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Abstract—Indoor navigation is a challenging task for mobile
agents. The latest vision-based indoor navigation methods make
remarkable progress in this field but do not fully leverage visual
information for policy learning and struggle to perform well in
unseen scenes. To address the existing limitations, we present
a multimodal vision fusion model (MVFM). We implement a
joint modality of different image recognition networks for navi-
gation policy learning. The proposed model incorporates object
detection for target searching, depth estimation for distance
prediction, and semantic segmentation to depict the walkable
region. In design, our model provides holistic vision knowledge
for navigation. Evaluation on AI2-THOR indicates that MVFM
improves on the results of a strong baseline model by 3.49% for
Success weighted by Path Length (SPL) and 4% for success rate
respectively. In comparison with other state-of-the-art systems,
MVFM performs in the lead in terms of SPL and success rate.
Extensive experiments show the effectiveness of the proposed
model.

Index Terms—Visual navigation, object detection, depth esti-
mation, semantic segmentation

I. INTRODUCTION

Indoor navigation is an essential capability of mobile robotic
systems. To complete different tasks, it is important for a mo-
bile robot to effectively search, locate, and reach an arbitrary
object in an indoor environment [1] [2]. Following human
order, the mobile robot should be able to navigate toward
designated objects or regions in an indoor environment effi-
ciently. There are divergent approaches to indoor navigation. A
large array of work for navigation focuses on motion planning
which requires a barrier-free path in the configuration space
or workspace, with clear geometric information of the testing
environment [3]. However, path planning and low-level control
for this motion planning approach usually assume perfect
localization based on a high-quality geometric construction
of the environment. This limits the generalization of these
methods [4]. Besides, a rich and informative body of work
has explored Simultaneous Localization and Mapping (SLAM)
[6] for indoor navigation. Mobile robots can use SLAM to
have a global perception of the environment and localize
areas and objects. SLAM, however, needs to employ geometric
techniques and construct metric maps, while navigation for a
mobile robot is not the primary consideration. Environmental
representations built by SLAM systems are often not compati-
ble with reliable indoor navigations because the environmental
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Fig. 1: A holistic vision knowledge for navigation. On the
left, an active agent needs know where the target is, how far
the target is, and what the walkable region for navigation
is. On the right, the multiple vision modalities are used
for navigation which incorporates object detection for target
searching, semantic segmentation for finding walkable regions,
and depth estimation for distance prediction. Employing mul-
timodal vision knowledge, the proposed model can accurately
navigate an agent in an indoor environment.

settings may often alter over time in practice.
In contrast, vision-based systems appear to construct more

flexible representations because mobile robots can utilize
imagery input to robustly navigate in an indoor environment
without knowing the precise localization or using a metric
map [5]. Visual navigation systems can leverage prior knowl-
edge for path planning from previously seen environments
[1] [2] [6]. With the recent development of deep learning
approaches for computer vision, we have witnessed significant
breakthroughs in reinforcement learning algorithms and con-
volutional neural networks which facilitate the improvement
of robotic motor control [7] and visual perception systems
[8] [9] [10]. Deep-learning-based vision models bridge the
communication barrier between robotic perception and control
with the convergence of solutions in both tasks. Recently,
[4] [5] employed joint modeling of visual recognition and
navigation policy learning to control a mobile robot to find



a specific visual target in an indoor scene. However, the
latest vision-based indoor navigation methods fail to fully
uses vision information for policy learning (mainly object
detection or segmentation). Thus, these methods learn limited
visual knowledge for action or decision making and struggle
to generalize for an unseen scene.

To address the limitations of previous work, we present a
multimodal vision fusion model (MVFM) in this paper. We
attempt to move a step further to develop a joint modality
of multiple vision recognition networks and navigation policy
learning to approach the task of creating a “robot with a vision
that finds the object”. Our multimodal vision fusion model
includes object detection (to locate the target), depth estima-
tion (to determine the distance), and semantic segmentation
(to depict the walkable region), which collectively provide a
holistic vision knowledge for navigation (shown in Fig. 1).
With the visual information from multiple modalities, our
model can accurately search objects with an arbitrary pose
in any given location.

