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Abstract—Typical speech separation systems usually operate
in the time-frequency (T-F) domain by enhancing the magnitude
response and leaving the phase response unaltered. Recent
studies, however, suggest that phase is important for perceptual
quality, leading some researchers to consider magnitude and
phase spectrum enhancements. The merging of the complex
ideal ratio masking (cIRM) estimation and training with deep
neural network (DNN) has been proved to be an effective way to
improve speech separation. Furthermore, the label ambiguity (or
permutation) problem has become a major barrier for speaker-
independent multi-talker source separation, which prompts us to
come up with new solutions. In this paper, to solve the problem
of speaker-independent monaural source separation, we propose
a novel method called pcIRM, which creatively achieves the
cIRM estimation with the utterance-level permutation invariant
training (uPIT). Specifically, pcIRM is implemented with the deep
bidirectional LSTM (Bi-LSTM) RNN network, and evaluated
with the WSJ0-2mix datasets. We report separation results for the
proposed method and compare them to that of the existing state-
of-the-art methods. Extensive experimental results demonstrate
the advantages of our proposed pcIRM method in terms of the
signal-to-distortion ratio (SDR) metric.

Index Terms—speaker-independent, monaural source separa-
tion, cIRM, uPIT, Bi-LSTM, SDR.

I. INTRODUCTION

Speech source separation is the task of extracting mul-
tiple speech signals, one for each speaker, from a mixture
containing two or more voices [1], which is often referred
to as the cocktail-party problem. Human has the remarkable
ability to separate one sound source from others. In a cocktail
party, it seems effortlessly for a person with normal hearing
sense to separate the target speaker from other speakers and
background interference, and easy to change to another target.
However, the same tasks seem to be extremely difficult for
automatic computing systems, especially when only a single
microphone recording of the speech mixture is available.

The cocktail-party problem has raised great concern in
recent years, due to its potential use in real-world applications
such as robust automatic speech and speaker recognition, as
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well as hearing prosthesis and assisted living systems [2, 3],
where speech overlapping is commonly observed.

Generally, we can categorize the source separation problems
into monaural (i.e., single-channel) and array-based (i.e., mul-
tichannel) source separation problems, in terms of the number
of microphones or channels. As for the former problem,
researches extract the target speech or remove the interference
signal from the mixed signal, mainly using the acoustic and
statistical characteristics of the target speech and the interfer-
ence signal. While in the latter problem, the spatial information
of the signal is also available. The monaural speech separation
problem still remains been very challenging, as only one
speech recording is available and the spatial information that
can be extracted is limited [4].

Many approaches have been developed to address the
monaural source separation problem since the 1960s. Before
the deep learning era, classic single-channel speech separation
methods can be classified into three categories: the model-
based method, the blind source separation (BSS) method [5],
and the computational auditory scene analysis (CASA) [6]
method. However, these methods have limited effectiveness
when processing acoustic sources in multi-talker mixed speech
captured in real environments, such as with unseen noises
in a mixture, in low signal-to-noise ratio (SNR), and with
limited computational resources. Hence, in real-environment
scenarios, it is difficult to obtain the target speech signal with
high quality consistently via the aforementioned methods.

Recently, a deep neural network (DNN) has been adopted
as a regression model to solve the source separation problem,
especially for the monaural case. According to the training
objectives, DNN-based monaural source separation methods
can be grouped into three categories, namely the masking-
based method [1], the mapping-based method [1], and the
signal approximation (SA) based method [7, 8]. The targets
in the masking-based method describe the time-frequency (T-
F) relationships of targets speech to interference, with a value
ranged in [0, 1], while the targets in the mapping-based method
demonstrate the spectral representations of clean speech, in
which the value range of the spectrum at each T-F point
is large, i.e., [0,+0c]. While the SA-based method is the
combination of the masking-based method and mapping-based
method, which is to train a ratio masking estimator that



minimizes the difference between the spectral magnitude of
target speech and that of estimated speech. In comparison,
the masking-based method can lead to a more accurate neural
network model than the mapping-based method [1].

