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Abstract—We investigate the application of Temporal Convo-
lutional Neural Networks (TCNNs) for solar power forecasting.
TCNN is a novel convolutional architecture designed for sequen-
tial modelling, which combines causal and dilated convolutions
and residual connections. We compare the performance of TCNN
with multi-layer feedforward neural networks, and also with
recurrent networks, including the state-of-the-art LSTM and
GRU recurrent networks. The evaluation is conducted on two
Australian datasets containing historical solar and weather data,
and weather forecast data for future days. Our results show that
TCNN outperformed the other models in terms of accuracy and
was able to maintain a longer effective history compared to the
recurrent networks. This highlights the potential of convolutional
architectures for solar power forecasting tasks.

Index Terms—solar power forecasting, deep learning, temporal
convolutional neural network, recurrent neural networks

I. INTRODUCTION

Photovoltaic (PV) solar power is regarded as one of the
most promising sources of renewable energy. It is clean, easily
available and also cost-effective due to the recent advances in
PV technology and the declining cost of solar panels.

However, the large-scale integration of solar energy into
the electricity grid is challenging. The reason for this is the
variable and uncertain nature of the generated solar power
as it depends on solar irradiance, cloud cover and other
weather factors. Specifically, unexpected changes in large,
grid-connected solar power plants can destabilize the grid -
conventional electricity generators need to be turned off or
on to meet the downward or upward net ramping load needs.
If this cannot be done, the PV power generation would need
to be curtailed [1], to ensure safe and reliable operation of
the power grid. However, power plants have different startup
and shutdown time, e.g. conventional coal-fired generators are
too slow to start and need to be scheduled 8-48 hours in
advance [2]. Hence, there is a need to develop accurate PV
power forecasting methods, to support scheduling and dispatch
decisions, meet the minimum generation and ramping require-
ments, in order to facilitate reliable and efficient operation of
the electricity grid.

In this paper, we consider the task of simultaneously
predicting the PV power output for the next day at half-
hourly intervals. Specifically, given: (1) a time series of PV
power output up to day d: PV = [PV1, ..., PVd], where

PVi is a vector of half-hourly PV power output for day
i, (2) a time series of weather vectors for the same days:
W = [W1, ...,Wd], where Wi is a weather vector for day
i, and (3) a weather forecast vector for the next day d + 1:
WFd+1, our goal is to forecast PVd+1, the half-hourly PV
power output for day d+ 1.

Different approaches for solar power forecasting have been
proposed based on statistical and machine learning methods.
The statistical approaches use classical time series forecast-
ing methods such as exponential smoothing, autoregressive
moving average and linear regression [3]–[6]. The machine
learning approaches utilize a variety of algorithms, e.g. neural
networks [3], [5]–[9], nearest neighbor [3], [5], [10], support
vector regression [5], [6], [11]–[13] and ensembles [6], [14]–
[16]. Neural network based approaches using feedforward
multi-layer networks are the most popular methods and have
shown good results. They are appealing as they can learn from
examples, model complex nonlinear relationships and also deal
with noisy data.

Another class of neural networks - Convolutional Neural
Networks (CNNs) have recently gained a lot of interest,
showing excellent performance in computer vision, speech
and language processing tasks [17]–[19]. A few recent studies
applied CNNs to time series forecasting with promising results
[20]–[22]. The motivation behind applying CNNs to time se-
ries data is that they would be able to learn filters that represent
repeated patterns in the series and use them to forecast future
values [20]. CNNs are also able to automatically learn and
extract features from the raw data without prior knowledge
and feature engineering. They may also work well on noisy
time series by discarding the noise at each subsequent layer,
creating a hierarchy of useful features and extracting only the
meaningful features [20].

