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Abstract—Universum based algorithms involve universum
samples in the classification problem to improve the gener-
alization performance. In order to provide prior information
about data, we utilized universum data to propose a novel
classification algorithm. In this paper, a novel parametric model
for universum based twin support vector machine is presented
for classification problems. The proposed model is termed as
universum least squares twin parametric-margin support vector
machine (ULSTPMSVM). The solution of ULSTPMSVM involves
a system of linear equations. This makes the ULSTPMSVM
efficient w.r.t. training time. In order to verify the performance
of the proposed model, various experiments are carried out on
real world benchmark datasets. Statistical tests are performed to
verify the significance of the proposed method. The proposed
ULSTPMSVM performed better than existing algorithms in
terms of classification accuracy and training time for most of the
datasets. Moreover, an application of proposed ULSTPMSVM is
presented for classification of Alzheimer’s disease data.

Index Terms—Universum, twin parametric model, prior
knowledge, magnetic resonance imaging, Alzheimer’s disease.

I. INTRODUCTION

Support vector machine (SVM) [1] is a prominent machine
learning algorithm. One of the most efficient classification
technique is the twin support vector machine (TWSVM) [2]
algorithm. TWSVM constructs twin hyperplanes instead of
one, thereby reducing the computation cost of the SVM
model. A similar approach is followed to propose the twin
support vector regression algorithms, using regularization [3]
and weighting based approaches [4]. To improve the gen-
eralization performance of TWSVM, various models have
been proposed in the past. Linear programming twin support
vector machines are proposed by formulating unconstrained
optimization problems. Regularization is incorporated with a
smoothing technique to propose a smooth linear programming
twin support vector machine (SLPTSVM) [5]. Moreover, an
iterative algorithm is proposed as Newton method for linear
programming twin support vector machine (NLPTSVM) [6].

*Data used in preparation of this article were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As
such, the investigators within the ADNI contributed to the design and
implementation of ADNI and/or provided data but did not participate in
analysis or writing of this report. A complete listing of ADNI investi-
gators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how to
apply/ADNI Acknowledgement List.pdf.

An implicit Lagrangian twin support vector machines is pro-
posed [7] using Newton method with a generalized Hessian
approach.

A noise insensitive loss function is used to propose a general
twin support vector machine using pinball loss (Pin-GTSVM)
[8]. Further, a sparse model of Pin-GTSVM is proposed as
sparse pinball twin support vector machine (SPTWSVM) [9].
To improve the robustness, an improved sparse twin support
vector machine (ISPTSVM) is proposed [10] by including
the structural risk minimization (SRM) principle. An alterna-
tive model termed as twin parametric-margin support vector
machine (TPMSVM) [11] is also proposed to improve the
generalization performance of TWSVM. Some other twin
parametric based SVM models are proposed, such as fuzzy
based models [12], [13] to improve the generalization perfor-
mance.

To reduce the training time of TWSVM, a least squares
twin support vector machine (LSTSVM) [14] is proposed
in the past. The solution of least squares based algorithms
involve a system of linear equations. This makes the LSTSVM
algorithm efficient in comparison to TWSVM, which involve
a pair of quadratic programming problems (QPPs). Various
improvements on LSTSVM are proposed in the literature. For
class imbalance learning, a robust fuzzy least squares twin
support vector machine (RFLSTSVM-CIL) [15] is proposed
to deal with imbalanced datasets. For noisy data, a least
squares K-nearest neighbor-based weighted multi-class twin
SVM [16] is formulated for multi-class classification. In a
comprehensive evaluation [17] of 179 classifiers, the best
classification accuracy is obtained by the robust energy based
LSTSVM (RELS-TSVM) [18] algorithm.

