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Abstract—Reinforcement learning has shown great promise in
the training of robot behavior due to the sequential decision
making characteristics. However, the required enormous amount
of interactive and informative training data provides the major
stumbling block for progress. In this study, we focus on accel-
erating reinforcement learning (RL) training and improving the
performance of multi-goal reaching tasks. Specifically, we pro-
pose a precision-based continuous curriculum learning (PCCL)
method in which the requirements are gradually adjusted during
the training process, instead of fixing the parameter in a static
schedule. To this end, we explore various continuous curriculum
strategies for controlling a training process. This approach is
tested using a Universal Robot 5e in both simulation and real-
world multi-goal reach experiments. Experimental results sup-
port the hypothesis that a static training schedule is suboptimal,
and using an appropriate decay function for curriculum learning
provides superior results in a faster way.

I. INTRODUCTION

In recent years, reinforcement learning (RL) has attracted
growing interest in decision making domains, and achieved no-
table success in robotic control policy learning tasks [1] [2] [3]
[4]. Reasons for this include RL requiring minimal engineering
expertise to build complex robot models, and its framework for
learning from interaction with the environment is suitable for
training on sequential tasks. However, a low training efficiency
is the primary challenge preventing reinforcement learning
from being widely adopted in real robots. RL algorithms rely
on experience that contains informative rewards, but random
exploration methods usually only provide sparse rewards.
Thus, the agent needs to acquire more experience to extract
sufficient amounts of useful data, which results in long training
time for a target policy. It is not practicable to train a robot
for a long time due to safety factors. Then, in this study, we
focus on improving the training efficiency of reinforcement
learning for multi-goal reaching tasks1 in which the target
is randomly generated in the workspace; an example of the
reaching process is illustrated in Fig. 1.

We are motivated by the concept of successive approxima-
tion, introduced by Skinner [5] [6]. He proposed this theory
based on training a pigeon to bowl. This appeared to be a
very tedious task because the desired behavior is far from the
natural behavior of pigeons. Instead of rewarding the target

1The reaching task in this study is defined as controlling the end effector
to reach a pose: the positions in Cartesian space and the orientations in Euler
angles.

(a) Initial pose (b) First step

(c) Second step (d) Final step

Fig. 1: Three steps of the reaching task for UR5e and qbhand. The
yellow ball with an attached coordinate frame represents the target
pose, while the reference frame on the palm represents the pose of the
hand. (a) The initial pose of the arm. (b-c) Robot postures after the
first and second steps bringing the robot’s hand closer to the target
pose. (d) The final success step: when the distance of the positions
and orientations between the hand and target are within the required
precision, the step is regarded as a successful move. The target pose is
computed using forward kinematics based on randomly selected joint
angles within stipulated joint limits. The number of steps required for
a pose reach may vary in different target poses.

behavior directly, they found that by positively reinforcing
any behavior that is approximately in the direction of the
desired final goal, the pigeon became a champion squash
player within few minutes. From this example, we see that
learning in animals is facilitated by appropriate guidance. They
do not learn only from trial and error. The learning process is
much faster through a suitable successive reward schedule with
diverse guidance. The learned skills in easy early tasks can
help them perform better in the later, more difficult situations.
This concept has resurfaced in machine learning: curriculum
learning (CL) [7], where the main idea is to train an agent
to perform a defined sequence of basic tasks referred to as
curriculum, and to increase the performance of agents and
speed up the learning process for the final task.
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For reaching tasks in robots, different levels of precision
requirements can be seen as a curriculum, making the problem
more or less difficult as designed. Thus, the scientific research
question is how to design the curriculum to enable efficiency,
optimally. A poorly designed curriculum can also drive the
learning process in the wrong direction, which should be
avoided. In this study, we consider the required precision
as a continuous parameter coupled with the learning process
and propose precision-based continuous curriculum learning
(PCCL) to improve the training efficiency and performance of
multi-goal reach by a UR5e robot arm. At the beginning of
the learning process, the reach accuracy requirement is loose
to allow the robot to gain more rewards for acquiring basic
skills required to realize the ultimate target. To this end, the
precision-based process is formulated with a cooling function
that automatically selects the accuracy (ε) based on the current
stage of training.