The first mask-based training target applied in supervised
source separation is the ideal binary mask (IBM), which is
inspired by the auditory masking phenomenon and the exclu-
sive allocation principle in auditory scene analysis [6]. Many
researchers exploited IBM as a training target and obtained
promising separation results [9]. Because of the inflexible deci-
sions on each T-F unit of the IBM, the separated speech signal
from the IBM-based methods is distorted. Naturally, the ideal
ratio mask (IRM) is proposed to optimize the performance of
the IBM, in which the T-F unit is assigned as the ratio of the
target source energy to mixture energy [10]. The target speech
signal separated by IRM-based methods often achieves better
quality, compared with the IBM.

Although these DNN-based methods obtained state-of-the-
art performance, the IBM and the IRM only use the mag-
nitude information of the target signals when separating and
synthesizing the clean speech signal, as the phase spectrum
is considered unimportant for speech separation [11]. Never-
theless, Erdogan et al. have shown that the phase information
is beneficial to predict an accurate mask and the estimated
source [12], they develop the phase-sensitive masking (PSM)
based method, which significantly outperforms the IBM and
the IRM in terms of SDR. In addition, in [13], Williamson et
al. employ both the magnitude and phase spectra to estimate
the complex IRM (cIRM) by operating in the complex domain.

In source separation, if the target speakers are not allowed
to change from training to testing, then it is called in the
speaker-dependent situation. While if interfering speakers are
allowed to change, but the target speaker is fixed, then it is
called the target-dependent source separation. Similarly, the
speaker-independent source separation is defined if none of the
speakers are demanded to be the same between training and
testing, which is the least constrained case. The label ambigu-
ity (or permutation) problem [14] is the biggest obstacle for
previous work perform poorly on speaker-independent multi-
talker source separation. In speaker-independent situation,
since the source separation model has multiple outputs, one
for each mixing source, and they share the same input mixture,
reference assigning can be tricky, especially when processing
numerous utterances spoken by multiple speakers. In [15, 16],
permutation invariant training (PIT) is proposed to solve this
problem, and achieves great performance.

To address the aforementioned problems, we propose a
novel method called pcIRM, which creatively achieves the
cIRM estimation with the utterance-level permutation invariant
training. Specifically, pcIRM adopts the Bi-LSTM RNN to
estimate the cIRM, and further exploits the criterion of the
utterance permutation invariant training (uPIT). The contribu-
tions of this paper are summarized as follows:

o« We propose a Y-shaped Bi-LSTM RNN to predict the
cIRM as the training target in our pcIRM model, making

use of both the amplitude and the phase information of
the clean speech signal.

« We exploit the utterance permutation invariant training
to overcome the label ambiguity problem for speaker
independent multi-talker source separation, which is the
first job integrating the cIRM estimate and the utterance
PIT as a whole model.

« We conduct extensive experiments on different training
targets to validate the effectiveness and efficiency of our
proposals.

The rest of the paper is organized as follows. In Section II,
we describe the background knowledge related to the training
targets in recent monaural source separation methods. Sec-
tion III introduces the novel criterion of utterance permutation
invariant training and the proposed pcIRM-based source sep-
aration method. Section IV presents the experimental settings
and results. Finally, the conclusions and future work are given
in Section V.

II. MASKING-BASED TRAINING TARGETS

As the IRM, PSM and cIRM are the targets often chosen
in the existing state-of-the-art masking-based DNN methods,
we briefly describe them in the next subsections, respectively.

A. Ideal Ratio Mask (IRM)

Let us denote the target speech signal, the interference,
and the mixed source signal sequences as s(m), i(m), and
y(m) = s(m)—+i(m) at discrete time m, respectively. The cor-
responding short-time Fourier transformation (STFT) of these
signals are S(¢t, f), I(t, f), and Y (¢, f) = S(¢, f) + I(¢, f),
respectively, where f is the index of the frequency bins and ¢
is the index of the time frames. In addition, given Y (¢, f), the
goal of monaural speech separation is to recover each target
source S(t, f). By adopting the ideal T-F mask M (¢, f), the
spectrum of the target speech can be reconstructed as follows:

S(t’f):Y(t7f)*M(t7f) (D

where ‘x’ indicates complex multiplication. The M (¢, f) for
time frame ¢ and frequency f can be expressed as:
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where [ is a tunable parameter to scale the mask, while
|S(t, f)| and |I(¢t, f)| denote the magnitude spectrum of the
target speech signal and the magnitude spectrum of inter-
ference, respectively. In addition, |S(t, f)|? and |I(¢, f)|?
represent the target speech power spectrum and the interfer-
ence speech power spectrum within a T-F unit, respectively.
Generally, f is selected as 0.5.