To study the aforementioned task, we leverage a simulation
dataset as a benchmark for training and testing. The simulation
dataset is collected from the AI2-THOR challenge platform
[11], which provides a high-realism environment as a testbed.
Contributions of our work include :
• The proposed model can control a mobile agent in

navigating to a given target in an indoor environment
using only visual observations.

• The proposed model effectively integrates multiple im-
age recognition modalities in vision-guided action policy
learning, offering a more holistic visual knowledge for
navigation. We have not found any previous work using
this approach. With the assistance of multimodal vision
fusion, the proposed model improves on the results of a
strong baseline model by 4.68% for SPL and 5.37% for
success rate respectively.

• We conduct extensive experiments to compare our model
with the latest state-of-the-art systems. Results indicate
the proposed model is competitive with the best existing
approaches.

• We introduce a simulation dataset from the AI2-THOR
platform to benchmark for future research in this task.

II. RELATED WORK

A. Deep Models for Indoor Navigation

Path planning for traditional indoor navigation methods
typically bears an assumption that the environmental map
is given or constructed while the exploration proceeds [12].
In contrast, [13] [14] [15] recently explored learning-based
navigation approaches for performing localization, mapping,
and exploration end-to-end. These approaches have achieved
recognizable results and outperformed traditional indoor nav-
igation. For instance, [15] designed an indoor navigation
system by giving the mobile robot a picture of the target
to search; [14] addressed the challenge of indoor navigation
by training a joint mapper and planner model; and [13] used

loop closure to speed up RL training for indoor navigation.
[16] used topological maps for the indoor navigation task.
To construct the maps, they prolonged the exploration of the
test environment to populate the navigation memory. Different
from the above work, our model can navigate without a
map; it relies solely on vision clues. [17] designed a self-
supervised deep RL model for navigation. However, no seman-
tic information is used for this model. To improve navigation
performance, [18] employed object detectors and semantic
segmentation modalities to predict navigation policies. Sim-
ilarly, [19] [20] incorporated semantic knowledge to improve
the generalization of unseen scenarios. These previous studies
impact our work.

B. Vision-Based Indoor Navigation

Vision-based perception for indoor navigation has gained
popularity in recent years. [4] [15] proposed an effective
approach for a mobile robot to search for a target object based
on solely visual inputs in indoor environments. They employed
reinforcement learning to learn the relationship between the
camera input of the current state and the actions of policy to
reach the vicinity of the searched object or to match a specific
scene. For better generalization, [15] [4] utilized scene-specific
layers in their model to robustly navigate in new scenes. In
the same vein, [21] proposed several incremental extensions
for the scene recognition modality in their approach, but the
result indicated a limited contribution toward improving visual
navigation performance. For a target-driven search, [4] [15]
[21] designated a specific scene image for a robot to use to
navigate to the place where the target image was taken. This
approach limits the potential for practical application because
the target image needs to be available for inference. In the
present work, our proposed model can search and locate any
object without having access to a target image.

Wortsman et al [5] proposed a meta-learning approach to
integrating object recognition and a Long Short-Term Memory
network (LSTM) into a unified framework. Results from
[5] showed that with the LSTM-supported algorithm, the
proposed model can achieve better policy learning and a model
using meta-learning can more effectively navigate new scenes.
Similarly, [22] employed meta-learning to encourage mobile
robots to explore the state space outside the dictated actors’
policy, which significantly improved training efficiency and
robustness. [23] utilized meta-learning to augment the agent’s
policy by adding structured noise in training, so the agent can
more robustly navigate in unseen episodes by inference. How-
ever, for meta-learning based indoor navigation, the proposed
model needs to constantly update a large number of parameters
during navigation, which requires extra memory and causes
computation overloads. Compared to [22] [23], our proposed
model has fewer parameters to update during inference. Hence,
our proposed model achieves a faster runtime performance.

