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Abstract—Self-driving cars are becoming slowly but surely
the future of transport. Nonetheless, in order to achieve fully
automatic operation, several challenges are still needed to be
tackled. One of the main goals that is currently being pursued
is a very accurate scene understanding and object detection.
In this regard, the most accurate object detectors are image-
based. However, these methods yield critical flaws that make
them prone to error in some specific scenarios. For instance,
actual objects would be detected in depictions of such objects.
The urban environment is strewn with these cases. Namely, in
billboards and advertisements. However, most of the self-driving
cars feature a lidar that provides 3D perception. This sensor
could help to disambiguate the cases mentioned before.

In this paper, we combine the accuracy of 2D deep learning
object detectors with a 3D Convolutional Neural Network (3D
CNN) for rejecting false positives on pedestrian detection. First,
the object detector provides all the detected pedestrians in the
scene, and then the 3D CNN is in charge of rejecting or verify
the detections. Our proposal is tested on two well-known publicly
available datasets and provides up to 84% accuracy.

Index Terms—pedestrian detection, self-driving cars, deep
learning, neural networks, CNN training

I. INTRODUCTION

It is undeniable that self-driving cars are the future. In fact,
a number of automakers are investing vast amounts of efforts
and resources in achieving this goal. Nonetheless, a full level
of automation has not been accomplished yet. According to
the Society of Automobile Engineer International, there are
six different levels of autonomy. The levels range from level
0, which means no automation at all, to level 5, which refers
to full automation. In the last level, the vehicle is capable of
performing all driving functions under all conditions. There
currently are commercial models that implement the level 2
of autonomy. Namely, the vehicle has combined automated
function, like acceleration or steering, but the operator
must remain engaged with the driving task. The next level
implies that the autonomous system is able to understand the
environment, and this is the challenge nowadays.

In fact, some automakers such as Ford, Mercedes and
Toyota already have full self driving car projects and early
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Figure 1: Output of a state-of-the-art object detector. The
detections are not correct in a self-driving cars context because
they are not actual persons, but depictions of them.

prototypes. These prototypes feature a range of different
sensors like GPS, lidar range device and HD color cameras
to enhance the perception of the environment. However, there
are other companies, such as Tesla, that have expressed their
will to rely only in cameras to achieve the goal.

Nonetheless, despite the high accuracy rate of the image-
based algorithms, they still have serious functionality gaps.
For instance, the methods that work on images rely on visual
features to perform classification or segmentation are prone
to fail when the target is visually similar to other objects. For
instance, an actual person and a poster advert that depicts
a person. This effect is specially critic when it comes to
self-driving car applications because it cannot confuse an
actual pedestrian for an advert. Some of these cases are
shown in Figure 1.

In this paper we introduce a pipeline for rejecting false
positives by taking advantage of lidar input. Our proposal
relies in any image-based object detector to infer the location
of the pedestrians, then the corresponding 3D points of each
are segmented and forwarded to a 3D Convolutional Neural
Network (3D CNN) deep-learning architecture to either con-
firm or reject the provided prediction. As our proposal uses 3D
information, it is able to discriminate between actual objects
and other objects that look similar. Our approach is intended
to be deployed in self-driving cars that feature color cameras
and lidar sensors.



II. RELATED WORKS

General 3D object recognition is a blooming research
topic nowadays. The most novel approaches that tackle this
problem are participants of the ModelNet [1] challenge.
This challenge consists on the creation of new 3D object
classification methods. To benchmark them, two versions of
the dataset are released. First, they released a reduced version
with 10 categories and one extended version which consist
of 40 categories. The samples that compose the datasets are
computer-assisted designed (CAD) models.

Give the fact that there is a challenge, most 3D object
classification methods focus on achieving the best accuracy.
Due to this, they take advantage of intrinsic features of the
data. For instance, in the methods [2], [3], [4], [5], and [6],
the authors take advantage of a multi-view approach. All of
them use different points of view of the target object in their
pipeline. Some of them even render the 3D object to the 2D
space by creating a greyscale image of the views.

