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Abstract—Explainability is an important factor to drive user
trust in the use of neural networks for tasks with material impact.
However, most of the work done in this area focuses on image
analysis and does not take into account 3D data. We extend
the saliency methods that have been shown to work on image
data to deal with 3D data. We analyse the features in point
clouds and voxel spaces and show that edges and corners in 3D
data are deemed as important features while planar surfaces
are deemed less important. The approach is model-agnostic and
can provide useful information about learnt features. Driven by
the insight that 3D data is inherently sparse, we visualise the
features learnt by a voxel-based classification network and show
that these features are also sparse and can be pruned relatively
easily, leading to more efficient neural networks. Our results show
that the Voxception-ResNet model can be pruned down to 5%
of its parameters with negligible loss in accuracy.

I. INTRODUCTION

Deep neural network (DNN) models are increasingly being
used in a number of fields from medical diagnosis [1] to
autonomous driving [2] due to their ability to learn mean-
ingful abstractions from data and their successes in many
vision tasks. Such models were initially treated as black box
operators, but as their popularity has increased, so has the need
to make these models interpretable and explainable [3]–[5].

Explainability is important to gain user trust in areas such
as medical diagnosis where machine learning is being used
for applications such as cancer prediction [3]. Interpretations
are also important for identifying biases in models [4] and
can be used for extracting insights and debugging models [5].
Driven by these reasons, there has been a lot of work done
on the interpretability and explainability of DNNs for image
based tasks, and to a lesser extent, language models. We refer
readers to [6] for a more detailed review on methods for
interpretability.

Interpretability can be defined as the degree to which a
human can understand the cause of a decision. It is the
mapping of an abstract concept such as a model’s parameters
into a domain that can be understood by humans [6]. An
example of this would be feature optimisation where given
an output neuron, the input image is optimised such that the
activation of said neuron would be maximised [7].
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Explainability is a closely related topic to interpretability.
Whereas interpretability focuses on abstract concepts, ex-
plainability is the identification of relevant features in the
interpretable domain that are useful for attaining a specific
decision such as identifying the input pixels that are important
for the decision of a classification algorithm. A large number
of explainability approaches are gradient-based and produce
sensitivity maps or saliency maps [7]–[9]. These two terms
are used interchangeably in literature, but for the purposes of
this work, we will assume the definition given here.

Saliency maps in computer vision are used to represent
the most noticeable pixels in an image [10]. In the context
of model explainability, saliency maps denote the pixels that
are deemed important for the decision of the model under
consideration [7].

Features learnt from 2D data can be visualised and intuited
as images [11]. However, 3D data is not necessarily as intu-
itively understood. In this work, we explore features learnt by
3D networks as a means of explainability for such networks.
More specifically, our contributions are as follows:
• Methods developed for obtaining saliency maps from

image data are extended to deal with 3D point cloud and
voxel data.

• This is the first work that analyses input features that are
deemed important to 3D classification networks.

• The filters learnt by a 3D voxel-based network are visu-
alised and it is shown that they are inherently sparse and
can be pruned efficiently with minimal loss in accuracy,
leading to a smaller, more efficient network.

A. Models and Data Types

3D data can be represented in a number of formats such as
point clouds, wireframes, surface models and solids. For the
purposes of this study, we limit our focus and experiments to
point cloud data1 and voxel data.

Point clouds obtained from LiDAR scanners are unordered
point sets with non-uniform density. The point density depends
on the sensor scanning pattern and the distance of the surface
being scanned from the sensor head. These point clouds can
be converted into a uniform voxel format. Voxels are 3D
equivalents of pixels, where the space under consideration is

1The kind of data obtained from laser scanners.
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Fig. 1: Stanford Bunny [14]. Left: Point cloud representation.
Right: Voxel representation

divided into a 3D grid and each volumetric element of the grid
is known as a voxel. Voxels can be seen as a special case of
point clouds with uniform density and quantised dimensions.
An example of these two representations are shown in Fig. 1.

We choose popular classification models designed for
these data types for further investigation: Voxception-
ResNet(VRN) [12] for voxel data and PointNet++ [13] for
point cloud data.