Weston et al. [19] proposed a universum based support
vector machine algorithm. The idea of universum based SVM
(USVM) is to introduce prior knowledge of data distribution
in the optimization problem of SVM. Due to due to higher
generalization performance, universum based algorithms are
applied in various applications such as EEG signal classifi-
cation [20] to facial expression detection [21]. However, the
inclusion of additional data points leads to increase in the
computation cost of the model [22]–[24]. To remove these
drawbacks, a twin support vector machine with universum
data (UTSVM) [25] is proposed. Further, a least squares twin
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support vector machine with universum data (ULSTSVM)
[26] is also proposed to reduce the computation time of
UTSVM. Recently, an efficient angle based universum least
squares twin support vector machine (AULSTSVM) [27] is
proposed for classification problems. Some sample screening
techniques [28], [29] are proposed to reduce the training time
in universum based learning.

Shao et al. [30] proposed a least squares twin parametric-
margin support vector machine (LSTPMSVM), where the clas-
sifier is determined by parametric-margin based hyperplanes.
In the spirit of LSTPMSVM, we propose a novel universum
based least squares twin parametric-margin support vector
machine (ULSTPMSVM). The key contributions of this paper
are as follows:

• The proposed ULSTPMSVM involves an alternative for-
mulation as compared to the existing ULSTSVM algo-
rithm.

• The solution of ULSTPMSVM involves the solution of
system of linear equations. This makes it an efficient and
novel universum based classification algorithm.

• The applicability of proposed ULSTPMSVM is shown
by experiments on biomedical data.

• Statistical tests are performed to verify the difference
between the proposed and existing algorithms.

• Experiments are performed on Alzheimer’s disease (AD)
[31] data i.e. structural magnetic resonance imaging
(sMRI) images to classify the different types of subjects.

In this work, all vectors are treated as column vectors,
and the 2-norm of a vector x is denoted by ‖x‖. The rest
of the paper is organized as follows: Section II presents the
related work, while section III discusses the formulation of the
proposed algorithm. The results of numerical experiments are
presented in section IV. Lastly, section V concludes the paper
with future work.

II. RELATED WORK

In this section, we discuss the formulations of LSTSVM
and ULSTSVM algorithm in brief.

A. Least squares twin support vector machine (LSTSVM)

The QPPs of LSTSVM [14] for non-linear case are de-
scribed as

min
w1,b1,η1

1

2
‖K(A,DT )w1 + e1b1‖2 +

c1
2
ηT1 η1

s.t. − (K(B,DT )w1 + e2b1) + η1 = e2, (1)

min
w2,b2,η2

1

2
‖K(B,DT )w2 + e2b2‖2 +

c2
2
ηT2 η2

s.t. K(A,DT )w2 + e1b2 + η2 = e1, (2)

where ci, i = 1, 2 are positive parameters, ηi, i = 1, 2
denote the slack variables, K(., DT ) is the kernel matrix where
D = [A;B], and e1, e2 represent vectors consisting of ones of
suitable dimensions.

By using the constraints in their respective objective func-
tions, we get

min
w1,b1

1

2
‖K(A,DT )w1 + e1b1‖2,

+
c1
2
‖K(B,DT )w1 + e2b1 + e2‖2, (3)

min
w2,b2

1

2
‖K(B,DT )w2 + e2b2‖2

+
c2
2
‖ − (K(A,DT )w2 + e1b2) + e1‖2. (4)

Taking the gradient of QPP (3) w.r.t. w1 and b1, we get

K
(
A,DT

)T (
K(A,DT )w1 + e1b1

)
+ c1K

(
B,DT

)T (
K(B,DT )w1 + e2b1 + e2

)
= 0, (5)

eT1
(
K(A,DT )w1 + e1b1

)
+ c1e

T
2

(
K(B,DT )w1 + e2b1 + e2

)
= 0 (6)

Combining Eqs. (5) and (6) and solving, we get

[w1 b1]
T = −

(
GTG+

1

c1
HTH

)−1

GT e2, (7)

where H = [K(A,DT ) e1], and G = [K(B,DT ) e2].
Similarly, using Eq. (4), we get

[w2 b2]
T =

(
HTH +

1

c2
GTG

)−1

HT e1. (8)