The main contributions of this study are as follows: First,
we propose a PCCL method for accelerating the RL training
process. The experimental results showing that the proposed
approach accelerates the training process and improves per-
formance in both sparse reward and dense reward scenarios
of multi-goal reach tasks. Secondly, the proposed PCCL
is easily implemented in off-policy reinforcement learning
algorithms. A similar average success rate in real world
experiments demonstrate the feasibility of our method for
physical applications without requiring fine-tuning when going
from simulation to real-world applications. Finally, the robot’s
reaching movements in grasp and push tasks show that the
learned reach policy is beneficial for advanced real robotic
manipulations, which can pave the way for complex RL-based
robotic manipulations.

II. RELATED WORK

The main goal of this study is to improve the training
efficiency of reinforcement learning using curriculum learning.
Although an extensive survey of efficient approaches for
reinforcement learning in robotic control is beyond the scope
of this study, we will review a few recent efforts.

Recently, various research groups have made substantial
progress towards the development of continuous reinforce-
ment learning for robot control. The long training durations
for reinforcement learning algorithms demonstrate that it is
difficult to train an agent to behave as expected using pure
trial and error mechanisms [8] [9] [10] [11]. Much effort has
been invested on the exploration and exploitation issue. One
of the conventional methods for accelerating the learning of
a control policy is learning from demonstration: Ashvin et
al. [12] coupled deep deterministic policy gradients (DDPG)
with demonstrations and showcased a method that can reduce
the required training time for convergence by giving nonzero
rewards in the early training stages. Another popular technique
is prioritized experience replay [13]: shaping the experience
by sampling more useful data. In this way, the exploitation
ability to get more informative data for training is improved.
Nachum et al. [14] showed how hierarchical reinforcement

learning (HRL) can train the robot to push and reach using a
few million samples and get the same performance as a robot
trained for several days.

For methods based on curriculum learning, hindsight expe-
rience replay (HER) [9] is one of the popular methods and
can be considered a form of implicit curriculum that improves
learning efficiency through learning from fatal experiences. It
allows for skipping complicated reward engineering. Instead
of judging a behavior to be a fatal miss, it is classified as
a successful attempt to reach another target. This approach
of learning from a fatal experience can be viewed as a
curriculum that trains the easier-met goals first. Kerzel et
al. [15] accelerated reach-for-grasp learning by dynamically
adjusting the target size. When the robot has little knowledge
of the task, the Kerzel et al. approach increases the target
size to make it easier to succeed and get positive rewards for
learning the policy. Fournier et al. [16] proposed a competence
progress based curriculum learning method for automatically
choosing the accuracy for a two-joint arm reach task.

The approaches used in the Kerzel et al. [15] and Fournier
et al. [16] studies have similarities with the approach proposed
in this study, including employing a start-from-simple strategy
to accelerate the learning process, which can be categorized
as curriculum learning. However, they use two-joint planar
arm for a position reach environment, which is difficult to
adjust into a more complicated environment. Furthermore,
Kerzel’s task simplification method deals only with discrete
reach positions. Fournier’s approach requires massive compu-
tation resources for multiple accuracy competence progress
evaluations. Furthermore, it uses a discrete CL, and switching
curriculums between pre-defined accuracies poses the risk of
instability when training for a large dimensional task.

The PCCL method we propose is based on the continuous
curriculum learning. By changing the precision requirement (ε)
up to every epoch, we add a new task to the curriculum, which
can smooth the training process and is easy to implement.
Compared to the similar methods show in the Kerzel et al.
[15] and Fournier et al. [16] studies, our continuous curriculum
strategy obviates intensive computation for learning status
evaluation and can be utilized in a real robotic arm.

III. BACKGROUND AND METHODOLOGY

Our PCCL algorithm is based on the continuous rein-
forcement learning mechanism, using the DDPG as the basic
framework. Hence, we first introduce the background of RL
and DDPG, followed by a description of reaching tasks. Then,
the overall PCCL approach is illustrated.

A. Reinforcement Learning

We formalize our RL-based reaching problem as a Markov
decision process (MDP). This process can be modeled as a
tuple (S,A, P,R, γ), where S and A denote the finite state and
action space respectively, P is the transition probability matrix
P := P ass′ = P[st+1 = s′|st = s, at = a] representing the
probability distribution to reach a state, given the current state
and taking a specific action, R is the state-action associated



reward space and can be represented as rt, given time t, and
γ ∈ [0, 1] is the discounted factor. The goal of the robot
is to learn a policy π by interacting with the environment.
The deterministic policy can be represented as π(at|st), which
guides the agent to choose action at under state st at a given
time step t to maximize the future γ-discounted expected
return Rt = E[

∑∞
i=0 γ

irt+i+1].

