
Multi-Label classifier based on Kernel Random
Vector Functional Link Network

1st Vikas Chauhan
Discipline of Computer Science and Engineering

Indian Institute of Technology
Indore, India

phd1701101006@iiti.ac.in

2nd Aruna Tiwari
Discipline of Computer Science and Engineering

Indian Institute of Technology
Indore, India

artiwari@iiti.ac.in

3rd Shivvrat Arya
Department of Computer Science and Engineering

The University of Texas at Dallas
Dallas,USA

Shivvrat.Arya@utdallas.edu

Abstract—In this paper, a kernelized version of the random
vector functional link network is proposed for multi-label
classification. This classifier uses pseudoinverse to find output
weights of the network. As pseudoinverse is non-iterative
in nature, it requires less fine-tuning to train the network.
Kernelization of RVFL makes it robust and stable as no need
to tune the number of neuron in the enhancement layer. A
threshold function is used with a kernelized random vector
functional link network to make it suitable for multi-label
learning problems. Experiments performed on three benchmark
multi-label datasets bibtex, emotions, and scene shows that
proposed classifier outperforms various the existing multi-label
classifiers.

Index Terms—Random vector functional link, multi-label
classification, kernel random vector functional link, non-iterative
neural networks, pseudoinverse.

I. INTRODUCTION

Traditional classification problems comprise of assigning a
single class or label to the data instance from two (binary
classification) or more than two(multi-class classification)
labels. But in a real-life scenario, a single instance
can be assigned multiple labels. For example, in a text
classification problem, a single instance can be assigned
multiple labels such as sports, cricket and world cup [1],
[2]. Multi-label classification problems are a more universal
and generalized version of the multi-class classification
problem. But this generalization brings more challenges and
difficulties to the problem as the size of the output spaces
increases exponentially. Therefore, multi-label classification
is a fast-growing field of research in recent time. The
origin of multi-label problem is stared with text classification
[1]–[4]. Some other applications of multi-label classification
are genomics and image processing [5], [6] are arises in the
recent time.

Multi-label classification algorithms are broadly categorized
into two categories as Problem Transformation and Algorithms
Adaptation [7]. Problem Transformation transforms

multi-label classification to multiple independent single
label classifier. Binary Relevance(BR), Classifier Chain(CC),
and Label Power Set(LP) are the main algorithms under
the category of Problem Transformation. The BR method
converts multi-class classification to independent binary
classifier and trains for each label independently [5]. For
Q output labels, BR converts the multi-label problem to
Q independent multi-class problems. Each of the binary
classifiers votes separately for the final result. A new class
for each combination of output labels are generated by
Label Powerset (LP). Then these combinations are solved
as a multi-class classification in the LP algorithm. In
the LP algorithm, the number of classes is increased in
exponential growth, and this may lead to overfitting [8].
The correlation among the output labels is not considered
in BR; this shortcoming of BR is overcome by LP and
known as Label Cardinality. Classifier Chain (CC) is another
problem transformation approach which performs better than
BR classifier [9]. In CC, the output of the previous binary
classifier is also provided as an input to next classifier with
the input data, and this is the difference with BR. The
shortcoming of CC is that its performance depends on the
order of output labels.

Algorithm adaptation adapts the existing multi-class and
binary class algorithms to learn multi-label classification.
A neural network based multi-label classification algorithm
Back-Propagation Multi-Label Learning(BPMLL) was derived
from the popular Backpropagation algorithm [6]. BP-MLL
replaced the error function of backpropagation with different
function which was able to learn the multi-label characteristics.
The main aim of this change was to create a condition
in which the labels belonging to a label ranked higher
than those not belonging to that label. As backpropagation
is an iterative procedure, its convergence depends on the
iterations. Rank-SVM is Support Vector Machine (SVM)
based multi-label classifier [11]. It learns the multi-label

