prints, p. arXiv:1511.05950,
Nov 2015.

[7] S. Shi, Q. Wang, K. Zhao, Z. Tang, Y. Wang, X. Huang, and X. Chu, “A
Distributed Synchronous SGD Algorithm with Global Top-k Sparsifica-
tion for Low Bandwidth Networks,” arXiv e-prints, p. arXiv:1901.04359,
Jan 2019.

[8] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized Neural Networks: Training Neural Networks with Low
Precision Weights and Activations,” arXiv e-prints, p. arXiv:1609.07061,
Sep 2016.

[9] W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and H. Li, “Terngrad:
Ternary gradients to reduce communication in distributed deep learning,”
in Advances in neural information processing systems, 2017, pp. 1509–
1519. [Online]. Available: https://arxiv.org/abs/1705.07878

[10] Y. Lin, S. Han, H. Mao, Y. Wang, and B. Dally, “Deep gradient compres-
sion: Reducing the communication bandwidth for distributed training,”
in International Conference on Learning Representations, 2018.
[Online]. Available: https://openreview.net/forum?id=SkhQHMW0W

[11] F. Sattler, S. Wiedemann, K.-R. Müller, and W. Samek, “Sparse Binary
Compression: Towards Distributed Deep Learning with minimal Com-
munication,” arXiv e-prints, p. arXiv:1805.08768, May 2018.

[12] F. N. Iandola, K. Ashraf, M. W. Moskewicz, and K. Keutzer, “FireCaffe:
near-linear acceleration of deep neural network training on compute
clusters,” arXiv e-prints, p. arXiv:1511.00175, Oct 2015.

[13] Y. Tsuzuku, H. Imachi, and T. Akiba, “Variance-based gradient
compression for efficient distributed deep learning,” 2018. [Online].
Available: https://openreview.net/forum?id=rkEfPeZRb

[14] H. Tang, X. Lian, C. Yu, T. Zhang, and J. Liu, “DoubleSqueeze: Par-
allel Stochastic Gradient Descent with Double-Pass Error-Compensated
Compression,” arXiv e-prints, p. arXiv:1905.05957, May 2019.

[15] H. Zhang, C. J. Hsieh, and V. Akella, “Hogwild++: A new mechanism
for decentralized asynchronous stochastic gradient descent,” in 2016
IEEE 16th International Conference on Data Mining (ICDM), 2016.

[16] X. Lian, W. Zhang, C. Zhang, and J. Liu, “Asynchronous
decentralized parallel stochastic gradient descent,” in Proceedings
of the 35th International Conference on Machine Learning,
ser. Proceedings of Machine Learning Research, J. Dy and
A. Krause, Eds., vol. 80. Stockholmsmssan, Stockholm Sweden:
PMLR, 10–15 Jul 2018, pp. 3043–3052. [Online]. Available:
http://proceedings.mlr.press/v80/lian18a.html

[17] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu, “Can
Decentralized Algorithms Outperform Centralized Algorithms? A Case
Study for Decentralized Parallel Stochastic Gradient Descent,” arXiv e-
prints, p. arXiv:1705.09056, May 2017.

[18] H. Al-Sahaf, Y. Bi, q. Chen, A. Lensen, Y. Mei, Y. Sun, B. Tran, B. Xue,
and M. Zhang, “A survey on evolutionary machine learning,” Journal-
Royal Society of New Zealand, 05 2019.

[19] C.-F. Juang, “A hybrid of genetic algorithm and particle swarm opti-
mization for recurrent network design,” IEEE transactions on systems,
man, and cybernetics. Part B, Cybernetics : a publication of the IEEE
Systems, Man, and Cybernetics Society, vol. 34, pp. 997–1006, 05 2004.

[20] Y. Sun, B. Xue, and M. Zhang, “A particle swarm optimization-
based flexible convolutional auto-encoder for image classification,” IEEE
Transactions on Neural Networks and Learning Systems, vol. PP, 12
2017.

[21] L. Xie and A. Yuille, “Genetic cnn,” in 2017 IEEE International
Conference on Computer Vision (ICCV), 2017.

[22] Hecht-Nielsen, “Theory of the backpropagation neural network,” in
International 1989 Joint Conference on Neural Networks, 2002.

[23] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm
theory,” in MHS’95. Proceedings of the Sixth International Symposium
on Micro Machine and Human Science, 2002.

[24] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceed-
ings of ICNN’95 - International Conference on Neural Networks, 1995.

[25] Y. Shi, “A modified particle swarm optimizer,” in Proc. of IEEE ICEC
conference, Anchorage, 1998.

[26] H. Zhao and J. Canny, “Kylix: A sparse allreduce for commodity
clusters,” in 2014 43rd International Conference on Parallel Processing,
Sep. 2014, pp. 273–282.

[27] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, Nov 1998.

[28] A. Krizhevsky and G. Hinton, “Learning multiple layers of features
from tiny images,” Computer Science Department, University of Toronto,
Tech. Rep, vol. 1, 01 2009.

[29] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, Nov 1998.

[30] K. He, X. Zhang, S. Ren, and S. Jian, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