There also are some approaches that take advantage of
the CAD features to recreate a 360 panoramic 2D view of
the samples. This is the case of the methods described in
[7], [8], or [9]. Once create this 2D representation, they
rely on a convolutional pipeline commonly applied to image
classification.

The methods discussed so far cannot be applied on a real life
use case because the majority of sensors provide point clouds.
This representation encodes the tridimensional information
they are able to sense. Thus, it is unclear how the mentioned
models would perform when fed with pointclouds instead of
CAD samples.

Finally, there also are approaches, such as [10], [11], and
[12], that take advantage of the pure geometrical features
of the data. They rely on an voxelized representation of the
tridimensional data so they can create an organized structure
in which apply 3D convolutions or other methods.

Nonetheless, the most promising methods do not
rearrange or project the point clouds into any intermediate
representation. Methods like [13], [14], and [15] run directly
on the point clouds to provide classification results.

Regarding the tridimensional object recognition on LIDAR
inputs, the problem is even harder because the data is not
dense. Namely, the 3D point clouds are more sparse that those
provided by stereo setups, structured-light devices or time-of-
flight cameras. In addition, this problem is also very related
to urban object recognition and autonomous cars use case.

For instance, in [16] the authors propose the projection
of the laser data to the ground plane and fed the resulting
representation to a 2D convolutional pipeline. Other
approaches, such as [17], utilizes the voxelization as a
manner to organize the tridimensional space to perform urban
object detection and classification. Finally, [18] creates a
multichannel discretized 2D representation in which each
channel represents a different feature like the occupancy, the

range, and the intensity of the laser.

It is not surprising that the majority of the most accurate
methods described in this sections rely at some point in a 2D
representation. This is due to the fact that the image-based
methods achieve a remarkable accuracy in classification tasks.
For instance, ResNet50 [19] outperformed the human in the
mentioned task on the ImageNet [20] challenge. Nonetheless,
the image-based approaches are not completely suitable for
urban object and pedestrian recognition due to the reasons
discussed in Section I.

As show in this section, the most accurate approaches to
3D object recognition require certain features for the input
data that a LIDAR does not yield, such as the ability to be
rendered to an image or to provide different views of the
objects. In addition, the approaches that do work on actual
LIDAR data rely on the discretization of the whole point cloud
or in projections to the 2D space, so the topological features
are lost. Finally, it is worth mentioning that the majority of
these approaches are tested on high-end 64 beams LIDAR
devices.

III. PIPELINE FOR PEDESTRIAN DETECTION

Our approach is intended to be deployed in cars that feature
a color camera and a lidar sensor. Furthermore, both sensors
must be calibrated so the lidar 3D points can be projected to
the image plane. In addition, both sensors must be triggered
simultaneously so the output data represent the environment
at the same instant.

The pipeline of our proposal is as follows. First, an image
is grabbed from the camera. This image is forwarded to any
pedestrian detector. At this point it is worth to mention that is
preferable to use a fast, greedy detector that provides a great
amount of proposals with the aim to include all the pedestrian,
even if the majority of the detections are incorrect. After this,
a number of areas of interest (AOIs) are produced as a result.

Each AOI represents the potential location of a pedestrian
in the image. Then, the corresponding 3D points within each
AOI are segmented. Thus, a set of point clouds is obtained,
each point cloud representing a potential pedestrian.

Next, a voxel volume is created from each point cloud. To
do so, a voxel grid of size 20 x 20 x 20 cells is fit to the size
of the point cloud. If a certain cell contains points within it,
the corresponding voxel would yield a 1, otherwise it would
yield a 0.

Finally, each point cloud is forwarded to the 3D CNN so it
states whether the input data represents an actual pedestrian
or not.

In the next subsections, the 2D object detector and the 3D
CNN are thoroughly described.
A. 2D Object Detection

Despite our proposal could run any pedestrian detector,
we choose three different methods which we explain in this
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Figure 2: Pipeline of the proposal and intermediate results of each stage.

section.