II. RELATED WORK

A. Explainability Methods

Explainability is a fast expanding area of research with
a number of different sub-areas. Popular approaches to ex-
plainability of DNN models include creating a saliency map
to identify and highlight the important areas in the input
space [15] and creating a proxy model which has similar
behaviour to the original model but is easier to explain [16].

Perturbation methods such as LIME [17], IME [18] and
EXPLAIN [19] are often used to create proxy models [20].
These methods are model-agnostic and usually perturb the
neighbourhood of an input space to observe the effect of the
perturbations on the output. EXPLAIN and IME are based on
the premise that ”hiding” some feature or a set of features in
the input space can be used to identify the contribution of the
aforementioned features to the decision process. EXPLAIN
computes the contribution of each feature individually, which
has the disadvantage of missing connections between input
variables. IME deals with this issue by computing the impor-
tance of all subsets of the feature space. However, this leads
to the issue of exponential time complexity.

LIME explains the prediction of a classifier by approximat-
ing it with a locally interpretable model around the predic-
tion. It presents the interpretation as an optimisation problem
and hence avoids the exponential time complexity issue. An
occlusion-based approach was also popularised by Zeiler and
Fergus [11] where parts of the input were masked and the
output decision was computed on a number of such inputs
to obtain the importance of a specific input feature. However,
similar to the methods described previously, this method was
very slow especially as the input space grew large.

Saliency mapping methods are often used for attribution
analysis [15]. They are typically gradient-based and are rela-
tively straightforward to compute using backpropagation. They
are faster than perturbation-based methods, which typically
require a single forward and backward pass through the
network. The gradient of the output class score with respect
to the input pixels can be visualised as a heatmap where
the highest gradient gives the most important pixel since the
least change in that pixel would cause the largest change in
the output value [7]. A number of different techniques such
as Guided Backpropagation [8] and Integrated Gradients [9]
build on this premise and have some differences in how
they propagate gradients which are detailed further in Section
III. These methods have been used for further analysis of
neural networks for 3D data since, as pointed out in [9], they
are immediately applicable to existing models and provide
intuitive explanations.

There are a number of other backpropagation methods. Lay-
erwise Relevance Propagation [21] was shown to be equivalent
within a scaling factor to the element-wise product of the
gradient and input [22]. DeepLift [23] assigns an attribution
to each input feature based on the relative activation of a
reference input. Deep Taylor Decomposition [24] produces
sparse explanations but assumes no negative evidence, only
showing positive attributions which is not necessarily a valid
assumption [15].

B. 3D Feature Analysis

There has been limited related work on analysing 3D
features. Some previous work on voxel classification visualised
the average surfaces learnt by certain neurons of their model
and showed that the initial layers of their model activated
mostly on simple surfaces and corners while later layers had
high responses for more complex shapes [25]. The authors
of PointNet++ visualised point cloud patterns learnt by the
initial neurons in their network by searching for points in a
unit sphere that activated the neurons the most [13].

FoldingNet [26] was designed as an interpretable model for
unsupervised learning where a 2D grid was folded onto a 3D
object surface for reconstruction. The authors expressed this
as an intrepretable model since the folding could be seen as a
granular warping.

III. ATTRIBUTION MAPS

The formulation for vanilla gradients is given by Equation 1.
These gradients can be visualised as a heatmap or a saliency
map [7] and are similar to the output from deconvolutional
networks [11].

Gradi =
∂F (x)

∂xi
(1)

The input is given by x and each element of the input is
indexed by subscript i. Gradi is the gradient attribution of
element xi and F is the function of the neural network.

Saliency maps zero out gradients during the backward pass
if the inputs coming into the rectified linear units (ReLU)
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during the forward pass are negative. On the other hand,
deconvolutional networks zero out gradients from the ReLU
during the backward pass only if those incoming gradients
during the backward are negative.

Guided Backpropagation [8] combines the approaches
from saliency maps and deconvolutional networks. In this
method, the gradient is backpropagated through a ReLU only
if the ReLU is switched on (input is non-negative) and the
gradient during backward propagation is also non-negative.