Inspired by previous work, we propose a novel vision-based
model that utilizes visual knowledge from multiple modalities
and constructs a holistic vision view for training and inference.
We leverage reinforcement learning to learn the relationship



between the current view and the action policy to navigate
a mobile agent. With the newly-designed vision recognition
network, our model can accurately search out objects with an
arbitrary pose in any given location and robustly navigate a
mobile robot within an unseen indoor environment.

III. MULTIMODAL VISION FUSION MODEL

A. Task Definition and Overview

Our proposed model is trained to learn action policies for
the active agent to navigate to the target using only image
sequences from a monocular camera. Following the design
from [5], we denote I = {I1, . . . , It} as a sequence of camera
images, O = {o1, . . . , om} as object classes for different
targets, and p as the position of the agent. For each task τ ∈ T ,
we denote each task τ = (I, o, p). We separate different
scenes for training Ttrain and testing Ttest tasks. Each trial
of navigation for a task is an episode in our work.

In our work, we use Glove embedding to specify the
target object class [24] and the agent is required to use
only the monocular RGB inputs to navigate to the target
object. Navigation is built on a sequence of actions which
are A = {MoveAhead, RotateLeft, RotateRight, LookDown,
LookUp, MoveBack, Done}. For each step, the horizontal
rotation has maximum 45 degrees while the first-person view
can incline maximum 30 degrees. Before reaching the target,
the agent takes an action from action set A. If the target object
is found, the agent will take a termination action. An episode
is counted as successful if the agent uses the designated steps
to reach the given target in a close range (e.g. within 1 meter
of the agent) and issue a termination action. Otherwise, the
episode concludes as a failure case and the navigation task is
unsuccessful.

B. Model Design

Modern CNN-based image recognition networks share a
similar structure [25] [26] [27] [28]. In general, a backbone
sub-network is employed on the input image to produce feature
maps on the whole image. Then, a shallow sub-network for
a specific task is applied on the feature maps to generate
the output. Bearing this in mind, we propose a novel deep
reinforcement learning-based framework which integrates four
basic modalities.

The framework of the proposed model is demonstrated in
Fig. 2. Taking RGB images from the camera, we employ a
feature extraction modality Mext as a backbone sub-network
to produce feature maps fim of the input images. The extracted
feature maps are then fed into three different modalities for
different dimensions of features: 1. a semantic segmentation
modalityMseg for scene segmentation feature fseg , 2. a depth
estimation modality Mdep for depth feature fdep; and 3. an
object detection modality Mdet for object detection feature
fdet. Concatenating each piece of embedded information from
each modality output, we obtain the joint feature map fjoint
and perform a pointwise convolution. The output is then given
as input to the Long Short-Term Memory (LSTM) modality
MLSTM . The linear layer in MLSTM produces the action

policy and value of the active agent for navigation. The
working pipeline for MVFM is summarized in Algorithm 1.

Algorithm 1 The Working Pipeline for MVFM

1: input: frame{It} / The current view
2: while not a termination action do / Not reach the target
3: fim =Mext(It) / Extract image features
4: fseg =Mseg(fim) / Get segmentation features
5: fdep =Mdep(fim) / Capture depth features
6: fdet =Mdet(fim) / Extract detection features
7: fjoint = Concat(fseg , fdep, fdet) / Obtain joint features
8: action =MLSTM (fjoint) / Produce action policy
9: return: action

C. Network Architecture

For different recognition tasks, we adopt state-of-the-art
architectures and craft them into our proposed model.