In this paper, we investigate the application of Temporal
Convolutional Neural Networks (TCNNs) for solar power
forecasting. TCNN [23] is a novel convolutional architec-
ture, specifically designed for sequential modelling tasks. It
is informed by the best practice in convolutional networks
research, combining advanced concepts such as causal convo-
lutions, dilated convolutions and residual connections. TCNN
has demonstrated excellent results on benchmark sequence
tasks for processing image, language and music data. Our
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goal is to investigate its effectiveness for predicting solar
power time series and compare its performance with multi-
layer feedforward neural networks, and also Recurrent Neural
Networks (RNNs) including the standard RNN, the state-of-
the-art Long Short Term Memory (LSTM) and the recently
proposed Gated Recurrent Units (GRU) [24].

Our contribution can be summarized as follows:
1) We investigate the application of TCNN for solar power

forecasting. This is motivated by the success of TCNN
for other sequence forecasting tasks.

2) We compare the performance of TCNN with multi-
layer feedforward network, which is the most widely
used method for solar power forecasting, and also with
standard and advanced recurrent neural networks (RNN,
LSTM and GRU) which have not been widely studied for
solar power forecasting.

3) We propose a method for using data from multiple data
sources with TCNN and the recurrent neural networks.
The standard applications of these methods use univariate
solar data from a single source, while we propose a rep-
resentation that utilizes data from three sources: historical
PV and weather data, and weather forecast data for future
days.

4) We comprehensively evaluate the performance of TCNN
on two Australian datasets, containing data for two years.
Our results demonstrate that TCNN was the most accu-
rate model, outperforming the feedforward and recurrent
networks. This highlights its potential for solar power
forecasting as a viable alternative to the widely used
feedforward networks and the more complex recurrent
networks.

5) We study the impact of the sequence length on the
accuracy of all models and discuss the results.

II. DATA

A. Data Sources and Feature Sets

We collected data from two PV plants in Australia. The
two datasets are called the University of Queensland (UQ)
and the Sanyo datasets and contain both PV and weather data.
The data sources and extracted features for each dataset are
summarized in Table I and Table II respectively.

Solar PV data. The PV data for the UQ dataset was
collected from a rooftop PV plant located at the University
of Queensland in Brisbane, in the state of Queensland. The
Sanyo dataset was collected from the Sanyo PV plant in Alice
Springs, Northern Territory. The two PV plants are situated
about 2600 km apart in different climate zones. The UQ PV
data was obtained from [25], and the Sanyo PV data was
obtained from [26]. Both datasets contain data for two years
- from 1 January 2015 to 31 December 2016 (731 days).

Weather data. We also collected corresponding weather
data for the two datasets. The weather data for UQ dataset
was collected from the Australian Bureau of Meteorology
[27], from a weather station located close to the PV plant.
The weather data for the Sanyo dataset was collected from a
weather station located on the site of the Sanyo PV plant.

There are three sets of weather features - W1, W2 and WF,
described in Tables I and II for the two datasets.

W1 includes the full set of collected weather features -
14 for the UQ dataset and 10 for the Sanyo dataset. The 10
features are common for both datasets; the UQ dataset contains
four additional features (daily rainfall, daily sunshine hours
and cloudiness at 9am and 3pm) which were not available for
the Sanyo dataset.

W2 is a subset of W1 and includes only 4 features for the
UQ dataset and 3 features for the Sanyo dataset. These features
are frequently used in weather forecasts and available from
meteorological bureaus. The weather forecast feature set WF
is obtained by adding 20% Gaussian noise to the W2 data.
This is done since the weather forecasts were not available
retrospectively for previous years. When making predictions
for the days from the test set, the WF set replaces W2 as the
weather forecast for these days.

B. Data Preprocessing

The raw PV data was measured at 1-minute intervals for the
UQ dataset and 5-minute intervals for the Sanyo dataset and
was aggregated to 30-minute intervals by taking the average
value of every 30-minute intervals.

There was a small percentage of missing values - for the
UQ dataset: 0.82% in the PV power data and 0.02% in the
weather data; for the Sanyo dataset: 1.98% in the PV power
data and 4.85% in the weather data. These missing values were
replaced using a nearest neighbour method, applied firstly to
the weather data and then to the PV data. Specifically, if a day i
has missing values in its weather vector Wi, we find its nearest
neighbor day without missing values, day s, and replace the
missing values in Wi with the corresponding values from Ws.
Then, if a day i has missing values in its PV vector PVi, we
find its nearest neighbor day s, by comparing weather vectors
and replace the missing values in PVi with the corresponding
values from PVs.