B. Deep Deterministic Policy Gradients (DDPG)

Because of the consideration of continuous state and action
values, we restrict our interest to continuous control. Popu-
lar continuous control RL algorithms are: Deep Q-Network
(DQN) [17], Continuous Actor Critic Learning Automation
(CACLA) algorithm [18], and the Trust Region Policy Opti-
mization (TRPO) [19], Proximal Policy Optimization (PPO)
[20] and Deep Deterministic Deep Policy Gradient (DDPG)
algorithms [21]. We selected DDPG as our algorithm platform,
which is an RL algorithm based on actor-critic architecture.
The actor is used to learn the action policy and a critic is
applied to evaluate how good the policy is. The learning
process involves improving the evaluation performance of the
critic and updating the policy following the direction of getting
higher state-action values. This algorithm can be seen as a
combination of Q-learning and actor-critic learning because it
uses neural networks as the function approximator for both
actor and critic (θQ, θπ). To solve the instability problems of
two networks and the data correlation in experiences, it uses
a replay buffer and target networks (θQ

′
, θπ

′
).

The differentiable loss for the critic is based on the state-
action value function:

Loss(critic) = Q(st, at|θQ)− yt, (1)

where Q is the output of the critic network that satisfies the
Bellman equation, yielding the expected state-action value;
and yt is the real value:

yt = rt + γ ∗Q(st+1, at+1|θπ
′
). (2)

During the training process, the parameters of these two
networks can be updated as follows:

θQ ← θQ − µQ · ∇θQLoss(critic), (3)

θπ ← θπ − µπ · ∇aQ(st, π(st|θπ)|θQ) · ∇θππ(st|θπ), (4)

where the symbol ∇ denotes gradients, µQ and µπ represent
the learning rate of these two networks, respectively. After the
update of the actor and critic, the target networks’ weights are
merely the copy of the actor and critic networks’ weights.

There are several reasons behind the choice of this al-
gorithm: First, it works in both the continuous state and
the action space, which eliminates the need for the action
discretization in the use of DQN (the previously dominant
method for continuous state space). Secondly, it is a deter-
ministic algorithm, which is beneficial for robotics domains
as the learned policy can be easily verified with reproduction
once the policy has been converged, compared with stochastic
algorithms such as TRPO and PPO. Thirdly, DDPG uses the

Fig. 2: DDPG in a UVFAs framework

experience replay buffer to improve stability by decorrelating
transitions. This technique can be modified to use additional
sources of experience, such as expert demonstrations [10]
[12], which has been shown to be effective for improving the
training process.

C. Reach Task

The reach task is a fundamental component in robot ma-
nipulation that requires the end effector to reach to the target
pose while satisfying Cartesian space constraints for various
manipulation tasks. We aim to use reinforcement learning to
train a UR5e on a multi-goal reach task, in which a value
function (policy) is trained to learn how to map the current
states into the robot’s next action to reach the target goal.
An example of a trained reach process is presented in Fig. 1,
where the UR5e starts from a fixed initial pose and follows
the policy in taking actions to reach the goal pose.

A large body of recent studies has focused on position-
only reaching [22] or scenarios where the end effector is
forced to reach the targets from one direction, usually top
vertical [23]. Such simplification can greatly simplify the
tasks but is difficult to generalize to interact with restricted
objects. The skills learned for reaching are not easily used
for further manipulations which normally require orientation
constraints. We move one step forward by considering the
reach orientation. For the sake of simplicity, we couple the
4th joint angles with the 2nd and 3rd joints by always setting
the 4th joint angles vertical to the ground. This is supported
by the feature of the UR5e in that the 2nd, 3rd, and 4th
joints are in the same plane. In this way, we also decrease
the orientation dimension of the end effector from 3 to 2 as
the Roll axis is fixed. This joint coupling technique simplifies
the task significantly while still being useful for right hand



Algorithm 1: PCCL with DDPG based on UVFAs

1 Initialize critic network Q̂(s, a, g|θQ̂) and actor
network π(s, g|θπ) with weights θQ̂ and θπ

randomly;
2 Initialize target critic network Q̂′ and actor network π′

weights θQ̂
′
= θQ̂ and θπ

′
= θπ;

3 Initialize experience replay buffer R;
4 for e in max epochs do
5 Compute curriculum ε from equation (11);
6 for i in max episodes do
7 s, g = Env.reset() ;
8 g = g.append(ε);
9 for j in max steps do