1) Feature Extraction Modality: We use ResNet-50 [29]
which is pre-trained for ImageNet classification. The entirety
of the ImageNet dataset is processed by image-to-image
translation [30] with the images collected from the AI2-
THOR platform so the pre-trained ResNet-50 is sensitive to
AI2-THOR contexts. In order to align with the design from
semantic segmentation [26], depth estimation [31], and object
detection [25], we reduce feature stride from 32 to 16 to
produce denser feature maps. We randomly initialize a 3× 3
convolution where the holing algorithm [32] is employed to
keep the field of view and append it to the first block of the
conv5 layers to reduce the feature channel to 1024. Finally,
we discard the last 1000-way classification layer, so the output
1024-d feature maps are fed into the subsequent modalities.

2) Semantic Segmentation Modality: We employ DeepLab
[26] which is pre-trained on the ADE20K dataset [33] with
style transferred to AI2-THOR context. We remove the origi-
nal backbone network and randomly initialize the 1×1 convo-
lutional layer, where the intermediate feature is processed to
produce (C+1) score maps (C indicates the number of object
categories and 1 is the background category). We remove the
softmax layer which produces the per-pixel probabilities and
replace it with a pointwise convolution layer to generate the
scene segment embedding features. In our work, the scene
segmentation modality only has two learnable weight layers.

3) Depth Estimation Modality: We employ monodepth [31]
for our depth estimation modality. We remove the original
encoder (from cnv1 to cnv7b) and use the feature map from
the feature extraction network as input for the decoder (from
upcnv7). We use the output before the disparity predictions
and feed the depth features into a pointwise convolution layer
to produce depth embedding features. The depth estimation
modality is pre-trained by NYU’s depth dataset [34] with style
transferred to AI2-THOR context.

4) Object Detection Modality: We modify the state-of-the-
art R-FCN [25] to obtain the object detection features. The
RPN sub-network and the R-FCN sub-network are applied
on the 1024-d feature maps. We adopt 9 anchors (3 scales
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Fig. 2: The framework of the multimodal vision fusion model (MVFM). Mext is the feature extraction modality; Mseg is the
semantic segmentation modality;Mdep is the depth estimation modality;Mdet is the object detection modality; andMLSTM

is the Long Short-Term Memory (LSTM) modality. Leveraging scene segmentation features, depth features, and object detection
features, the proposed model considers multimodal vision knowledge in path planning, which improves the performance of the
navigation.

and 3 aspect ratios) in RPN which can produce 300 proposals
on each image, while the position-sensitive score maps in R-
FCN are 7 × 7. We output before the objectness localization
predictions and feed the detection features into a pointwise
convolution layer to produce detection embedding features.
The object detection modality is pre-trained with the COCO
dataset [35] with style transferred to AI2-THOR context.

D. Learning Objective
At time t, the proposed method (parameterized by θ) pro-

cesses the egocentric RGB image It and the target object class
o, and outputs the distribution of the predicted actions which
include pθ(It) and a scalar sθ(It). The distribution pθ(It) is
the predicted policy of the mobile agent while sθ(It) is the
value of the state. We use paθ(It) to define the probability that
the mobile agent would choose action a at time t.

Following the above overview of our proposed model, we
discuss the learning objectives for the proposed model in
this section. In vision-based navigation, much previous work
has demonstrated that an active agent can learn and adapt
to its environment by interacting with that environment [4]
[15] [21]. Inspired by this previous work, we also want our
model to handle obstacles by learning from prior knowledge
based on environmental interaction. We therefore design a
novel learning objective to facilitate the agent in learning to

evolve from each interaction and in improving its navigation
performance. Our learning objective stems from [36], which
is given by:

min
θ

∑
τ∈Ttrain

L
(
θ − α∇θL

(
θ,Dtrτ

)
,Dvalτ

)
. (1)

where L is the overall loss which is defined by the network
parameters θ and a function of a dataset. Ttrain is the entire
set of tasks including the training Dtr and validation Dval
datasets. α is the step-size learning rate and ∇ denotes the
differential operator. The learning objective for Eq. (1) is to
learn parameters θ so the trained model can adapt quickly even
on novel tasks. Namely, an agent can optimize its performance
on Dvalτ after adapting to the task with a gradient step on Dtrτ .