Both the PV and weather data were normalised to the range
[0,1].

III. TEMPORAL CONVOLUTIONAL NEURAL NETWORK

For TCNN, we used the generic architecture proposed by
Bai et al. [23]. It builds upon recent CNN architectures for
sequential data such as WaveNet [19] but is specifically de-
signed to be simpler and to combine autoregressive prediction
with a long memory.

As shown in Fig. 1, TCNN is a hierarchical architecture,
consists of several convolutional hidden layers with the same
size as the input layer. In our case, the input is a sequence of
feature vectors corresponding to previous days, e.g. x1, ...,xd,
and the target is the PV vector for the next day: ŷd+1 =
PVd+1.

TCNN is designed to process data from one source, element
by element. Our data comes from three sources (PV solar,
weather and weather forecast) and the weather features are not
synchronised with the PV data - they are collected at different
frequencies, e.g. there are 20 values for the PV data (every



TABLE I
UQ DATASET - DATA SOURCES AND FEATURE SETS

Data source Feature set Description
PV data PV∈ <731×20 Daily: half-hourly solar power between 7am and 5pm.

Weather data 1 W1∈ <731×14

(1-6) Daily: min temperature, max temperature, rainfall, sunshine hours, max wind gust and
average solar irradiance;
(7-14) At 9am and 3pm: temperature, relative humidity, cloudiness and wind speed (cloudiness
is not available in Sanyo dataset).

Weather data 2 W2∈ <731×4 Daily: min temperature, max temperature, rainfall and solar irradiance. W2 is a subset of W1.
Weather forecast

data WF∈ <731×4 Daily: min temperature, max temperature, rainfall and average solar irradiance.

TABLE II
SANYO DATASET - DATA SOURCES AND FEATURE SETS

Data source Feature set Description
PV data PV∈ <731×20 Daily: half-hourly solar power between 7am and 5pm.

Weather data 1 W1∈ <731×10
(1-4) Daily: min temperature, max temperature, max wind gust and average solar irradiance;
(5-10) At 9am and 3pm: temperature, relative humidity and wind speed (cloudiness is not
available in Sanyo dataset).

Weather data 2 W2∈ <731×3 Daily: min temperature, max temperature and solar irradiance. W2 is a subset of W1.
Weather forecast

data WF∈ <731×3 Daily: min temperature, max temperature and average solar irradiance.

30 minutes) but only 1-2 values for a weather feature, e.g.
temperature at 9am and 3pm.

To facilitate the application of TCNN to data from multiple
data sources, we consider each element of the sequence as
a feature vector comprising the features from all sources.
Specifically, we have devised the following representation:
each element of the input sequence is a vector xi =
[PVi;W1i;WFi+1], corresponding to day i and containing
the PV features for day i, the weather features for day i and
the weather forecast features for day i+ 1.

TCNN includes three main techniques: causal convolutions,
dilated convolutions and residual connections.

x1 x2 x3 xd-1 xd xd+1 xd-1 xd xd+1 

yd+1 yd+1 

dilation=2dilation=2

dilation=4dilation=4

dilation=1dilation=1

Fig. 1. TCNN architecture

Causal convolutions. The output at time t is convolved
only with elements from time t or earlier time steps from the
previous layer. This principle has been used in Waibel’s time-
delay network [28] and the WaveNet architecture [19]. For the
hidden layers, zero padding of length kernel size-1 is used to
ensure that the hidden layers have the same dimensionality as

the input layer to facilitate the convolutions.
Dilated convolutions. This technique was introduced in

[19], [29] to enable large receptive fields, and in turn to capture
a long memory, which is not possible with causal convolutions
alone as they require a very deep neural network.