For a testing data point x, the class is assigned using the
following decision function

class (x) = arg min
i=1,2

|K(x,DT )wi + eibi|
‖wi‖

. (9)

B. Least squares twin support vector machine with universum
data (ULSTSVM)

The QPPs of non-linear ULSTSVM [25] are written as
follows:

min
w1,b1,η1,ψ1

1

2
‖K(A,DT )w1 + e1b1‖2 +

c1
2
ηT1 η1

+
c3
2
(‖w1‖2 + b21) +

cu
2
ψT1 ψ1

s.t. − (K(B,DT )w1 + e2b1) + η1 = e2,

K(U,DT )w1 + eub1 + ψ1 = (−1 + ε)eu, (10)

min
w2,b2,η2,ψ2

1

2
‖K(B,DT )w2 + e2b2‖2 +

c2
2
ηT2 η2

+
c4
2
(‖w2‖2 + b22) +

cu
2
ψT2 ψ2

s.t. K(A,DT )w2 + e1b2 + η2 = e1,

− (K(U,DT )w2 + eub2) + ψ2 = (−1 + ε)eu,
(11)



where ci, i = 1, 2 are positive parameters, ηi, ψi, i = 1, 2
represent the slack variables, and e1, e2, eu denote the vectors
of ones of suitable dimensions.

Substituting the constraints in their objective functions, we
get

min
w1,b1

1

2
‖K(A,DT )w1 + e1b1‖2 +

c3
2
(‖w1‖2 + b21)

+
c1
2
‖K(B,DT )w1 + e2b1 + e2‖2

+
cu
2
‖ − (K(U,DT )w1 + eub1) + (−1 + ε)eu‖2,

(12)

min
w2,b2

1

2
‖K(B,DT )w2 + e2b2‖2 +

c4
2
(‖w2‖2 + b22)

+
c2
2
‖ − (K(A,DT )w2 + e1b2) + e1‖2

+
cu
2
‖(K(U,DT )w2 + eub2) + (−1 + ε)eu‖2. (13)

Taking the gradient of QPP (12) w.r.t. w1 and b1 and solving
[26], we get

[w1 b1]
T =−

(
PTP + c1Q

TQ+ c3I + cuR
TR
)−1(

c1Q
T e2

+ cu(1− ε)RT eu
)
, (14)

where P = [K(A,DT ) e1], Q = [K(B,DT ) e2], and
R = [K(U,DT ) eu]. Similarly, using Eq. (13), we get

[w2 b2]
T =

(
QTQ+ c2P

TP + c4I + cuR
TR
)−1(

c2P
T e1

+ cu(1− ε)RT eu
)
. (15)

For a testing data point x, the class is assigned using Eq.
(9).

III. PROPOSED UNIVERSUM LEAST SQUARES TWIN
PARAMETRIC-MARGIN SUPPORT VECTOR MACHINE

(ULSTPMSVM)

In this section, we present the formulation of proposed
ULSTPMSVM for the linear and non-linear cases.

A. Linear ULSTPMSVM

The optimization problem of linear ULSTPMSVM is writ-
ten as

min
w1,b1,η1,ψ1

1

2
(‖w1‖2 + b21) + ν1e

T
2 (Bw1 + e2b1) +

c1
2
ηT1 η1

+
cu
2
ψT1 ψ1

s.t. Aw1 + e1b1 = η1,

Uw1 + eub1 + (1− ε)eu = ψ1, (16)

min
w2,b2,η2,ψ2

1

2
(‖w2‖2 + b22)− ν2eT1 (Aw2 + e1b2) +

c2
2
ηT2 η2

+
cu
2
ψT2 ψ2

s.t. Bw2 + e2b2 = η2,

Uw2 + eub2 − (1− ε)eu = ψ2, (17)

where ci, i = 1, 2, cu are positive parameters, and ηi, ψi, i =
1, 2 represent the slack variables.