Following this design, our learning objective is that a mobile
agent can continually learn from its interactions with the
surrounding environment. In our design, Stochastic Gradient
Descent (SGD) is used to update the model’s adaptation of the
environment, which modifies the policy network for the agent
and facilitates its adaption to the scene. The SGD updates are
associated with Lint, which is the interaction loss in our work.
We minimize Lint to optimize the mobile agent’s actions to
complete its navigation task. Thus, our learning objective is to
learn θ for a good initialization, so the agent can leverage a
few SGD updates using Lint and learn to adapt to the scene



quickly. In inference, we employ a self-supervised loss for the
agent to have access to Lint. Our learning objective for the
proposed model is writen in Eq. (2):

min
θ

∑
τ∈Ttrain

Lnav
(
θ − α∇θLint

(
θ,Dintτ

)
,Dnavτ

)
(2)

where Dint (for navigation task τ ) denotes the internal state
representations, observations, and actions for the travel trajec-
tory of the agent, while Dnav denotes the remaining navigation
trajectory. For very designated k steps of the mobile agent
walking in the scene, an SGD update associated with the self-
supervised loss is employed to obtain the adapted parameters
θ − α∇θLint(θ,Dintτ ) to update θ. In this design, previously
travelled scenes can help the agent adapt to new scenes with
similar context.

In sum, we minimize our overall Lnav to maximize the
reward for the active agent, to incentivize its actions in
navigation to the target. The agent’s policies, values, actions,
and rewards throughout an episode rely on the function of the
learning objective in our work.

IV. EXPERIMENT

We evaluate the proposed model on AI2-THOR platform.
Extensive experiments demonstrate the efficacy of MVFM in
finding the target object in an indoor context. All experiments
are conducted on a workstation with 4 NVIDIA GTX 1080Ti
GPUs and Intel Core i7-4790 CPU. Our experiments are
elaborated below.

A. Experiment Platform

The AI2-THOR platform simulates photo-realistic indoor
scenes for training mobile agent systems to search for and
navigate to objects in virtual environments. Specifically,
AI2-THOR includes four room categories, which are living
room, kitchen, bathroom, and bedroom. Based on our de-
sign, the agent is designed to have 7 discrete actions, A =
{MoveAhead, RotateLeft, RotateRight, LookDown, LookUp,
MoveBack, Done}. Based on the platform settings, a set of
images is taken from each robot state for each indoor scene
and the overall state space of the mobile agent includes the
full set of images from each scene. A set of target images
from each scene is also provided which is convenient for our
experiments.

B. Implementation Details

In our experiment, we employ 22 scenes for training, 4 for
validation, and 4 for testing for each room category, for a total
of 120 scenes. For the navigation targets, a sequence of objects
for each room category is selected based on their visibility and
relative proportions within the entire image. Specifically, the
selected targets are: fridge, toaster, microwave, bottle, coffee
maker, box, trash can, and bowl in the kitchen; laptop, pillow,
TV, box, vase, keychain, lamp, trash can, and bowl in the
living room; ball, racket, laptop, cellphone, mug, plant, book,
lamp, and alarm clock in the bedroom; and sink, soap bottle,
toilet paper, towel, and toilet in the bathroom. For each scene,

we randomly arrange the room settings and sample an object
as a target with a random initial position.

In training, we arbitrarily stop the training when the success
rate saturates on the validation set. We employ 10 asyn-
chronous workers for training across all scenes. For Lnav ,
we utilize -0.005 for taking each step and a reward of 4 for
finding the object. In addition, we use SGD for interaction-
gradient updates and Adam [37] for navigation-gradients.