The dilated convolutional operator F on the sequence
element s is defined as:

F (s) =

k−1∑
i=0

f(i) · xs−d·i (1)

where f : {0, . . . , k − 1} → R is the convolution filter, x is
the sequential input, k is the filter size, and d is the dilation
factor.

While the convolution kernel remains the same for all layers,
the dilation factor increases exponentially with the depth of the
network: dl = 2l, where l is the network level. For example,
as illustrated in Fig. 1, d is 1 at the first layer (corresponding
to regular convolutions) and then it exponentially increases at
each layer, reaching 4 at the last hidden layer. This pyramidal
structure and aggregation effectively increases the receptive
field of TCNN without loss of input coverage, allowing for
long memory.

Residual connections. Residual blocks were introduced by
He et al. [30] to overcome the gradient vanishing problem in
networks with many layers. The main idea is to add the input
x to a block of stacked layers (transformation F) to the output
of this block by using shortcut connections:

o = σ(x+ F(x)) (2)

where σ is the activation function.
Fig. 2 illustrates the structure of the TCNN’s residual

block, consistent with [23]. There are two branches within
the TCNN residual block. The first one transforms the input x
through a series of stacked layers including two dilated causal



convolution layers, while the other branch is the shortcut
connection for the input x.

Dropout

ReLU

WeightNorm

Dilated Causal Conv

Dropout

ReLU

WeightNorm

Dilated Causal Conv

Dropout

ReLU

WeightNorm

Dilated Causal Conv

Dropout

ReLU

WeightNorm

Dilated Causal Conv

1x1 Conv 
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Fig. 2. Residual block in TCNN

However, the original input x and the output of the residual
block F could have different widths, and the addition cannot
be done. This can be rectified by using the 1× 1 convolution
layer on the shortcut branch to ensure the same widths.

In summary, TCNN has the following advantages compared
to RNN, LSTM and GRU [23]:

1) Larger receptive field due to the dilated convolutions,
allowing processing of longer input sequences. The re-
ceptive field size is flexible and can be easily adapted
to different tasks by changing the number of layers and
using different dilation factors.

2) More stable gradients due to the non-recurrent architec-
ture (using a backpropagation path that is different that
the sequential direction) and the use of residual blocks
and shortcut connections.

3) Faster training as the input sequence can be processed at
once, not sequentially as in recurrent networks, without
the need to wait for the predictions of the previous
timestamps to be completed before the current one. The
convolutions in TCNN can be computed in parallel as
each layer has the same filter.

4) Simpler and clearer architecture and operation, as it does
not include gates and gating mechanisms.

IV. METHODS USED FOR COMPARISON

A. Multi-layer Feedforward Neural Networks

Multi-layer feedforward neural networks (NNs) have been
widely used for solar power forecasting [3], [5]–[9].

Most of these studies use the data from the previous
day as input and predict the PV values for the next day
simultaneously, using multiple neurons in the output layer.

In this study, we adopt a similar architecture but instead
of constraining the input to a single day we allow using a
sequence of previous days. The input of NN is a sequence

Input 
Layer

Output
Layer

Hidden 
Layers

PVd,1

PVd,20

W1d,1

WFd+1,3

W1d,10

WFd+1,1

PVd+1,1

PVd+1,20PVd+1,20

Fig. 3. NN architecture

x1x1 x2x2 xdxd xd+1xd+1xd-1xd-1

yd+1 yd+1 

Fig. 4. RNN architecture

of days x1, ...,xd, where each day d is represented as a
vector of PV, weather and weather forecast data xd =
[PVd;W1d;WFd+1], and the output of NN is the PV vector
for the next day d+1: PVd+1.

For example, Fig. 3 illustrates the NN structure for the
Sanyo dataset with an input sequence length of 1 day. The
input consists of 20 PV values for day d, 10 weather values for
day d and 3 weather forecast values for day d+1, see Table II.
NN has 20 output neurons corresponding to the 20 PV values
for day d+1.

The best number of hidden layers and neurons in them was
determined using the validation set, as discussed in Sec. V.