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

Fig. 1. RVFL structure [10]

problem by constructing SVM for each output label according
to the ranking loss. It leads to the learning of correlation
among the labels. Random Vector Functional Link (RVFL)
Network is a single layer feedforward neural network
which follows non-iterative learning. The output weights
are computed by pseudoinverse in RVFL, and it makes it
faster to train. We propose kernelized RVFL for multi-label
classification which is adapted from the kernelized RVFL.
Extreme Learning Machine (ELM) is similar to RVFL without
having direct links from input to output layer [12]. This is
the main difference between ELM and RVFL. ML-KELM
uses the Support Vector Machine based adaptive threshold,
which increases its training time because it depends on the
number of output labels. In case of a large number of output
labels, ML-KELM becomes very time consuming to converge.
The direct links between the input and output layer make the
performance of RVFL better than ELM, as shown in figure 1 in
1 [13]. Kernelization of RVFL [14] provides the stabilization
to the network.
We propose multi-label classifier based on Kernel Random
Vector Functional Link Network (ML-KRVFL) which is an
adaptation of kernelize RVFL for multi-label classification. As
K-RVFL is not used for multi-label classification, we adapt
the RVFL using kernel function for multi-label problems.
We have used the simple threshold mechanism which takes
the average value of the gap of output values provided by
the ML-KRVFL. Section II describes the preliminaries for
non-iterative learning and Kernel RVFL. Section III describes
the proposed multi-label classifier based on kernel Multi-label
Random Vector Functional Link Network followed by the
discussion of experiments and result in section V. In the
last section VI, the conclusion of the proposed ML-KRVFLN
approach is given.

II. RELATED WORK

RVFL uses the pseudoinverse to compute the weights
of neural network. In this section, The pseudoinverse with
RVFL and formal definition multi-label classification is
discussed to provide the basic of Kernelized RVFL. The
mathematical formulation of RVFL network and pseudo
inverse is discussed in this section to make preliminaries for
proposed ML-KRVFL.

A. Multi-Label classification

The aim of multi-label classifier h : X → 2Y is to optimize
some specific evaluation metric. The learning system produces
a real valued function f : X × Y → IR. For a given instance
xi ⊆ X and its associated label set Yi ⊆ Y , these real valued
systems are supposed to output the larger values for labels Yi

than the labels not in Yi. For any y1 ∈ Yi and y2 /∈ Yi, These
real values functions are denoted as f(xi, y1) > f(xi, y2) and
can be transformed as the ranking function rankf (., .). The
formal mathematical definition of multi-label classification is
as follows:

1) Let X ∈ IRM represents a M -dimensional instance
space, and Y = {y1, y2, ..., yq} denotes the label space
with q possible class labels,where q > 1.

2) Multi-label learning learns a functions f : X ×Y → IR
from the multi-label training set T = {(xi, Yi)|1 ≤ i ≤
N}.

3) For each multi-label training example (xi, yi),
xi ∈ X is a M -dimensional feature vector
xi = (xi1, xi2, ..., xiM)T and Yi ⊆ Y .

4) For any unseen instance x ∈ X , the multi-label classifier
h(.) predicts h(x) ⊆ Y as the set of proper labels for x.

B. Random Vector Functional Link Network

Pao and Takefuji has proposed a random vector functional
link network, as represented in figure 1. It shows that weight

Fig. 2. Structure of multi-label kernal random vector functional-link Neural Network

values can be generated randomly between enhancement node
layers and input layer. The layer of Enhancement nodes
denoted as H2 and input layer H1 are concatenated as
shown in Fig. 1. The output weight W is computed by
using pseudoinverse [15]. As shown in figure 1 input data
represented by matrix X with size N × M is provided
to input layer H1. N denotes the input samples and M
denotes the dimensions of each input sample. Wh are the
weights which are generated randomly. Enhancements nodes
are generated by the multiplication of Wh and input layer H1.
The concatenation of H1 and H2 can be shown as follows:

H = [H1|H2] (1)

As at outputs at the output layer Y are known during the
training time, The pseudoinverse can be used to find the output
weights W . The RVFL network can be shown by the following
equation:

HW = Y (2)

Pseudoinverse [15] is the noniterative method to compute
the output weights W on RVFL network as shown in Fig. 1.
Lets S(W) is the error and it is a function ofW . The aim is
to minimise the difference between Y and HW and also to
reduce the weight values.