Using the constraints of Eqs. (16) and (17) in their respec-
tive objective functions, we get

min
w1,b1

c1
2
(‖Aw1 + e1b1‖2) + ν1e

T
2 (Bw1 + e2b1)

+
1

2
(‖w1‖2 + b21) +

cu
2
(‖Uw1 + eub1 + (1− ε)eu‖2),

(18)

min
w2,b2

c2
2
(‖Bw2 + e2b2‖2)− ν2eT1 (Aw2 + e1b2)

+
1

2
(‖w2‖2 + b22) +

cu
2
(‖Uw2 + eub2 − (1− ε)eu‖2).

(19)

Now, taking the gradient of QPP (18) w.r.t. w1 and b1 and
equating to 0, we get

c1A
T (Aw1 + e1b1) + ν1B

T e2 + w1

+ cuU
T (Uw1 + eub1 + (1− ε)eu) = 0, (20)

c1e
T
1 (Aw1 + e1b1) + ν1e

T
2 e2 + b1

+ cue
T
u (Uw1 + eub1 + (1− ε)eu) = 0. (21)

Combining Eqs. (20) and (21) and solving, we get

[w1 b1]
T =− (c1H

TH + cuO
TO + I)−1(ν1G

T e2

+ (1− ε)cuOT eu), (22)

where H = [A; e1], G = [B; e2], and O = [U ; eu].
Similarly, using Eq. (19), we get

[w2 b2]
T =(c2G

TG+ cuO
TO + I)−1(ν2H

T e1

+ (1− ε)cuOT eu). (23)

B. Non-linear ULSTPMSVM

The formulation of non-linear ULSTPMSVM involves ker-
nel generated surfaces. The optimization problem comprises
of the following two QPPs,

min
w1,b1,η1,ψ1

1

2
(‖w1‖2 + b21) + ν1e

T
2 (K(B,DT )w1 + e2b1)

+
c1
2
ηT1 η1 +

cu
2
ψT1 ψ1

s.t. K(A,DT )w1 + e1b1 = η1,

K(U,DT )w1 + eub1 + (1− ε)eu = ψ1, (24)

min
w2,b2,η2,ψ2

1

2
(‖w2‖2 + b22)− ν2eT1 (K(A,DT )w2 + e1b2)

+
c2
2
ηT2 η2 +

cu
2
ψT2 ψ2

s.t. K(B,DT )w2 + e2b2 = η2,

K(U,DT )w2 + eub2 − (1− ε)eu = ψ2, (25)

where ci, i = 1, 2, cu are positive parameters, K(., DT ) is
the kernel matrix where D = [A;B], and ηi, ψi, i = 1, 2
represent the slack variables.



Substituting the constraints of Eqs. (24) and (25) in their
respective objective functions, we get

min
w1,b1

1

2
(‖w1‖2 + b21) +

c1
2
(‖K(A,DT )w1 + e1b1‖2)

+ ν1e
T
2 (K(B,DT )w1 + e2b1)

+
cu
2
(‖K(U,DT )w1 + eub1 + (1− ε)eu‖2), (26)

min
w2,b2

1

2
(‖w2‖2 + b22) +

c2
2
(‖K(B,DT )w2 + e2b2‖2)

− ν2eT1 (K(A,DT )w2 + e1b2)

+
cu
2
(‖K(U,DT )w2 + eub2 − (1− ε)eu‖2). (27)

Solving similar to the linear case, we get

[w1 b1]
T =− (c1P

TP + cuR
TR+ I)−1(ν1Q

T e2

+ (1− ε)cuRT eu), (28)

where P = [A; e1], Q = [B; e2], and R = [U ; eu].
Similarly, using Eq. (27), we get

[w2 b2]
T =(c2Q

TQ+ cuR
TR+ I)−1(ν2P

T e1

+ (1− ε)cuRT eu). (29)

The decision function of proposed ULSTPMSVM is same
as in Eq. (9).