B. Recurrent Networks

RNNs are designed for processing sequential data. In
contrast to the multi-layer feedforward networks, they have
recurrent connections between the hidden neurons to keep
information from previous time steps. This helps to find
temporal associations between the current and previous data.
RNNs can process sequences of any length.
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Fig. 5. LSTM cell architecture

Theoretically, RNNs can capture information from many
previous steps but in practice it is difficult to access this
information due to the vanishing or exploding gradient prob-
lems [31], with the first one being more frequent. These
gradient issues are usually more serious for RNN than for deep
feedforward networks, because of the repeated multiplication
of the same weight matrix during training in RNN [32]. To
deal with the gradient problems, Pascanu et al. [33] proposed
a modification in the standard stochastic gradient descent
algorithm - the gradient clipping strategy which limits the
norm of the gradient matrix.

In our implementation of RNN, we use the same input
representation as in TCNN and predict all PV values for the
next day simultaneously. Fig. 4 depicts the RNN structure with
an input sequence of d days. The input is a sequence of feature
vectors for previous days: x1, ...,xd and the output is the PV
vector for the next day d + 1: ŷd+1 = PVd+1. The feature
vector xi is constructed in the same way as in TCNN.

We employ the gradient clipping method to minimize the
vanishing gradient problem and determine the number of
hidden neurons by using the validation set as discussed in Sec.
V. This applies to all prediction models, not only to RNN.

C. LSTM Networks

LSTM network [34] is an advanced version of RNN, de-
signed to overcome the gradient problems. They have the same
structure as RNN (see Fig. 4) but replace the RNN hidden layer
with special units called memory cells. A memory cell has a
state and three gates - input, output and forget. The memory
cells store long-term information, and LSTM can erase, write
and read information from the cells by controlling the input,
output and forget gates.

Fig. 5 shows the architecture of a single LSTM cell at the
time step for day d. This cell uses the input xd, the previous
hidden state hd−1 and the past memory cd−1 to generate the
new memory cd which contains the information from the past
sequences including xd. Specifically, the input gate controls
which part of the new generated cell content ĉd should be
written to the output cell cd; the forget gate controls which part
of the past cell content cd−1 should be removed and the output

xd

hd hd 

hd-1 hd

tanhtanhtanh

1-1-

σ σ 
hd

Fig. 6. GRU cell architecture

gate controls which part of the new generated cell content ĉd
should be output to the new hidden state hd.

Although the gating mechanism makes LSTM easier to
preserve information from longer input sequences than RNN,
the gradient still shrinks or explodes at a lower rate. The
use of complex cells with gating mechanism increases the
computation costs and makes LSTM difficult to interpret.

D. GRU Networks

The GRU network was proposed by Cho et al. [24] as a
simpler alternative to LSTM.

As illustrated in Fig. 6, the GRU cell also employs a gating
mechanism but does not have a cell state cd as in LSTM - it
uses the hidden state hd to achieve the functionality of both
the cell state cd and hidden state hd at the same time.

Different from LSTM, a GRU cell involves less computation
and contains two gates only: the reset gate controls which
part of the past hidden state is used to generate the new
hidden state ĥd, and the update gate controls which part of
the new generated hidden state ĥd and past hidden state hd−1

is updated or preserved. Similarly to LSTM, GRU can easily
retain information from the past sequences. Chung et al. [35]
compared RNN, LSTM and GRU on music and speech signal
processing tasks and found that LSTM and GRU performed
similarly, and outperformed RNN.

E. Persistence Model

As a baseline, we developed a persistence prediction model
Bper which considers the PV power output of day d as the
forecast for day d+1.

V. EXPERIMENTAL SETUP

All prediction models were implemented in Python 3.6
using the PyTorch 1.3.0 library.

A. Data Split

For both dataset, the PV power and corresponding weather
data were split into two equal subsets: training and validation
(the first year) and test (the second year). The first year data
was further split into training set (70%) used for model training
and validation set (30%) used for hyperparameter tuning.