S(W) =
1

2
‖Y −HW‖22 +

1

2C
‖W‖22 (3)

A positive value C is used for regularization and to avoid the
singularity. We can rewrite (3) as follows:

S(W) =
1

2
(Y −HW)

T
(Y −HW) +

1

2C
WTW (4)

The error S(W) represented in (4) can be written as follows:

S(W) =
1

2

(
Y T −WTHT

)
(Y −HW) +

1

2C
WTW (5)

Further the error S(W) shown in (4) can be simplified as
follows:

S(W) = 1
2

(
Y TY − Y THW −WTHTY + WTHTHW

)T
+ 1

2CWTW
(6)

Differentiating (6) with respect to W , we get the following
equation:

dS(W)
dW = 1

2

(
−HTY −HTY + 2HTHW

)
+ 1

C (W)
= −HTY + HTHW + 1

C (W)
(7)

At minima of dS(W)
dW = 0, substituting in (7), we get the

following equation:

−HTY +
(
HTH + 1

C

)
W = 0

or(
HTH + 1

C

)
W = HTY

(8)

Now we can get the output layer weights W as shown in
following equation:

W =
(
HTH + 1

C

)−1
HTY

W = H+Y
(9)

Now , we have pseudoinverse from (9) in following Eq.

H+ =

(
HTH +

1

C

)−1
HT (10)

or above equation can written as follows:

H+ = HT

(
HTH +

I

C

)−1
(11)

This H+ is known as pseudoinverse and it is used for the
computation of output layer weights W as shown in figure 1
of RFVLN.

III. PROPOSED WORK

In this section, we discuss the ML-KRVFL that has been
proposed to solve the multi-label classification. This is a
single layer feedforward neural network and a modification of
RVFL for multi-label classification. In ML-KRVFL, a Kernel
function is used in place of the enhancement layer. This
kernelization provides the robustness to the RVFL and reduces
the randomness effect of the enhancement layer. It is reduced
because in ML-KRVFL activation function of enhancement
nodes and the number of enhancement nodes in enhancement
layer H2 need not be known. We discuss the formulation
and structure of ML-KRVFL in this section. Using the RVFL
network from (1) and (2), the raw output at the layer Y of
RVFL can be written as:

f(x) = HW (12)

by substituting the value of W from (9) to (12), f(x) can
be written as:

f(x) = HHT

(
HTH +

I

C

)−1
Y (13)

by substituting the value of H from (1) in (13), the output
f(x) of ML-KEVFL can be represented as follows:

f(x) = [H1|H2]

[
H1

H2

]T (
[H1|H2]

[
H1

H2

]T
+

I

C

)−1
Y

(14)
Then (14) can be rewritten as follows:

f(x) =
[
H1|H1T

]
+[

H2|H2T
] ([

H1|H1T
]

+
[
H1|H2T

]T
+ I

C

)−1
Y

(15)

The kernel matrix for the (15) can be defined as follows:

Ω = H1H1T = K(x, xT) (16)

Ω̃ = H2H2T = K̃(x, xT) (17)

K(x, x1)

.

.

.
K(x, xL)

T

+

K̃(x, x1)

.

.

.

K̃(x, xL)

T (

Ω + Ω̃ +
I

C

)−1
Y (18)

K is a linear kernel and K̃ is the radial basis function used
in this paper.