C. Time complexity

The time complexity of proposed ULSTPMSVM is lesser
than existing algorithms such as TWSVM and ULSTSVM.
In comparison to TWSVM where QPPs are solved, proposed
ULSTPMSVM solves a system of linear equations, leading
to lesser computation cost [30]. Moreover, in comparison to
ULSTSVM, time complexity of proposed ULSTPMSVM is
lesser because ULSTSVM involves an additional matrix mul-
tiplication term in its solution (Eqs. 14 and 15), as compared
to proposed ULSTPMSVM in Eqs. 28 and 29. However, the
computation cost of proposed ULSTPMSVM is higher than
LSTSVM. This is due to the incorporation of universum data
points in the proposed ULSTPMSVM algorithm.

IV. EXPERIMENTAL RESULTS

In this section, we show the results of experiments carried
out on real world datasets, along with an application on
Alzheimer’s disease. The real world datasets are taken from
UCI [32], and KEEL repository [33].

All MRI images used in this work were downloaded
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu). ADNI was started in 2003 as
a public-private partnership, led by Principal Investigator
Michael W. Weiner, MD. The main objective of ADNI is
to find out the effectiveness of neuroimaging techniques like
MRI, positron emission tomography (PET), other biological
markers, and clinical neuropsychological tests to estimate the
onset of Alzheimer’s disease from the state of mild cognitive
impairment. For more information, visit www.adni-info.org.

A. Experimental setup

All the experiments are carried out on a PC using Windows
10 OS 64 bit, 3.60 GHz Intel® coreTM i7-7700 processor,
16 GB of RAM and MATLAB R2008b environment. To
solve the QPPs in case of TWSVM, we utilized MOSEK
optimization toolbox (http://www.mosek.com). 5-fold cross-
validation is performed for all the methods to obtain the
optimal hyperparameters. For non-linear case, Gaussian kernel
is employed in all the cases.

For experiments on real world datasets, 50% data is
used for training. The parameters c and ν are chosen
from the set {10−5, 10−4, ..., 105}, while µ is chosen
from {2−5, 2−4, ..., 25}. The value for ε is selected from
{0.1, 0.4, 0.7}. The universum data is generated by performing
random averaging of data points in all the cases [20], [21],
[25].

In case of Alzheimer’s disease dataset, 40% of the samples
are used for training. Freesurfer’s recon-all pipeline (version
6.0.1) [34] is applied for processing the structural MRI (sMRI)
images. The total intracranial volume (TIV) is used for nor-
malizing the volumetric features of brain in all the subjects
[35]–[37].

B. Real world datasets

In Table I, performance comparison of proposed UL-
STPMSVM is shown with existing algorithms on 18 real
world benchmark datasets. The existing algorithms used for
comparison in this work are TWSVM [2], LSTSVM [14],
LSTPMSVM [30], and ULSTSVM [26]. One can observe that
the proposed ULSTPMSVM is showing lowest average rank
on the basis of accuracy. In terms of training time, the time
taken by proposed ULSTPMSVM is comparable or lesser than
the existing algorithms. It is noticeable that the training time
of TWSVM is the highest. This is because the solution of
TWSVM involves a pair of QPPs, as compared to systems of
linear equations in least squares based algorithms.

C. Statistical analysis

To check the statistical difference, the Friedman test [38]
is performed with the corresponding posthoc test. First, we
assume that there is no difference between the methods. Now,
the χ2

F value is calculated for Friedman test using average
ranks ri from Table I as,

χ2
F =

12× 18

5(5 + 1)

[
5∑
i=1

r2i −
5(5 + 1)2

4

]
,

χ2
F =

12× 18

5(5 + 1)

[
(3.88892 + 3.41672 + 3.02782 + 3.05562

+ 1.61112)− 5(5 + 1)2

4

]
≈ 20.8605.