First, YOLO v3 [21] was chosen because is the most
accurate method for object detection. The original model
provides detection capabilities for different objects, pedestrians
included. YOLO v3 applies a single neural network to the
full image. This network divides the image into regions
and predicts bounding boxes and probabilities for each
region. These bounding boxes are weighted by the predicted
probabilities. The model has several advantages over
classifier-based systems. It looks at the whole image at test
time so its predictions are informed by global context in
the image. It also makes predictions with a single network
evaluation unlike other systems which require thousands for a
single image. This architecture is one of the best performers
on object detection tasks.

Then, we also considered Tiny-YOLO [22]. YOLO v3
explicitly achieves multi-scale learning because its architecture
features three region regression networks at three different
depth levels. Tiny-Yolo repeats the same YOLO v3 structure
up to the first region regression network. This way, it is much
faster than the original yolo, but its accuracy level is also
weaker.

Finally, we also considered MobileNetSDD. This
architecture is a specific implementation of the SSD
[23] architecture. The SSD method for detecting objects in
images using a single deep neural network. It discretizes
the output space of bounding boxes into a set of default
boxes over different aspect ratios and scales per feature map
location. At prediction time, the network generates scores
for the presence of each object category in each default box
and produces adjustments to the box to better match the
object shape. Additionally, the network combines predictions
from multiple feature maps with different resolutions to
naturally handle objects of various sizes. The SSD model
is simple relative to methods that require object proposals
because it completely eliminates proposal generation and

subsequent pixel or feature resampling stage and encapsulates
all computation in a single network. This method features a
convolutional network which can be modified to fit different
applications, so we chose MobileNet [24] as the backbone.
MobileNet are a set of efficient models called for mobile
and embedded vision applications. MobileNets are based
on a streamlined architecture that uses depth-wise separable
convolutions to build light weight deep neural networks.
We introduce two simple global hyper-parameters that
efficiently trade off between latency and accuracy. These
hyper-parameters allow the model builder to choose the right
sized model for their application based on the constraints
of the problem. Thus, as a result of combining SSD and
MobileNet we got MobileNetSSD, which is both accurate
and fast.

These object detectors are considered because they are
remarkable in accuracy or provide a good trade-off between
runtime and accuracy. However, any object detector could fit
this pipeline.

B. A 3D CNN for False Positive Rejection

The second stage of the proposed pipeline takes as input
the proposals of the object detectors, which are the potential
pedestrians, and states whether they finally are pedestrians or
not. Actually, this piece takes the resulting voxel grid volume
corresponding to the 3D points within each 2D AOL

The 3D CNN of choice is based on the PointNet [25]
architecture. This is a pure 3D convolutional neural network
that takes occupancy voxel grid volumes and is able to classify
them among 10 different classes. The original incarnation of
the architecture is intended to work on synthetic datasets or on
Kinect-like devices, which provide high density point clouds.
Thus, it relies on the density of the input point cloud to
populate the cells of the voxel grid volumes. However, our
implementation works on LIDAR 3D data, which is greatly
sparse.



In order to adequate the network to the current problem,
we carried out several modifications to the original PointNet.
On one hand, the input voxel volume was reduced from
30 x 30 x 30 to 20 x 20 x 20 voxels in order to better
present the 3D data in spite of being much scattered. As
a result, the depth of the network was also reduced so the
topological features are not lost due to the reducing nature
of the convolutions. The last modification consisted on the
population of the cells of the input voxel grid volume. In
the original PointNet, each cells represented the density of
the input point cloud. Nonetheless, we modified that for a
binary occupancy grid. In our case, each cell encodes the
presence of points in the corresponding 3D space of the input
point cloud. Thus, the output of the voxelization process is
a volume of 20 x 20 x 20 voxels in which a 1 in a cell
represents that the corresponding space yields points and a 0
indicates that there is no points on the corresponding space.
Finally, the last fully connected layer was also modified to
fit our problem. Namely, the number of output neurons was
changed from 10 to 2, which corresponds to the sample being
confirmed as pedestrian or not.