For the raw output f(x) of ML-KRVFL at Y , there should
be a threshold function for conversion of these raw values of
f(x) to a binary vector of 1 or -1 for each input data sample.
Here 1 denotes that output label belongs to input data instance
and -1 denotes that output label does not belong to input data
instance. After the completion training, the values of f(x) for
each label of all instances can be divided into two sets first
those values which belong to labels Y1 another which does

TABLE I
MULTI-LABEL DATA-SET DESCRIPTION

Data Attributes Examples Labels
bibtex 1836 7395 159
emotions 72 593 6
scene 294 2407 6

not belong to label Y1. The values which do not belong to Y1,
have been represented by Y2. For each label, threshold values
can be computed as follows:

Threshold for each label =
min(Y1) + max(Y2)

2
(19)

At the test time, a test sample is passed through ML-KRVFL
network, and f(x) provides the output values at the output
layer Y . These values are compared with threshold values,
and final output labels can be found as follows:

final labels corresponds to Yi =

{
1, fk(xi) ≥ threshold

−1, fk(xi) < threshold
(20)

where, i = 1, ..., N
′
. and k = 1, ..., Q. Total no. of test

samples are denoted by N
′

in Eq. (20) The complete algorithm
for multi-label classification using ML-RVFL is described in
algorithm 1.

Algorithm 1: Multi-label kernel Random Vector
Functional Link Neural Network
Input : training set and testing set
Output: W (output weight matrix) and threshold

1 Initialize kernel parameters and regularization cost
parameter C

2 Pre-process: Conversion of output label values of
training set to bipolar values 1 or -1;

3 for training set do
4 Compute kernel matrix Ω and Ω̃
5 Computation of network using (18)
6 Computation of threshold using (19)
7 end
8 for testing set do
9 Using output weight matrix W computed by (9),

compute raw output values of ML-KRVFL
network f(x) using (18)

10 Compare ML-KRVFL network output f(x) with a
threshold value and obtain multi-label
identification final outputs according to (20)

11 end

IV. EVALUATION METRICS

This section discusses the evaluation metrics that are
used to compare the results of the proposed ML-KRVFL
algorithm with the existing state of the art multi-label
classification algorithms. In multi-label classification, five
evaluation measures hamming loss, one error, coverage,

TABLE II
COMPARISON RESULTS ON BIBTEX DATASET

Algorithms →
Evaluation Metrics ↓ Rank - SVM ML-ELM BPMLL ML-KELM ML-KRVFL

Hamming Loss 0.0196±0.0002 0.0148±0.0003 0.0162±0.0003 0.0151±0.0001 0.0145 ± 0.0005
Ranking loss 0.329±0.0061 0.6687±0.0194 0.0696±0.0039 0.4187±0.0099 0.1060 ± 0.0083
One error 0.859±0.0035 0.1847±0.0041 0.5384±0.0313 0.6038±0.0118 0.3601 ± 0.011
Coverage 0.774±0.0203 0.6289±0.0213 0.0985±0.0038 0.3516±0.0075 0.2023± 0.012
Avg precision 0.139±0.0013 0.3685±0.015 0.548±0.0091 0.1145±0.0064 0.5744 ± 0.009

TABLE III
COMPARISON RESULTS ON EMOTIONS DATASET

Algorithms →
Evaluation Metrics ↓ Rank - SVM ML-ELM BPMLL ML-KELM ML-KRVFL

Hamming Loss 0.3297±0.017 0.3607±0.038 0.3213±0.0144 0.6793±0.0095 0.2156 ± 0.0192
Ranking loss 0.4151±0.0244 0.9736±0.0042 0.4723±0.0247 0.3483±0.0165 0.1760 ± 0.0292
One error 0.5548±0.0598 0.5124±0.0208 0.6667±0.2887 0.5333±0.2173 0.2715± 0.0235
Coverage 0.3127±0.2145 0.4667±0.1826 0.5494±0.0236 0.4213±0.0246 0.3142 ± 0.0338
Avg precision 0.572±0.0245 0.0992±0.0454 0.5583±0.0187 0.4735±0.0268 0.7947 ± 0.024