The FF value is calculated as

FF =
(18− 1)(20.8605)

18× (5− 1)− 20.8605
≈ 6.9345.



TABLE I: Comparison of proposed ULSTPMSVM with existing algorithms on classification of real world datasets using
Gaussian kernel function.

Dataset
(Sample size)

TWSVM
Accuracy (%)

(c, µ)
Time (s)

LSTSVM
Accuracy (%)

(c, µ)
Time (s)

LSTPMSVM
Accuracy (%)

(c, ν, µ)
Time (s)

ULSTSVM
Accuracy (%)
(c1, c2, ε, µ)

Time (s)

Proposed ULSTPMSVM
Accuracy (%)

(c, ν, ε, µ)
Time (s)

Ecoli-0-1 vs 5
(242 × 6)

94.2149
(10−5, 25)

0.0442

90.9091
(10−3, 25)

0.0033

95.0413
(10−2, 101, 24)

0.0035

95.0413
(10−5, 10−1, 0.1, 24)

0.0035

97.5207
(101, 102, 0.1, 25)

0.0035

Ecoli-0-1-4-7 vs 5-6
(334 × 6)

97.006
(10−3, 25)

0.0135

94.6108
(10−1, 25)

0.0016

97.6048
(100, 101, 24)

0.0018

98.8024
(100, 10−3, 0.7, 25)

0.0017

98.8024
(101, 10−2, 0.1, 25)

0.0016

Ecoli-0-2-6-7 vs 3-5
(226 × 7)

93.8053
(10−3, 25)

0.0079

97.3451
(102, 25)

0.0007

96.4602
(102, 102, 25)

0.0007

92.9204
(10−1, 10−5, 0.4, 25)

0.0009

96.4602
(10−1, 10−2, 0.1, 24)

0.0007

Ecoli-0-3-4-6 vs 5
(206 × 7)

97.0874
(10−5, 25)

0.0071

98.0583
(104, 25)

0.0006

95.1456
(105, 102, 25)

0.0009

98.0583
(10−1, 10−5, 0.7, 25)

0.0007

98.0583
(101, 10−1, 0.7, 25)

0.0007

Ecoli-0-6-7 vs 3-5
(224 × 7)

91.0714
(10−3, 24)

0.0106

94.6429
(101, 25)

0.0007

91.9643
(100, 101, 24)

0.0008

91.0714
(10−2, 10−3, 0.7, 25)

0.0008

95.5357
(101, 10−1, 0.1, 25)

0.0009

Ecoli4
(336 × 7)

97.6331
(10−2, 22)

0.0133

97.6331
(10−1, 24)

0.0013

97.6331
(103, 105, 21)

0.0015

98.2249
(10−2, 10−5, 0.1, 23)

0.0015

98.2249
(105, 103, 0.4, 21)

0.0019

Glass-0-1-6 vs 2
(194 × 9)

89.6907
(10−4, 21)

0.0064

91.7526
(10−3, 23)

0.0008

92.7835
(105, 102, 2−1)

0.0006

87.6289
(10−3, 10−5, 0.4, 22)

0.0006

92.7835
(10−5, 10−3, 0.4, 2−2)

0.0006

Glass-0-4 vs 5
(92 × 9)

91.4894
(10−1, 24)

0.0058

100
(10−1, 23)

0.0003

95.7447
(104, 105, 24)

0.0005

100
(10−1, 10−5, 0.1, 22)

0.0002

97.8723
(103, 100, 0.4, 20)

0.0002

Heart-stat
(270 × 13)

66.9118
(100, 25)

0.0077

62.5
(10−5, 25)

0.0013

65.4412
(100, 101, 25)

0.001

63.2353
(101, 102, 0.4, 25)

0.0009

67.6471
(10−1, 10−2, 0.7, 25)