In evaluation, we store parameters of each model during
training and constantly test the performance of each stored
model on our test dataset. We perform testing for 1200
different episodes, so each scene type has 300 episodes. For
each scene in testing, we randomly initiate the initial state of
the agent and the target object. All evaluations are conducted
using the same testing sets.

C. Evaluation Method

We evaluate our method using both Success Rate and
Success weighted by Path Length (SPL) [1].

1) Success Rate: We count completed tasks in the form of a
binary indicator proposed by [1]. A successful task is counted
as 1 while a failed task is 0. A navigation task is considered
to be successful if the agent issues a termination action within
one meter of the target object and the target is inside of the
agent’s camera view. However, if the agent’s steps exceed 5000
steps without issue of a valid termination action, this episode
is counted as a failure [4]. Let Si be a binary indicator of
success in episode i. The success rate is:

Sr =
1

N

N∑
i=1

Si. (3)

2) SPL: [1] defines the SPL measure of the agent’s
navigation performance across the testing set as follows:

SPL =
1

N

N∑
i=1

Si
li

max (pi, li)
. (4)

where Si is the success indicator for the episode i; li is the
shortest distance from the agent’s initial position to the target
position for the episode, and pi is the actual length of the
distance walked by the agent in the episode.

D. Experimental Results

1) Quantitative Results: For quantitative analysis, we con-
duct an ablation study to evaluate the improvements of the
proposed model from baseline. We implement four models
for comparisons to illuminate contributions from each added
modality in the proposed model: Model A: The baseline
model [4] which only includes an object detection feature
for navigation policy learning; Model B: The baseline model
[4] which includes object detection and segmentation features
for navigation policy learning; Model C: The baseline model
[4] which includes object detection and depth features for
navigation policy learning; Model D: Our full model with ob-
ject detection, segmentation, and depth features for navigation
policy learning. We store the parameters of each model on



every 10, 000th epoch of training and test the performance of
the stored models on testing datasets. Fig. 3 depicts the pattern
of testing results on each stored model through training.

Based on the results in Fig. 3, we observe an outstanding
trend that adding depth and segmentation features to the
baseline model (black line) can improve its performance
on inference. For both SPL and success rates on the test
dataset, the test results for model B (blue line) and model
C (green line) are effectively increased after adding features
from the other vision modality. Once training is saturated, SPL
increases around 0.73% and 0.52% respectively for the final
models B and C compared to model A; success rates of the
final models B and C are also improved around 1.74% and
2.00% respectively compared with model A. However, the
convergence speeds of models B and C, whether for SPL or
success rate, decrease a little bit compared to model A.

Model D is the proposed model (red line), combining object
detection features with depth and segmentation features. In
Fig. 3(a), the SPL and success rate of the final model D are
18.25% and 43.10% respectively which is 3.49% and 4.00%
higher than the baseline model and leads all the compared
models. Also, the convergence speed of model D is faster
than all the other models. Moreover, model D has a smaller
standard deviation when the model converges compared with
its counterparts, illustrated in Fig. 3(a) as background shadow
lines. The results show the contributions of each added feature
in the proposed model and the improvements in success rate
offered by the proposed model. The proposed model achieves
the best performance in all comparison to its counterparts.

(a) SPL (b) Success Rate

Fig. 3: Testing results through training. Model A is the
baseline, models B and C are intermediate models, and model
D is the proposed model. We store the parameters of a trained
model on every 10, 000th epoch and test the saved model on
testing datasets.