Obviously, in IRM, only magnitude information is ex-
ploited, while the phase information of the target speech
signal is not used in speech reconstruction. To overcome this
drawback, PSM and cIRM are proposed.



B. Phase-Sensitive Mask (PSM)

In polar coordinates, the STFT of speech signal can be
defined as Equation (3).

S(t, f) = |S(t, f)|ePse-n 3)

where |S(t, f)| denotes the magnitude response, and O, s
denotes the phase response of the STFT speech signal at time
t and frequency f, which is commonly used when enhancing
or separating the STFT of noisy speech. In polar coordinates,
it is easy to understand the PSM, which extends the IRM by
incorporating a measure of phase:

1S, )]

PSM(t, f) = |Y(t,f)|cos(4Y Z8) 4)
where /Y and ZS denote the mixture speech phase and
the target speech phase within the T-F unit, respectively. The
inclusion of the phase difference between the mixture speech
and the target speech in PSM brings about a higher SNR, and
tends to produce a better estimate of target speech than the
IRM. Apparently, the values of |§((tt’,];))|‘ and |cos(LY — £8)|
are bounded within the range of (0, 1), and the latter may take
a negative value.

C. Complex Ideal Ratio Mask (cIRM)

The cIRM is a complex T-F mask, which is calculated by
using the real and imaginary components of the STFTs of the
target and mixture speech signals. The STFTs of the mixture,
clean signal, and the cIRM can be defined as:

Y(t, ) =Yt f)+5Ye(t, f) (%)
S(tvf):Sr(t7f)+ch(t:f> (6)

cIRM(t, f) = cIRM,(t, f) + jel RM.(t, f) (N

where j = +/—1, and the subscripts = and ¢ indicate the
real and imaginary components, respectively. The index of the
frequency bins f and the index of the time frames ¢ are omitted
for convenience below, but Y, S, and ¢/RM are defined for

each T-F unit. Thus, in the complex domain, Equation (1) can
be further rewritten as:

Sy +3Se = (Y + jYeo) % (cIRM, + jeIRM.) 8)
Sr=cIRM, xY, —cIRM_. Y, ©)]
Se=cIRM, Y.+ cIRM,. +Y, (10)

Using Equations (9) and (10), the real and imaginary compo-

nents of cIRM can be derived as follows:
Y. S, + Y.S.

cIRM, = 11
YZiy? (11
Y.S. —Y,
i, = VeSS, W)
Y,"+ Y.
Therefore, we can obtain the definition for the cIRM as:
Y;" T Y;: - Y; S Y: T
eIRM = YO A YeSe | VoS Z VS g
Y, "+ Y, Y, ° 4+ Y,

It is worth noting that the value range of Y., Y., S, and S,
are R, meaning that c/RM, € R and cIRM, € R, whose

values are unbounded. As aforementioned, IRM gets with a
range in [0, 1], which is favorable for supervised learning with
DNNSs. Therefore, we compress the cIRM with the following
hyperbolic tangent function:

cIRM," = K - tanh(C - cIRM,,)
1— e—QC-cIRMz

= K —scam, (14
where x is r or ¢, meaning the real or imaginary compo-
nents. This compression operation limits mask values within
[ K, K], and C controls its steepness. Several pairs of values
for K and C are evaluated in this study, and we find that when
K = 10 and C = 0.05, the DNN-based source separation
model performs best empirically. During the testing stage, the
DNN outputs are the estimations of the compressed masks
instead of the original masks, we apply the following inverse
function to recover the estimation of the uncompressed mask.

1 (@) 1 K-0
c¢IRM, = aarctanh(fm) = _%lOQ(ﬁOz)
where ¢/ RM, represents the estimation of the uncompressed
mask, and O, is the DNN output.