TABLE IV
COMPARISON RESULTS ON SCENE DATASET

Algorithms →
Evaluation Metrics ↓ Rank - SVM ML-ELM BPMLL ML-KELM ML-KRVFL

Hamming Loss 0.2718±0.0082 0.1545±0.0741 0.2839±0.0067 0.767±0.0465 0.119 ± 0.0050
Ranking loss 0.4844±0.0282 0.4509±0.0948 0.3159±0.0411 0.1675±0.0138 0.1187 ± 0.0107
One error 0.7786±0.0234 0.2667±0.117 0.6±0.1491 0.0667±0.0913 0.2995 ± 0.0194
Coverage 0.24807±0.096 0.7605±0.3028 0.3628±0.0124 0.0889±0.0094 0.1146 ± 0.010
Avg precision 0.4396±0.0173 0.1645±0.2676 0.4526±0.0074 0.6733±0.0278 0.8126 ± 0.014

TABLE V
AVERAGE PERFORMANCE ON BIBTEX, EMOTIONS, AND SCENE DATASETS

Algorithms →
Evaluation Metrics ↓ Rank - SVM ML-ELM BPMLL ML-KELM ML-KRVFL

hamming loss 0.207±0.0085 0.1767±0.0375 0.2071±0.0071 0.4871±0.0187 0.1164±0.0082
Ranking Loss 0.4095±0.0196 0.6977±0.0395 0.2859±0.0232 0.3115±0.0134 0.1336±0.0161
One Error 0.7308±0.0289 0.3213±0.0473 0.6017±0.1564 0.4013±0.1068 0.3104±0.0182
Coverage 0.445±0.1103 0.6187±0.1689 0.3369±0.0133 0.2873±0.0138 0.2104±0.0186
Avg precision 0.3835±0.0144 0.2107±0.1093 0.5196±0.0117 0.4204±0.0203 0.7272±0.0161

ranking loss, and average precision are used for the
comparison among the algorithms [4]. For a given test
set T

′
= {(x1, Y1), (x2, Y2), ..., (xN ′ , YN ′)}, the evaluation

metrics are discussed below.

A. Hamming loss

Hamming loss is defined as the hamming distance between
the predicted value and the actual result, i.e. it counts for the
number of instances where the predicted values are not equal
to the actual result. The smaller the value of the hamming
loss, the better the performance of the algorithm.

hamming loss =
1

N ′

N
′∑

i=1

1

Q
|h(xi)4Yi|, (21)

where4 is the symmetric difference between predicted output
and actual output. h(xi) denotes the predicted output of
multi-label classifier and Q is the total number of labels.

B. One error

One error is defined as the number of times the top-ranked
label is not present in the set of proper labels of the
instance. The smaller the value of the one error, the better the
performance of the model. This evaluation metric is defined
as

one-error =
1

N ′

N
′∑

i=1

[[
argmaxy∈Y f(Xi, y)

]
/∈ Yi

]
(22)

where f(Xi, y) is the raw values provided by multi-label
classifier, in ML-KRVFL it is the same as f(x).

C. Coverage

Coverage is defined as the summation of the rank of the
most insignificant label which belongs to the instance. In other
words it says how many labels we have to check in order to

cover all the proper labels of that instance. The smaller the
value of the coverage, the better the performance of the model.

coverage =
1

N ′

N
′∑

i=1

maxranky∈Yi(xi, y)− 1. (23)

As discussed in the mathematicl definition of multi-label
classification in section II-A, rankf (., .) is generated from
the f(., .). It maps the raw output of for all Q labels such that
if f(xi, y2) ¡ f(xi, y1) in this case therankf (xi, y1) will be
lesser than the rankf (xi, y2)

D. Ranking loss

Ranking Loss is defined as the average fraction of label
pairs that are reversely ordered for the instance. The smaller
the value of the ranking loss , the better the performance of
the model.

ranking loss =
1

N ′

N
′∑

i=1

1

|Yi||Yi|
|{(y1, y2)|f(xi, y1) ≤ f(xi, y2), (y1, y2 ∈ Yi × Ȳi}|

(24)

where Ȳi is the complementary set of predicted labels in Y .