10 a = epsilon greedy exploration;
11 next s, r, done = Env.step(a, g);
12 Add(s, a, next s, r, g) into R;
13 s = next s;
14 if done then
15 break;

16 for k in training steps do
17 Randomly sample N experience from R;
18 Critic and actor network weights update:

following equations (1)(2)(3)(4) ;
19 Update the target networks:;
20 θQ̂

′
= τθQ̂ + (1− τ)θQ̂′

;
21 θπ

′
= τθπ + (1− τ)θπ′

;

oriented reach tasks as it covers almost all of the reaching
directions from the right side and the top.

In this study, we formulate the reach task as an MDP process
with definitions of the state, action, goal and reward:

State: The current pose of the end effector and joint angles,
as defined in Eq. (5). The pose is composed of positions and
orientations of the end effector in which we set the position
with meters as the unit and the orientation with the roll-pitch-
yaw order of the Euler angles in radian units. The angles of
the joints j = [j1, j2, j3, j4, j5, j6], which are also in radian
units.

s = [eex, eey, eez, eeRx, eeRy, eeRz, j], (5)

Action: We consider the joints’ increments as the action
(defined as a in Eq. (6)), in which the ai represents the
normalized joint angle change for the ith joint. The angles
of the 4th joint is related to a2 and a3 to ensure its always
vertical to the ground.

a = [ai]; i ∈ {1, . . . , 6} ai ∈ [−1, 1],

a4 =

− π − a2 if
∣∣∣π
2
+ a2

∣∣∣+ a3 ≥ π,

− a3 − a2 otherwise.

(6)

For stable training, we bound the action value within the
range of -1 and 1. The maximum amount of change for the

joint value is π/6. Thus, the action of -1 means decreasing the
joint value by π/6, while 1 means increasing the joint value
by π/6. Furthermore, the final computed actions are bounded
by the joints limitations.

Goal: The goal is derived by uniformly sampling joint
angles within the joint’s limitations. Based on these joint
angles, setting the forward kinematics result (end effector’s
pose) in Cartesian space as the goal can ensure a reachable
target pose.

goal = [eex, eey, eez, eeRx, eeRy, eeRz]. (7)

Reward: Designing the reward function is a key to the
success of RL. We compare our algorithm based on two
types of reward: dense and sparse reward functions, as they
are commonly used for reaching tasks. Thus, we give both
definitions as follows:

For the dense reward, the reward is given based on the
Euclidean distance between the end effector and the goal
pose. If both the position distance dist(p) and the orientation
distance dist(o) are smaller than the required precision (ε),
we consider it a successful action and set the reward as 1.
Otherwise, the reward is set to penalize the distance, which
is a weighted summation of the position distance and the
orientation distance.

dist(ee, goal) = α · dist(p) + β · dist(o), (8)

where α, β ≥ 0 and α + β = 1. They are representing the
weight factors of the position distance and orientation distance,
respectively. In this study, these two distances are within the
near range, and we set both weight factors to 0.5.

r =

{
1 if ε < dist(p) and ε < dist(o),

− dist(ee, goal) otherwise.
(9)

For the sparse reward condition, a successful move is rewarded
by 1, otherwise, 0.02 punishment is given for the energy
consumption.

r =

{
− 0.02 ε < dist(ee, goal),

1 ε ≥ dist(ee, goal).
(10)

D. Precision-based Continuous Curriculum Learning (PCCL)

Curriculum learning is a technique that focuses on improv-
ing the training efficiency on difficult tasks by learning simple
tasks first [7]. Most of the previous studies in this field are
focused on defining discrete sub-tasks as the curriculum for
agents to learn. For our multi-degree-of-freedom (DoF) reach
environment, the shift between discrete precision can easily
result in an unstable performance as the skills learned in the
previous tasks also require time to adjust to the new, stricter
tasks. However, the continuous CL can smooth the learning
by continuously shrinking the precision.

In this section, we focus on a precision-based continuous
curriculum learning (PCCL) method, which uses a continuous
function to change the curriculum (required precision). The
scientific challenge arises how to design a function that works



as the generator of the curriculum, just like the job of a teacher
to choose the practical level of curriculum for the students.