Finally, the 3D CNN features the following configuration:

« Input Layer of 20 x 20 x 20 voxels

o Convolution 3D layer featuring 100 filters of size 3x3x 3
« Dropout layer of 50% probability

o Convolution 3D layer featuring 100 filters of size 2x2x2
« Dropout layer of 50% probability

o Fully connected layer yielding 2 output neurons

C. Dataset and Data Preprocessing

In order to train and test the 3D CNN included in the
proposal, the University of Sydney Campus (USYD) Dataset
was chosen. This dataset is composed of data provided by
different sensors. It provides 16 beams LIDAR readings,
360° view produced by 6 color cameras, very accurate
GPS position and inertial data. The coordinate frames of the
different sensors are calibrated so it is trivial to transform data
to any other sensor. All the mentioned devices are mounted
in an electric car, which was driven within the USYD campus
once a week per a year. Thus, this dataset features a range of
different driving conditions such as crowded roads, pedestrian
and vehicle shared spaces, and underground parking lots. It
also depicts different lightning and weather conditions. It is
worth noting that our approach only takes advantage of the
LIDAR and the front color cameras.

The dataset does not provide object labeling, so we used
YOLO v3 to automatically extract them. This is a common
procedure in machine learning known as pseudo-labeling
[26]. Actually, we run the pipeline described earlier until the
voxelization procedure. We only considered the odd-numbered
sequences of the USYD dataset sequence from 1 to 19. As a
result, we extracted the pedestrian training samples. However,
to populate the no pedestrian category, we randomly create 5
artificial AOIs in the input images. Despite having random

size and random localization within the image, they are
required to not to intersect with a pedestrian detection. Then,
each AOI is processed the same way the pedestrian AOIs.

Finally, the dataset is composed of more than 24000 pairs
of image samples and corresponding point clouds. The dataset
is balanced so both categories yield the same number of
samples. It was split following the 70% - 30% for training
and testing methodology.

At this point it is worth mentioning that the considered
action range is 10m because the 16 beams LIDAR sensor does
not provide enough 3D info above that threshold. Namely,
above 10 meters the points are too sparse to be used in our
method. Thus, each sample that is above this 10m threshold
is discarded.

D. Training Procedure

The 3D CNN architecture was trained for 5000 epochs. The
optimizer of choice was Adam [27] set up with an initial
learning rate of 0.000001. The best ratio between loss and
accuracy was provided at epoch 557 so this model was selected
for the experiments. After that epoch, the model started to
show overfitting issues. Finally, the training loss and accuracy
were 0.1297 and 0.95, and the testing loss and accuracy were
0.2381 and 0.92.

IV. EXPERIMENTATION

The experiments focus on the accuracy of the 3D CNN
for false positive rejection. First, YOLO v3, Tiny-YOLO and
MobileNetSSD are used as pedestrian detectors. Then, the
3D CNN is used either to confirm that the detected object
is a pedestrian or not. We run our algorithm in the selected
datasets and stored the prediction results. Then, 100 samples
labeled by our system were randomly selected and a human
agent stated whether the prediction was correct or not. The
ratio of correct predictions corresponds to the accuracy values
reported in this section.

The hardware in which the experimentation was carried
out consist of an Intel Core i7-8700 CPU @ 3.2 GHz. The
setup also features 2 x 16 GB of DDR4 RAM running at
2400 MT/s. An NVIDIA GTX 1080TI was used for speeding
up the training and inference processes. The motherboard
is an Asus Z390 AORUS ELITE-CF powered by a 1000W
PSU. The operating system of choice is Ubuntu 18.04.03. The
architectures are implemented using Darknet, Tensorflow 1.14
and Keras 2.3.1. The frameworks take advantage of CUDA
10.2 and cuDNN 7.6.

A. Results on the USYD Dataset

The sequence corresponding to the week 23 of the USYD
Campus dataset was used for testing the algorithm in this
experiment. It is worth noting that this sequences has not been
used in the training procedure. The 10m distance limitation is
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Figure 3: Results of the experiments benchmarking the accu-
racy of the 3D CNN on different object detectors and different
datasets.

kept, so the objects detected above that threshold are ignored.