TABLE III
SELECTED HYPERPARAMETERS FOR UQ DATASET

Model Hidden layer
size

Learning
rate

Dropout
rate

Gradient
clip

Sequence
length

Kernel
size

Number
of levels

NN [35] 0.005 0.1 0 9 - -
RNN [40,30,25] 0.005 0.1 0.5 3 - -

LSTM [30] 0.005 0.1 0 3 - -
GRU [30] 0.005 0.1 0 9 - -

TCNN [25] 0.005 0.1 0.5 9 5 6

TABLE IV
SELECTED HYPERPARAMETERS FOR SANYO DATASET

Model Hidden layer
size

Learning
rate

Dropout
rate

Gradient
clip

Sequence
length

Kernel
size

Number
of levels

NN [40,35,25] 0.005 0.1 0.5 1 - -
RNN [35] 0.01 0.1 0.5 1 - -

LSTM [40,30,25] 0.005 0.1 0 1 - -
GRU [40] 0.005 0.1 0.5 9 - -

TCNN [25] 0.01 0.1 0 9 5 6

B. Evaluation Measures

To evaluate the performance on the test set, we used the
Mean Absolute Error (MAE) and the Root Mean Squared
Error (RMSE).

C. Tuning of Hyperparameters

The tuning of the hyperparameters was done using the
validation set with grid search.

For NN, RNN, LSTM and GRU, the tunable hyperparame-
ters and options considered were - hidden layer size: 1 layer
with 25, 30, 35 and 40 neurons, 2 layers with 35 and 25,
40 and 25 neurons, 3 layers with 40, 30 and 25, 40, 35 and
25 neurons; learning rate: 0.005 and 0.01; dropout rate: 0.1
and 0.2; gradient clip norm threshold: 0 (disabled) and 0.5;
sequence length: 1, 3, 6, 9, 12, 15 and 18; batch size: 64;
number of epochs: 120. The activation functions were - for
NN: ReLu for the hidden layers and linear for the output layer;
for RNN, LSTM and GRU - tanh for the hidden layers and
linear for the output layer.

For TCNN, the tunable hyperparameters and options consid-
ered were - hidden layer size: 35 and 25 neurons; convolutional
kernel size: 3, 5 and 7; number of levels: 3, 4 and 6; learning
rate: 0.005 and 0.01; dropout rate: 0.1 and 0.2; gradient clip
norm threshold: 0 (disabled) and 0.5; sequence length: 1, 3,
6, 9, 12, 15 and 18; batch size: 64; number of epochs: 120;
activation functions: ReLu for the hidden layers and linear for
the output layer.

For all models, the training algorithm was the mini-batch
gradient descent with Adam optimization and gradient clip-
ping, with MAE as a loss function. The weight initialization
mode was set to normal and the initial learning rates of 0.01
and 0.005 were annealing by a multiplication factor of 0.5 and
0.8, respectively, every 15 epochs.

TABLE V
ACCURACY OF ALL MODELS

UQ dataset Sanyo dataset
Method MAE (kW) RMSE (kW) MAE (kW) RMSE (kW)
Bper 124.804 184.293 0.749 1.252
NN 75.203 101.691 0.564 0.754

RNN 74.691 102.991 0.511 0.723
LSTM 74.270 100.982 0.525 0.726
GRU 74.401 101.194 0.559 0.742

TCNN 70.015 98.118 0.510 0.721

The selected best hyperparameters for all models are listed
in Tables III and IV for the two datasets, and were used for
the evaluation on the testing set.

VI. RESULTS AND DISCUSSION

A. Overall Performance

Table V shows the MAE and RMSE results of all models
for the UQ and Sanyo datasets. The main results can be
summarized as follows:

l TCNN is the most accurate prediction model, and NN is
the least accurate model on both datasets.

l TCNN outperforms all recurrent networks. An important
advantage of TCNN is its simpler architecture and oper-
ation as it doesn’t involve gating mechanisms.

l Comparing the three recurrent models: on the UQ dataset,
LSTM and GRU perform similarly and better than RNN,
while on the Sanyo dataset RNN is the best recurrent
model followed by LSTM and GRU. Considering the re-
sults on both datasets, overall LSTM is the best recurrent
network.