Framework Definition: A detailed mathematical descrip-
tion of the discrete CL framework has been formulated in
the study by Narvekar et al. [24]. Bassich et al. [25] ex-
tended it with decay functions as the curriculum generator
for continuous CL. We formulate our continuous curriculum
learning model based on their work. The task domain is de-
scribed as D, which is associated with a vector of parameters
F t = [F0, ...Fn]. The curriculum generator is described as
τ , which is used to change the curriculum Mt = τ(D,F t)
[24]. An important rule when designing the generator is that
the difficulty should increase monotonically. We refer to the
difficulty of the curriculum in the environment as O. Thus, it
should satisfy the constraint: O(Mt−1) ≤ O(Mt).

Compared with discrete CL, the distinguishing feature of
continuous CL is the parameter t. It can be referred to as
an episode, which means changing the curriculum up to every
episode. In this study, we refer to the parameter t as the epoch
number for updating the policy.

For the decay function, Bassich et al. [25] categorized it
into two classes: fixed decay and adaptive decay functions,
based on if it depends on the performance of the agent when
deriving the curriculum. The fixed decay functions have the
benefit of being easily implemented with only a few parame-
ters to be considered, with the downside being that it lacks
flexibility. The adaptive decay functions may generalize to
different configurations, but they take up much time evaluating
the performance to get feedback for computing the suitable
curriculum, especially for complex high-dimensional environ-
ments. Furthermore, designing the adaptive decay function
requires prior expert knowledge. Thus, we choose the fixed
decay function for generating the training curriculum. Once
the parameters of the fixed decay function are well designed
at the outset, the policy can enjoy the advantages continuously.
We formulate the decay function based on a cooling schedule
[26] to generate the curriculum. It contains four parameters:
start and end precision (e0 and em respectively), the number
of epochs that a decay function should experience (s), and
the monotonic reduction slope of the decay (α). The decay
function is formalized as a power function (11):

ε = em +

(
s− k
s

)α
(em − e0), (11)

where k ∈ [0, s] represents the current epoch number, s is
the total number of epochs for the entire precision reduction
process, and α ∈ (0,∞) is the slope of the decay function.
The precision (ε) of the training process decreases gradually
following the equation (11). If α is smaller than 1, the initial
decaying process is slower with a smaller slope α. The decay
function is a linear function when α is equal to 1. If α is larger
than 1, then the larger of the slope, the faster the decay of the
initial part of the precision behaves.

The implicit problem with using CL in the precision (ε)
for a reaching task is that it can violate the MDP structure
of the reach problem by changing the requirements for a

successful reach. In this way, the state can be terminated
or under different precision requirements, leading to fake
updates in the RL algorithm. One of the methods to solve
this problem is using universal value function approximators
(UVFAs), as proposed by Schaul et al. [27]. It formalizes a
value function to generalize both states and goals. In our multi-
goals reach environment, the goals are generated randomly in
the entire workspace, which means the training policy not only
need to consider the state but also the goals. Furthermore, in
different stages of the training process of our proposed PCCL
method, the precision level for goals are different, which
makes the model perfect to be used with the architecture of the
UVFAs. Under the architecture of the UVFAs, the goal of the
environment is composed of the pose of the targets, and the
precision of a successful reach. Therefore, the inputs for the
actor and critic in DDPG are being extended with the renewed
goal, updating those fake experience to the right one that
meets the MDP feature. The framework of the UVFAs based
DDPG algorithm can be found in Fig. 2. We also illustrated
the pseudo-code of our proposed algorithm in Algorithm. 1,
in which the actor π, critic Q and their target networks (π′,
critic Q′) are embedded into the UVFAs framework, including
the goal as input.

IV. EXPERIMENTS

In this section, we first introduce the environmental setup
and baseline. Because there are no standard environments
for multi-goal reach, we create our environment using the
Gazebo simulator and setup a Python interface between the
RL algorithm and the agent environment. We then compare the
performance and efficiency of our proposed PCCL approach
with that of the vanilla DDPG in the context of various reach
tasks performed by a UR5e robot arm in both simulation and
real world environments.

A. Environmental Setup

All of the experiments are conducted in the Ubuntu 16.04
system and ROS ’Melodic’ package. Gazebo 9.0 is used for
simulation. The system is encapsulated into a Singularity
container2, which can be easily reproduced with a bootstrap
file in any environment. For the parameter search process, the
university’s HPC facility with CPU nodes was used.