Such saliency maps have a lot of noise and a number of
methods have been proposed to refine them. A straightforward
method to improve the sharpness of the attribution map is
to use the element-wise product of the gradient and the
input [22].

Integrated Gradients [9] computes the average of all the
gradients along the straight line path between a baseline, x′,
and the input, x, given by Equation 2. In the case of an
image, the baseline can be a zero image. This method has
the desirable property of completeness [9], which implies that
the attributions add up to the difference between the target and
the baseline outputs.

IntGradi = (xi − x′i) ·
∫ 1

α=0

∂F (x′ + α(x− x′))
∂xi

∂α (2)

IV. 3D FEATURES AND NETWORK PRUNING

Learnt voxel features can be visualised as 3D filter maps.
Since 3D spaces are inherently sparse, we hypothesise that
discriminative features for voxel-based networks should also
be sparse. However, some 3D CNNs are dense extensions of
2D networks for 3D structures and do not take into account
the sparse nature of 3D data. Hence, we took inspiration
from pruning methods to test the sparse nature of dense 3D
networks.

Pruning methods are broadly divided into fine-grained and
coarse-grained pruning [27]. The former is based on pruning
individual weights to make the DNNs sparse, while the latter
is based on pruning entire kernels or channels. We have ex-
tended a popular fine-grained pruning method called Dynamic
Network Surgery (DNS) [28] to work with 3D filters to test our
hypothesis. The formulation of this pruning method is given
below.

The weight tensor representing the weights in layer k is
given by Wk. An additional tensor Tk is defined which has
the same dimensionality as Wk and is a binary mask matrix to
indicate if the corresponding weights in Wk have been pruned
or not.

The optimization problem is summarised as :

min
Wk, Tk

L(Wk ◦ Tk) s.t. Tk = hk(Wk), (3)

where L is the loss function, ◦ represents the Hadamard
product. The function hk is used to determine the importance
of the weights. In our experiments, following the work in [28],
hk is the absolute value of the weights. Hence, the smaller the
absolute value, the less important the weight parameter.

Hence, Equation 3 looks to minimize the loss by optimising
the values of Wk and Tk and is an N.P. hard problem. In this
case, these values are optimised iteratively where the weight
updates are given by a slight modification of the standard
gradient descent algorithm during backpropagation in order
to incorporate the weight mask as follows:

Wk ←Wk − β
∂

∂(WkTk)
L(Wk ◦ Tk), (4)

where β represents the learning rate.
This update carries through for all weights, including the

ones where the corresponding value in the weight mask is
zero, allowing the weight mask to be updated by removing
certain values and restoring others during the next forward
pass operation as follows:

hk(Wk) =

{
0 if tk > |Wk|
1 if tk < |Wk|

(5)

where the threshold tk is defined using the mean and variance
of the absolute values of the weights in layer k.

V. EXPERIMENTAL DETAILS

The Pointnet++ and VRN models were trained according
to the details given by the original authors of the respective
papers. The VRN model was reimplemented in Pytorch where
the original implementation of Pointnet++ was used for all
experiments.

Following the implementation in the original papers,
the Modelnet40 models were voxelised to a resolution of
32x32x32 for VRN and 1024 points were sampled on the
surface of each model for Pointnet++.

The baseline was assumed to be an empty voxel space for
integrated gradients, with 50 steps between the baseline and
the input.

VI. RESULTS

A. Attribution Maps

Examples of attribution maps for Pointnet++ obtained us-
ing vanilla gradients, guided backpropagation and integrated
gradients as outlined in Section III are shown in Figure 2. As
can be seen from the figure, vanilla gradients attribute more
importance to edges and corners than they do to flat surfaces,
though the relevance of points along surfaces is not uniform,
leading to the assumption that these attribution maps are fairly
noisy.

The maps obtained using guided backpropagation are some-
what more uniform, with higher saliency attributions given
to highly discriminative features, such as the stand in the
case of a television and the tap in the case of a bathtub.
The clearest results are achieved with the integrated gradients,
which identify corners and edges and do not give much
importance to flat surfaces.