0.001

Led7digit-0-2-4-5-6-7-8-9 vs 1
(444 × 7)

91.8919
(10−4, 21)

0.0236

93.6937
(100, 22)

0.0024

96.8468
(10−2, 10−1, 20)

0.0026

92.3423
(10−1, 10−5, 0.1, 22)

0.0026

92.7928
(102, 102, 0.1, 21)

0.0026

Ecoli-0-1-4-6 vs 5
(282 × 6)

98.5816
(10−3, 25)

0.0103

98.5816
(103, 25)

0.001

98.5816
(101, 101, 24)

0.001

98.5816
(10−2, 10−3, 0.1, 25)

0.001

99.2908
(100, 10−2, 0.1, 25)

0.001

Ecoli2
(336 × 7)

91.716
(10−1, 20)

0.0116

86.9822
(10−2, 20)

0.0014

90.5325
(10−2, 10−1, 2−3)

0.0016

94.0828
(100, 101, 0.1, 2−2)

0.0013

92.3077
(101, 10−2, 0.4, 2−1)

0.0018

Glass4
(282 × 6)

94.4444
(10−5, 20)

0.0084

96.2963
(10−2, 21)

0.001

94.4444
(100, 102, 2−1)

0.0007

96.2963
(10−2, 10−5, 0.7, 21)

0.0007

97.2222
(102, 10−1, 0.7, 21)

0.0008

Brwisconsin
(683 × 9)

98.538
(10−4, 23)

0.032

98.2456
(101, 24)

0.0064

98.538
(10−1, 100, 24)

0.0066

98.2456
(10−4, 10−4, 0.4, 23)

0.0069

98.8304
(103, 103, 0.1, 25)

0.0068

Ecoli3
(336 × 7)

91.716
(10−1, 20)

0.012

86.9822
(10−2, 20)

0.0016

90.5325
(10−2, 10−1, 2−3)

0.0021

94.0828
(100, 101, 0.1, 2−2)

0.0016

92.3077
(101, 10−2, 0.4, 2−1)

0.0015

Yeast1vs7
(460 × 8)

91.7391
(10−1, 2−2)

0.0219

93.0435
(100, 2−1)

0.003

93.4783
(10−4, 10−2, 2−1)

0.0032

93.4783
(10−2, 10−3, 0.4, 2−2)

0.0031

93.913
(101, 10−1, 0.1, 2−1)

0.0042

Ecoli0137vs26
(312 × 7)

95.5128
(10−2, 2−2)

0.0108

96.1538
(10−1, 2−1)

0.0015

97.4359
(10−5, 10−4, 2−2)

0.0013

96.1538
(101, 103, 0.4, 2−1)

0.0013

96.7949
(10−1, 10−2, 0.4, 2−1)

0.0012

Votes
(436 × 16)

94.4954
(10−1, 25)

0.0141

94.4954
(100, 24)

0.0023

94.4954
(103, 102, 24)

0.0025

94.0367
(101, 10−4, 0.7, 24)

0.0025

94.9541
(101, 100, 0.4, 22)

0.0025

Average rank 3.8889 3.4167 3.0278 3.0556 1.6111



This F -distribution involves
(
5−1, (5−1)(18−1)

)
= (4, 68)

degrees of freedom. Thus, for the significance level at α =
0.05, the critical value for F (4, 68) is 2.5066. Since, FF =
6.9345 > 2.5066, the null hypothesis is rejected.

To check the pairwise difference between the proposed
ULSTPMSVM and existing algorithms, we perform the Ne-
menyi posthoc test [38]. For significant pairwise difference
between the methods at significance level of α = 0.10, the
average ranks of the algorithms shown in Table I should differ
by atleast 2.459

√
5(5+1)
6×18 ≈ 1.296. The pairwise difference

between the methods is shown in Table II.

TABLE II: Pairwise significant difference between proposed
ULSTPMSVM and existing algorithms.