On the algorithm side, a UVFAs based multi-goal DDPG is
used as the baseline, in which the robot is told what to do by
using an additional goal as input. The pipeline of the algorithm
is illustrated in Fig. 2. The input layer of the actor is composed
of state and goal. The output for the actor is the joint angles
increments for all of the six joints. For the critic, the input layer
is composed of current state, action, and goal, while the output
is the Q value for the actions given the state and goal. Both of
the actor and critic networks are equipped with three hidden
layers with the size of (512, 256, 64), followed by the same
ReLU [28] activation function. For the output layer, the critic
network does not use an activation function to keep the real

2https://sylabs.io/guides/3.4/user-guide/



Q value (state value estimation) unbounded, while the policy
network uses the tanh activation function. The DDPG hyper-
parameters used in the experiments are listed in Table I. For
the hyper-parameters in PCCL, the start curriculum means the
starting reach precision for the position and orientation. For the
dense reward setting, we set the starting precision (ε) to 0.15
(units for the position: m, units for the orientation: radian). For
the sparse reward setting, it is harder to get positive rewards.
Through the experiment, we find out that 0.25 is the start
precision at which something can be learned using the sparse
reward setting. We, therefore, enlarge the start precision to
0.25 for the sparse reward setting. Furthermore, because the
sparse reward environment is sensitive to the change of the
precision (ε), we design the curriculum changing in a much
slower way with the curriculum learning period (s) of 2.5K
epochs compared to 1.0K with dense reward to reduce to
the final precision. In both of the settings, a slope of 0.8
is selected for the decay function as it works well for both
rewards settings.

TABLE I: DDPG Training Hyperparameters

Hyperparameters Symbol Value
Discount factor γ 0.98

Target update ratio τ 0.01
Actor learning rate µQ 0.0001
Critic learning rate µπ 0.001

Gaussian action noise σ 0.1
Replay buffer size B 5e+6

Batch size N 128
Epochs of training E 3K
Episodes per epoch M 10
Steps per episode T 100

Training steps per epoch K 64
Exploration method * ε greedy

B. Simulation Experiments

We evaluate the training efficiency and performance of the
proposed approach against the vanilla DDPG algorithm on
both sparse reward and distance-based dense reward scenarios.

At the beginning of each episode in training, the robot is ini-
tialized to have the same joint angles: [−π2 ,−

π
2 , 0,

π
2 ,

π
2 ,−

π
2 ],

and then is trained to reach a target pose that is derived
from a randomly selected joints configuration. If the pose
distance is within the precision before running out of the
maximum steps, this step is regarded as a successful reach and
the episode is being terminated. We record the accumulated
steps every 10 epochs and evaluate the averaged success
rate every 100 epochs over 100 various target poses. The
simulation experiment results can be seen in Fig. 4. Our
PCCL method is able to improve the performance in both
rewards settings, especially for the sparse situations, where
PCCL allows the task to be learned at all compared to the
multi-goal DDPG baseline (from 0.0% to 75%). We notice
that there is a tendency of decreasing performance at the later
stage of training; we attribute it to the increased goal difficulty
that making the task harder to learn. Besides, from Fig. 4a, we
can see that our proposed approach can reduce the number of
necessary steps by nearly 1.0e+ 05 with less variance in the

dense-reward situation. For reinforcement learning, an efficient
policy could learn the skills faster and result in an earlier
termination in episodes, thus requires fewer steps during the
training period, implying less time on training. Specifically, the
total training time is decreased by 19.9% in the dense-reward
condition, which is summarized in Table II. In the sparse-
reward setting, the training time of our PCCL method is even
less than the dense-reward setting with the normal multi-goal
DDPG algorithm.

Once the policy has been learned in simulation, we evaluate
the average success rate in both simulated and physical UR5e
robots over 100 runs. The averaged results are shown in Table
III. Based on the obtained results, it is obvious that the policy
trained in simulation can be applied to the real robot without
any further fine tuning. Furthermore, the reach policy learned
in simulation can be tested in the real world with almost the
same performance.

TABLE II: Training time comparison

Methods Total time
Dense reward Sparse reward

DDPG 22h29min6s 52h30min
PCCL-DDPG 18h01min33s 19h41min20s

TABLE III: Performance on trained policy

Methods
Success rate (%)

Dense reward Sparse reward
Sim Real Sim Real

DDPG 0.950 0.950 0.000 0.000
PCCL-DDPG 0.982 0.980 0.715 0.705

C. Real World Experiments

We test the manipulation performance on two tasks: pushing
and grasping based on the reaching policy learned by our
PCCL algorithm. In this experiment, a UR5e arm, fitted with
a Qbhand, is used to test the performance of the proposed
approach. Towards this goal, the proposed approach is inte-
grated into the RACE robotic system [29] [30]. In particular,
the RACE framework provides the pose of active objects as
the goal to reach by the arm. The experimental settings for
pushing and grasping tasks are shown in Fig. 3.