As shown in Figure 3, our proposal achieved a 84% ac-
curacy when YOLO v3 was involved in the pipeline. Then,
if the pipeline runs the Tiny-YOLO object detector, the ac-
curacy dropped to 70%. Finally, the accuracy is 86% when
MobileNetSSD is involved as the object detector.

B. Results on the Kitti Dataset

In the sake of comparison, we also put to test our algorithm
with the Kitti dataset, which is a state-of-the-art dataset for
urban object detection and is commonly used to benchmark
the approaches related to self-driving cars. It is worth noting
that we removed the 10m constraint in this experiment. Thus,
all objects that have corresponding 3D data are fed to the 3D
CNN.

Regarding the accuracy when using YOLO v3 as the object
detector, the accuracy is 80%. It decreased to 63% when Tiny-
YOLO was used in the method. Finally, MobileNetSSD threw
an accuracy of 72%.

V. CONCLUSIONS

First, we can conclude that the overall performance is
slightly better on the USYD Campus dataset that in the Kitti
dataset. This is expectable as the 3DCNN was trained on
data provided by the first mentioned dataset. Nonetheless, the
accuracy is still high in both data setups.

In the light of the experiments, it can also be conclude that
YOLO v3 is the best object detector to use in the proposed
pipeline as it provides precise and sharp AOIs. Thus, the 3D
CNN was fed with accurate tridimensional object data. This
fact allowed it to perform accurately in both data setups.

Figure 4: The top row depicts samples rejected as pedestrian
by the 3D CNN. The bottom row shows samples incorrectly
confirmed as pedestrians. Note that all these samples were
detected as pedestrians by the 2D object detectors.

Tiny-YOLO provided the worst results when used in the
pipeline as it is the weakest approach to object detection.
It usually provides poorly fitted AOIs. It is common to
find objects which were not completely inside the AOI, and
sometimes the same AOI depicted two pedestrian if they were
close enough. As a result, the 3D CNN is fed with erroneous
and its accuracy decreased.

The pipeline involving MobileNetSSD as the object detector
performed slightly better than YOLO v3 on the USYD campus
dataset experiment, and the contrary on the Kitti dataset. This
difference in the accuracy rates could be due to the features
of the images. The first mentioned dataset provides 16:10
aspect ratio images whilst the images of the Kitti dataset are a
panoramic reconstruction much more wide than tall. This fact
is likely exceeding the multi-scale features of this network,
thus harming its accuracy.

Figure 4 shows some samples correctly rejected as no
pedestrians and incorrectly confirmed as pedestrians. In these
cases it can be seen that the AOIs are poorly fitted.

It is worth noting that the 3D CNN provided accurate
predictions in each case, as the results show. Nonetheless,
its performance is highly dependent on the sharpness of the
provided data. Thus, it greatly relies of the accuracy of the
object detector. In addition, it can be conclude that the 3D
CNN is also highly agnostic to the resolution of the 3D data.
Note that the USYD campus dataset provide 16 beams laser
data and Kitti features 64 beams laser data. This is likely
due to the binary voxelization procedure. The resolution of
the 3D data is also related to the distance limitation. For
instance, for the USYD campus dataset the limit is 10m, but
there were no distance limit set for the Kitti experiment.

Finally, the end-to-end pipeline run at between 7 and 10
fps, including data grabbing and communication overhead. The
variance is related to the object detector and the number of
detected objects. A feedforward step of the 3D CNN only takes
52ms. The slowest part of the pipeline regards to the lidar-to-
image data projection and the voxelization process of each
sample. The measures are computed by running the method



in the hardware described in section IV and averaged across
the experiments.

VI. FUTURE WORK

In order to improve the generalization capabilities of the
3D CNN, we plan to involve different datasets and data aug-
mentation techniques. Thus, the overall accuracy is expected
to improve. We also plan to involve the object detection stage
and the 3D CNN in the same architecture so the 2D and 3D
features are jointly learned and the runtime reduced.

We also plan to further test the relationship between the
laser resolution and the suitably of the voxelized representation
of the 3D data so we can properly set the limitations in this
regard.
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