The attribution maps for VRN are shown in Figure 3. As can
be seen, the vanilla gradient maps are a lot noisier in this case
as compared to those for Pointnet++. This is due to the fact that
the voxel inputs encode free space along with occupied space
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Fig. 2: Visualisation of attribution maps for Pointnet++. The attributions are given as a heatmap by Red (large) to Blue (small).
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TABLE I: 3D Weight Pruning Results for VRN

# Parameters Params Left Accuracy
(%) (%)

Original Model 13,829,792 100 87.77
Prune, no finetune 728,092 5.26 62.39
Prune, 1 epoch tuning 700,720 5 87.18

while the point clouds only encode occupied space. Hence, the
vanilla gradients in the voxel space are also, in a way, affected
by the empty voxels. In order to make these maps less noisy,
we show the element-wise product of the gradients and input
as the ‘Masked Vanilla’ output in Figure 3.

These masked maps can show the salient features in the
input space more clearly. For example, in the case of the cup,
the handle and the shape of the cup are important for the
classification. It is interesting to compare the masked gradients
with the results of the integrated gradients, where the most
important voxels seem to overlap. The latter does deem some
voxels in the unoccupied space as being important. However,
in contrast to vanilla gradients, these unoccupied voxels are
given almost negligible importance.

B. Pointnet++ Error Analysis

The PointNet++ model achieved 90.2% accuracy on the
ModelNet40 test dataset when trained according to the pa-
rameters given by the original authors. The confusion matrix
for the test set is shown in Figure 4.

The confusion matrix shows that the major errors are
between classes that have a fair amount of semantic overlap,
such as plants being recognised as flower pots and tables being
labelled as desks. Some of these misidentified objects are
shown in Figure 5 along with their saliency maps based on the
Integrated Gradients. From these images, it can be seen that
the mistakes made by the model could have been also made
by humans since these classes are fairly similar.

C. Features Learnt by Voxel Networks

Some of the features learnt by VRN have been visualised in
Figure 6 where the size of each element denotes the relative
absolute value of the weight. The figure also shows the same
features after pruning and finetuning. The difference between
the pruned features with and without finetuning is minimal
and has also been shown.

From the results in Table I, it can be seen that pruning
the network down to almost 5% of its parameters decreased
the accuracy by 25% but finetuning for only 1 epoch brings
the accuracy back up to the original results even with the
pruned model. This is contrary to the process with image
based models which require finetuning in the order of over
10k iterations [28]. This seems to support the hypothesis
that the 3D features learnt are fairly sparse and removal of
small weights does not overly affect the performance. The
visualisations in Figure 6 also verify this as it can be seen
that the difference between the original model and the pruned
and finetuned model is minimal.

VII. CONCLUSIONS

This work is an initial study on explainability of neural
network models for 3D data. To this end, popular attribution
methods currently used with image data have been extended to
deal with point cloud and voxel data. It has also been shown
that the features learnt by voxel based networks are sparse and
can be pruned easily with little finetuning required.

Our results show that edges and corners are considered as
important features by gradient-based methods, while planar
surfaces do not contribute as much to the classification deci-
sion. Vanilla gradients are fairly noisy but the use of integrated
gradients makes the attribution maps more uniform. In the
case of voxel-based inputs, vanilla gradients attribute a lot of
importance to empty space. These attributions become a lot
more sensible when masked gradients are used, or with the
use of integrated gradients.

We have visualised the learnt features of the voxel classifica-
tion network and showed the sparsity of these learnt filters. The
network can be pruned down to 5% of its original number of
parameters with minimal loss in accuracy and only one epoch
of finetuning; as compared to image based networks which
require over 10k iterations of iterative pruning and finetuning.
We believe this is due to the fact that 3D data is inherently
sparse and hence the features learnt for this kind of data are
also sparse.

This work can be extended in a number of directions. A
natural extension of this work would be to use the insights
gained from the gradient-based models to prune DNNs during
training time rather than as a post-processing step. Some other
relatively straightforward extensions include testing 3D mod-
els using some perturbation-based methods such as the ones
described in Section II-A. Another important area of research
is the systematic quantification of the extracted explanations.
We refer readers to [15] for ideas on the same.
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