E. Average precision

Average Precision is defined as the average fraction of labels
ranked above a particular label y ∈ Y which actually are in
Y . The bigger the value of the average precision, the better
the performance of the model.

average precision =

1
N ′
∑N

′

i=1
1
|Yi|
∑

y∈Yi

|{y
′
|rankf (xi,y

′
)≤rankf (xi,y),y

′
∈Yi}|

rankf (xi,y)

(25)

V. EXPERIMENTS AND RESULTS

In this section, ML-KRVFL has been compared with
BP-MLL, Rank-SVM, ML-ELM, and ML-KELM [6], [11],
[12], [16] multi-label algorithms. The experimental setup used
for comparison and evaluation is the same as mentioned in the
papers of Rank-SVM, BP-MLL, ML-ELM, and ML-KELM.
For BP-MLL, the number of neurons in hidden layers are set
as 20% of input layer neurons, as mentioned in [6]. The 5-fold
cross-validation method is used for the experiments after
breaking the datasets into the training set and testing set. Same
indexing of data for various folds is used for all the algorithms
during experimentation. Mean value and standard deviation are
shown as a result of all performance measures in table II to
IV. All experiments are conducted in MATLAB 2017. The
experimentation tests of the proposed kernel RVFL method
and the existing state of the art algorithms are performed on
a Dell Vostro 3470 SFF Desktop-Core i5 8th Gen computer
with 16 GB, DDR4 memory.

Three multi-label benchmark datasets have been used for
the experimentation. These datasets are bibtex, emotions, and
scene. The details of the datasets are given in table I. The
performance of multi-label algorithms for bibtex dataset is

given in table II. ML-KRVFL provides optimum hamming
loss and average precision. BP-MLL provides the optimum
ranking loss and coverage for bibtex and ML-ELM provides
the optimum one error.

The performance of multi-label algorithms for emotions
dataset is given in table III. ML-KRVFL provides the optimum
hamming loss, ranking loss, one error, and average precision.
Rank-SVM provides the best coverage, but by observing the
values of coverage for ML-KRVFL and Rank-SVM, it is
.0015, which is very less.

The performance of multi-label algorithms for scene dataset
is given in table IV. ML-KRVFL provides optimum hamming
loss, ranking loss, and average precision. ML-KELM provides
optimum one error and coverage.

It isn’t very easy to provide a single algorithm to provide the
optimum result for all evaluation metrics on various datasets,
but it can be clearly seen that ML-KRVFL is outperforming
the other multi-label algorithms from tables II to table IV.
The average of all the evaluation metrics is taken for all the
three datasets in table V. This table can be considered as an
average rank for all evaluation metrics. The average of all
evaluation metrics on three datasets is inspired by average
Friedman rank [17]. As three datasets are used for experiments
with five classification approaches in this paper, we have used
average Friedman rank as an indicative measure in table V.
For hamming-loss, ranking loss, one error, and coverage the
minimum value denote better rank, and for average precision,
large value denotes the better rank, so the average rank of
ML-KRVFL is better than Rank-SVM, BP-MLL, ML-ELM,
and ML-KELM. It clearly shows that KRVFL is providing
the optimum hamming loss, ranking loss, one error, coverage,
and average precision as an average of all evaluation metrics.
BP-MLL and Rank SVM are iterative methods, and the
training of these algorithms is time-consuming. ML-ELM and
ML-KELM are non-iterative approaches, and the experimental
results show that ML-KRVFL performs better than compared
multi-label algorithms.

VI. CONCLUSION

The purpose of multi-label classification is to assign a set
of correct labels for an unseen input sample. In this paper, the
ML-KRVFL multi-label classification algorithm is proposed,
which adapts kernelized random vector functional link network
with a threshold function. The ML-KRVFL algorithm is tested
on the benchmark dataset of bibtex, emotions, and scene with
the domain of text and image. Experimental results show
that ML-KRVFL performs better than existing state-of-the-art
algorithms. Additionally, this algorithm is suitable for a large
number of input samples as its weights are computed by
pseudoinverse. It can be further using incremental learning
for fast computation of the weights of ML-KRVFL.