l On both datasets, the best TCNN structure is the same:
sequence length l = 9 days, hidden layers = 6, hidden
layer size = 25, convolutional kernel size = 5 and number
of residual blocks = 6. This architecture may be a good
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Fig. 7. Performance of all models on: (a) UQ dataset and (b) Sanyo dataset

starting point for exploring TCNNs for 1-day ahead solar
power forecasting.

l Regarding the input sequence length, Table III shows that
both RNN and LSTM selected the same short sequence
as optimal (1 day for the UQ dataset and 3 days for
the Sanyo dataset), while GRU and TCNN selected long
sequences - 9 days for both datasets. The short sequence
length for LSTM is consistent with the results in [22].

l Although TCNN and GRU use the same sequence length,
TCNN performs much better than GRU, which shows
the advantages of TCNN for effectively using long input
sequences.

l All neural network models outperform the persistence
model used as a baseline Bper.

B. Input Sequence Length and Accuracy

We also investigated the effect of the input sequence length
l on the accuracy. The results are shown in Fig. 7 and can be
summarized as follows:

l TCNN outperforms all other prediction models for all
sequence lengths, except for one case: l = 6 on the Sanyo
dataset, where RNN is the best prediction model.

l The best results are achieved by TCNN for l = 9 for the
UQ dataset and l = 12 for the Sanyo dataset.

l The performance of TCNN is relatively stable for all
sequence lengths, while the performance of the other
prediction models varies considerably and generally de-
creases with increasing the sequence length.

l The NN accuracy on both datasets decreases significantly
as the length of the input sequence increases. The best
results are achieved for l = 1-3 for the UQ dataset l
= 3 for the Sanyo dataset. This is consistent with the
results of Torres et al. [8] who found that NN performs
better with shorter sequences. However, we note that it
may be possible to improve the results for the longer
input sequences by feature selection and dimensionality
reduction before the NN training.

l The trend for RNN is also a decrease in accuracy as
the length of the input sequence increases, although less
drastic than for NN. A possible explanation is that the
gradient problems in RNN become more serious with
longer sequences, due to the repeated multiplication by
the same weight matrix. Hence, it is harder for RNNs to
learn the recurrent matrix with longer sequence although
the longer sequence could provide more information.

l LSTM also shows a decreasing accuracy on both datasets
as l increase. The accuracy is more stable on the UQ
dataset but highly fluctuating on the Sanyo dataset with
a sharp decrease in accuracy for l > 3 and especially for
l = 12.

l GRU shows a decreasing accuracy on the Sanyo dataset
and more fluctuating performance on the UQ dataset with
low accuracy for l = 3-9 but a slight improvement for
l > 12.

Hence, the results show that in contrast to the other neural
network models, TCNN is able to maintain a much longer
effective history which is evident by its relatively stable and
accurate performance for all sequence lengths. TCNN is able
to extract informative features from long sequences effectively
with the dilated causal convolutional filters. The use of residual
blocks helps to preserve the input information and deal with
the gradient problems.

VII. CONCLUSION

In this paper, we studied the application of TCNN, a novel
convolutional architecture for time series data, for forecasting
the PV power generation for the next day. We compared the
performance of TCNN with multi-layer feedforward neural
networks and three recurrent neural networks - RNN, LSTM
and GRU, on two Australian solar power datasets, containing
data from three sources - historical solar and weather data, and
weather forecast data for future days. Our results indicate that
TCNN was the most accurate model, followed by the recurrent
architectures and finally the feedforward neural network. Com-



pared to the recurrent models, TCNN offers another advantage
- it is simpler as it doesn’t involve gating. We also investigated
the effect of the sequence length on the accuracy and found
that TCNN outperforms the other models for all sequence
sizes and is able to maintain a longer effective history. The
best results for TCNN were achieved for sequence of length
9 and 12. Hence, we conclude that temporal convolutional
architectures such as TCNN are promising methods for solar
power forecasting and should be investigated further.
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