For the pushing task, a juice box is randomly placed at
a reachable position in the workspace. The initial goal is to
move the arm to the pre-push area and then push the juice box
from point A to point B as shown in Fig. 3a.

For the grasping task, a cup and a basket are randomly put
on the table that can be reached by the arm. The initial goal of
this task is to move the arm to go to the pre-grasp pose of the
cup (i.e., represented as point A in Fig. 3b) using the trained
PCCL algorithm. Once it reaches the target pose, the RACE
system will take over the responsibility of controlling the hand
to grasp the cup. After grasping the object, the robot moves
the cup to the top of the basket using the PCCL algorithm
(i.e., reach to pose B, as shown in Fig. 3b). Finally, the robot
releases the cup into the basket. A video of the experiment



A B

(a) Push scenario

A

B

(b) Grasp scenario

Fig. 3: Push and grasp experiments: the proposed algorithm is mainly responsible for moving the robotic arm to the target pose. Object
perception and object grasping are done by the RACE system [29] [30]. In the case of push scenario (a), the arm first goes to the pre-push
pose, as shown by a red point A. Then, the robot pushes the juice box object from point A to the target pose B. In the case of object
grasping scenario (b), the robotic arm first reaches the pre-grasp pose as shown by the red point A, then grasps the cup and manipulates it
on top of the basket, as shown by point B.

(a) Average accumulated steps with dense reward. (b) Average test success rate with dense reward.

(c) Average accumulated steps with sparse reward. (d) Average test success rate with sparse reward.

Fig. 4: Simulation results on average accumulated steps, i.e., accumulated simulation steps during the learning process, and average success
rate: The shaded regions represent the variance over ten runs. The gray dash lines in (b) and (d) indicate the epoch that arriving the final
curriculum, after which the PCCL method has the same precision criteria as the baseline.

is available3. These demonstrations show that although the
policy is trained on the initial up pose, it can be generalized
to other different initial states (e.g. pre-push and pre-grasp A
poses). Furthermore, the policy learned in simulation can be
directly applied on the physical robot. Additionally, the learned
skill can be further utilized in more complicated scenarios, as
shown by the success of the manipulation tasks. Accelerating
the training process of RL for reaching tasks may benefit not
only the RL field but the robotics autonomy domains as well.

3see https://youtu.be/WY-1EbYBSGo

V. DISCUSSION AND CONCLUSION

We have proposed a precision-based continuous curricu-
lum learning (PCCL) approach to accelerate reinforcement
learning for multi-DOF reaching tasks. The technique utilizes
the start-from-simple rule to design a continuous curriculum
generator: decay function. The experimental results show that
the proposed method can improve the RL algorithm training
efficiency and performance, especially for a sparse and binary
reward scenario, which fails to learn the task in the baseline
environment.



Compared to other curriculum learning based methods
on multi-goal reach tasks [15] [16], the proposed approach
enables the training of a high-dimensional pose reaching
task by deploying a continuous-function based curriculum
strategy. Although the predefined decay function lacks general
flexibility compared with adaptive functions, it is an efficient
way to learn complex tasks and environments. Conversely, the
adaptive functions would be required to evaluate the difficulty
level of the environment and trained policy status frequently
during the learning process, which normally means success
rate evaluation or environment analysis. Those evaluation
steps entail a heavy computation burden for the agents and
contain delayed information for training. Our method can be
generalized to different robotic arms and environment. The
main limitation is that the difficulty of the situation should be
related to the precision requirements.

Note that although the reach task that we consider in this
study is simple, it mainly serves as a convenient benchmark
to straightforwardly demonstrate the significant improvement
of training speed with our proposed PCCL method in high-
dimensional continuous environment. By improving the effi-
ciency of training RL algorithm, we, to some extend, pave
the way for further investigation of some RL-based robotics
applications, because the trained reach policy is a preliminary
step towards further real world complex robotics manipulation
tasks. As a future work, we plan to take obstacle avoidance
into consideration, and explore the possibility of curriculum
learning on complex motion planning.
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