2) Qualitative Analysis: We present a qualitative analysis
in this section. The directly visual comparison helps us to
investigate the agent’s performance, which sets our model
apart from the baseline model. At the beginning of each
episode, agents controlled by the baseline model and our
model both intend to look around to locate the target object or
explore the vicinity for visible clues (as shown in Fig. 4 and
Fig. 5). While the episode proceeds, the baseline model might

fail to circumvent obstacles or issue a wrongful termination
action; with multimodal vision fusion knowledge, our model
can constantly detect the target, determine the walkable region,
and predict the distance of obstacles, so it seldom gets stuck
behind an obstacle or fails to locate the target. Fig. 4 shows the
trajectories of two episodes. Fig. 5 demonstrates egocentric

Fig. 4: Comparisons of trajectories. The target for the top
scenes is lamp highlighted in orange and the target for the
bottom scenes is alarm highlighted in red. The terminal action
is marked as the red arrow.

views of each scene at selected steps. For the bedroom scene
(where the target is an alarm clock), the baseline has trouble
planning a feasible path to the target so it keeps running
into the bed and wall for vision clues and eventually fails
the mission. In contrast, our model marches to the target
steadily because it locates the target at the beginning position,
understands the walkable region, and knows how far the
target is. Similarly, for the living room scene (where the
target is a laptop), the baseline model successfully locates
the target but it fails to circumvent the couch to reach the
destination, while our model finds the target smoothly with its
holistic vision knowledge. More examples can be found from
https://youtu.be/uthSTrpZ04w.

E. Comparison with State-of-the-art Systems

We compare the performance of our model with the latest
state-of-the-art models. In order to have a fair comparison, we
select five leading models who also use AI2Thor as the testbed.
The selected models and our model are all implemented on
the same workstation and tested on our testing dataset for
comparison.

Table I summarizes the results for all the models. Our model
outperforms its counterparts in terms of SPL and success rate.
We observe that most of the selected models do not fully



Fig. 5: Egocentric views of each scene at selected steps. The top two rows are a bedroom scene and the target is an alarm
clock, while the bottom two rows are a living room scene and the target is a laptop. Our method outperforms the baseline for
both tasks in terms of successful rate and SPL.

leverage the visual information to learn vision-guided action
policy. In training and inference, TDRL [15], SP [20] and
SAVN [5] only use a feature extraction network to explore
vision clue, and RPLS [4] only uses object detection and
feature extraction network to construct the image-action cor-
relation. Their approaches are inferior to our model’s, which
employs multimodal (semantic segmentation, object detection,
and depth estimation) vision fusion knowledge for vision-
guided indoor navigation.

TABLE I: Comparison with State-of-the-Art Systems.

Method SPL (%) Success Rate (%) Inference Time (s)

A3C [38] 11.68 30.04 0.31
TDRL [15] 12.47 31.01 0.32
RPLS [4] 14.76 39.21 0.43
SP [20] 15.47 35.39 0.37

SAVN [5] 16.15 40.86 0.81

Ours 18.25 43.21 0.49

We also report the inference time which is defined as
the time it takes each model to generate an action at each
step. A3C [38], a lightweight model for deep reinforcement
learning, is leading all the models. Models using meta-learning
approaches, such as SAVN [5] and our model, are slower
than their counterparts. However, SPL and success rate for
our model and SAVN [5] are much higher than A3C [38].
In addition, since our model has fewer parameters that need

to be updated during inference compared to SAVN [5], our
approach is significantly accelerated (as shown in Table I).
Based on these results, we conclude that our model is highly
competitive with the latest and best systems.

V. CONCLUSION

In this study, we presented a multimodal vision fusion
model (MVFM) to fully employ visual information for policy
learning. We developed a joint modality of different image
recognition networks and navigation policy learning to ap-
proach the task of indoor navigation. Our multimodal vision
fusion model included object detection (to locate the target),
depth estimation (to determine the distance), and semantic
segmentation (to depict the walkable region), which collec-
tively provided a holistic vision knowledge for navigation.
We conducted an ablation study to verify the effectiveness
of each modality in our model. After comparing our model
with other state-of-the-art systems, we argued that our model
is competitive with the best existing approaches. Extensive
studies indicated that the proposed model is effective for
navigating a mobile agent through indoor environments in
virtual reality. However, as the proposed model was observed
only on the AI2Thor platform and with limited data, our results
are more heuristic than general. This question remains open
for further exploration in future works.
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