Statistical difference TWSVM LSTSVM LSTPMSVM ULSTSVM
Proposed ULSTPMSVM Yes Yes Yes Yes

It can be stated from Table II that the proposed UL-
STPMSVM is significantly better than TWSVM, LSTSVM,
LSTPMSVM, and ULSTSVM algorithms.

D. Insensitivity performance

The insensitivity analysis of proposed ULSTPMSVM is
presented in fig. 1. The variation of accuracy w.r.t. the penalty
parameter c and ν is shown for 4 datasets viz. Ecoli-0-1-4-
7 vs 5-6, Ecoli-0-6-7 vs 3-5, Glass4, and Votes.

One can observe that the accuracy of proposed UL-
STPMSVM increases with higher value of c, while ν does
not have much effect on the accuracy. However, the accuracy
is slightly higher for larger values of ν.

E. Discussion

Experiments show the advantages of proposed UL-
STPMSVM over existing algorithms. In comparison to the
existing ULSTSVM algorithm, the formulation of proposed
ULSTPMSVM is novel and efficient. Moreover, in comparison
to other algorithms involving QPPs such as TWSVM or
UTSVM [25], proposed ULSTPMSVM requires very less
computation time. Since, there are not many least squares
based twin SVM models using universum, the proposed ap-
proach can be beneficial for many applications.

F. Alzheimer disease classification

In Alzheimer disease data, we have considered three classes
namely control normal (CN), Alzheimer’s disease (AD), and
mild cognitive impairment (MCI) [39], [40]. We include 50
sMRI images of CN and AD each, and 49 sMRI images of
MCI, since one MCI image failed to process. The performance
of proposed ULSTPMSVM and existing algorithms on clas-
sification of Alzheimer data is shown in Table III. One can
see that proposed ULSTPMSVM performed better than other
algorithms in 2 out of 3 datasets i.e. CN vs MCI, and MCI vs
AD.

The highest accuracy of proposed ULSTPMSVM in MCI
vs AD indicates that it may be used for the early diagnosis of
Alzheimer’s disease. Moreover, the proposed ULSTPMSVM

can be used for other diseases such as epilepsy, where the
universum data is selected from the dataset itself [20], [23].
This may lead to higher classification accuracy for such
problems.

V. CONCLUSION

A novel universum based algorithm is proposed in this
work termed as universum least squares twin parametric-
margin support vector machine (ULSTPMSVM). The pro-
posed algorithms show high generalization performance with
lesser training time in comparison to existing algorithms.
The formulation of ULSTPMSVM is an alternative approach
towards universum based learning. The optimization problem
of ULSTPMSVM involves a parametric model, solved by a
system of linear equations. In terms of statistical difference in
the generalization performance, proposed ULSTPMSVM turns
out to be significantly better than the existing algorithms. In
future, ULSTPMSVM can be applied by selecting universum
samples from different classes of the classification problem.
Moreover, the proposed ULSTPMSVM performed well for
classification of Alzheimer’s disease, showing its applicability
on real world biomedical applications. For implementation, the
codes of proposed algorithm will be publicly available on the
author’s Github page i.e., https://github.com/mtanveer1/.
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Fig. 1: Plots showing insensitivity performance for the penalty parameter c = c1 = c2 with ν = ν1 = ν2 for proposed ULSTPMSVM using
Gaussian kernel function.

TABLE III: Performance comparison of proposed ULSTPMSVM on classification of Alzheimers data.

Dataset TWSVM
Accuracy (%)

LSTSVM
Accuracy (%)

LSTPMSVM
Accuracy (%)

ULSTSVM
Accuracy (%)

Proposed ULSTPMSVM
Accuracy (%)

CN vs AD 85 80 80 85 76.6667
CN vs MCI 74.5763 59.322 76.2712 74.5763 76.2712
MCI vs AD 61.0169 44.0678 61.0169 42.3729 64.4068
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