REFERENCES

[1] G. Salton, “Developments in automatic text retrieval,” science, vol. 253,
no. 5023, pp. 974–980, 1991.

[2] N. Ueda and K. Saito, “Parametric Mixture Models for Multi-labeled
Text,” in Proceedings of the 15th International Conference on Neural
Information Processing Systems, ser. NIPS’02. Cambridge, MA, USA:
MIT Press, 2002, pp. 737–744.

[3] A. K. McCallum, “Multi-label text classification with a mixture model
trained by EM,” in AAAI 99 Workshop on Text Learning, 1999.

[4] R. E. Schapire and Y. Singer, “BoosTexter: A Boosting-based System
for Text Categorization,” Machine Learning, vol. 39, no. 2, pp. 135–168,
May 2000.

[5] M. R. Boutell, J. Luo, X. Shen, and C. M. Brown, “Learning multi-label
scene classification,” Pattern Recognition, vol. 37, no. 9, pp. 1757 –
1771, 2004.

[6] Min-Ling Zhang and Zhi-Hua Zhou, “Multilabel Neural Networks with
Applications to Functional Genomics and Text Categorization,” IEEE
Transactions on Knowledge and Data Engineering, vol. 18, no. 10, pp.
1338–1351, Oct. 2006.

[7] M.-L. Zhang and Z.-H. Zhou, “A review on multi-label learning
algorithms,” IEEE transactions on knowledge and data engineering,
vol. 26, no. 8, pp. 1819–1837, 2013.

[8] G. Tsoumakas and I. Vlahavas, “Random k-labelsets: An ensemble
method for multilabel classification,” in Machine Learning: ECML 2007,
J. N. Kok, J. Koronacki, R. L. d. Mantaras, S. Matwin, D. Mladenič,
and A. Skowron, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2007, pp. 406–417.

[9] J. Read, B. Pfahringer, G. Holmes, and E. Frank, “Classifier Chains
for Multi-label Classification,” in Machine Learning and Knowledge
Discovery in Databases, W. Buntine, M. Grobelnik, D. Mladenić, and
J. Shawe-Taylor, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2009, pp. 254–269.

[10] C. L. P. Chen and J. Z. Wan, “A rapid learning and dynamic
stepwise updating algorithm for flat neural networks and the application
to time-series prediction,” IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), vol. 29, no. 1, pp. 62–72, Feb. 1999.

[11] A. Elisseeff and J. Weston, “A kernel method for multi-labelled
classification,” in Advances in neural information processing systems,
2002, pp. 681–687.

[12] R. Venkatesan, M. J. Er, S. Wu, and M. Pratama, “A novel online
real-time classifier for multi-label data streams,” in 2016 International
Joint Conference on Neural Networks (IJCNN), Jul. 2016, pp.
1833–1840.

[13] L. Zhang and P. N. Suganthan, “A comprehensive evaluation of random
vector functional link networks,” Information Sciences, vol. 367-368,
pp. 1094 – 1105, 2016.

[14] K. Xu, H. Li, and H. Yang, “Kernel-based random vector functional-link
network for fast learning of spatiotemporal dynamic processes,” IEEE
Transactions on Systems, Man, and Cybernetics: Systems, vol. 49, no. 5,
pp. 1016–1026, May 2019.

[15] C. R. Rao and S. K. Mitra, “Generalized inverse of a matrix and
its applications,” in Proceedings of the Sixth Berkeley Symposium on
Mathematical Statistics and Probability, Volume 1: Theory of Statistics.
Berkeley, Calif.: University of California Press, 1972, pp. 601–620.

[16] F. Luo, W. Guo, Y. Yu, and G. Chen, “A multi-label classification
algorithm based on kernel extreme learning machine,” Neurocomputing,
vol. 260, pp. 313 – 320, 2017.

[17] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,”
J. Mach. Learn. Res., vol. 7, p. 1–30, Dec. 2006.