In [13], Williamson finds that structures exist in both
real and imaginary components of the cIRM in Cartesian
coordinates, while in polar coordinates, structures exist in
the magnitude spectrum, but not in the phase spectrogram.
Figure 1 shows the comparisons of these two circumstances.
Conspicuous and similar structures can be observed in child
diagrams (a), (c) and (d). According to the results of Lee [17],
direct phase estimation is difficult without a clear structure.
Moreover, an estimation of the cIRM provides both the am-
plitude and phase estimate. In theory, cIRM is superior to PSM
for more accurate estimates of source speech.
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Fig. 1. Example magnitude (a) and phase (b) spectrograms, and real (c) and
imaginary (d) spectrograms, for a clean speech signal. The real and imaginary
spectrograms describe temporal and spectral structure and are close to the
magnitude spectrogram. Little structure exists in the phase spectrogram.



III. PROPOSED METHOD
A. Network Architectures

In monaural source separation, most of the previous works
are based on DNNs or RNNs, due to their flexibility and
effectiveness. Moreover, the deep LSTM RNNs are capable
of operating the utterance frame-by-frame over the whole
past history information at each layer. Besides, the research
in [18] has proved that the speaker generalization ability of
the source separation method can be improved with the LSTM
RNN. With deep bidirectional LSTM (called Bi-LSTM) [19],
the information from the past and future (across the whole
utterance) is stacked at each layer and fed into the next
layer, which performs better than unidirectional LSTM when
involving the processing of temporal sequences. Thus, the Bi-
LSTM RNN is used as the framework of our proposed method.

Since the training target is the complex ideal ratio masking,
the outputs of the Bi-LSTM RNNs are dual, one for real
component and the other for the imaginary component of the
prediction, which is a Y-shaped network structure. In contrast
to this circumstance, the outputs of IRM-based and PSM-based
LSTM RNN models are both single output. The architecture of
the Y-shaped neural network is depicted in Figure 2, where the
input features are the STFT spectrum of the mixture speech,
and the outputs of real component and imaginary component
are optimized individually. The specific settings of the network
parameters are presented in section IV in detail.

clean real mask

clean Imag. mask

RN N

Real estimate

Output
Layer

Hidden
Layer

1 1

Input features >

Input
Layer

Fig. 2. The Y-shaped Bi-LSTM RNNs for cIRM estimation

B. Utterance Permutation Invariant Training

We take the two-speaker source separation with utterance
permutation invariant training (uPIT) based cIRM model as
an example, and the model is shown in Figure 3, which
demonstrates the training process to predict the cIRM real
component ¢/ RM,. The behavior of uPIT is marked with
the dashed rectangle in Figure 3. Assume that the mixture
speech Y is made up of source S; and source Sy, and S
denotes the number of speakers. As for the targets inputl
S1_cIRM/ and input2 Ss_cIRM]/, they are obtained by
using Equations (13) and (14), regarding as the labels of

this wvised learning model. Note that, Sl_clﬁm » and
So_cI RM,. are the elements in the outputl of Bi-LSTM RNN
network, referring to the real component predictions of S, and
So, respectively. We compute the mean-square error (MSE)
between the Bi-LSTM RNN outputs in uPIT module and the
compressed targets masks of the clean speech signal as the
cost function. Hence, the cost function for real components of
the pcIRM-based method can be defined as:

S
JY = é 3 {Z > S;_cIRM, — Sy-(;y_cIRM;, * 1)
i=1 t f

where B =T x N x S is the total number of T-F units over
all sources, 1" is the total number of frames over all source
utterances, IV is the window length (or frame length), and ¢* is
the permutation that minimizes the utterance-level separation
error, which can be defined as

S
¢* = arg min Z [Z Z Si_CTRTWT — S(/)(i)_CIRMT/’] 2
f

PP =1 ¢
a7

Note that,  in Equation (17) is the symmetric group of degree
S, which is the set of all S! permutations [15]. Similarly, the
training process to predict the cIRM imaginary component
cIRM . and the imaginary component cost function Jg’* are
both the same as the real component counterpart. Therefore,
we can similarly define the cost functions of uPIT-based IRM
model and the uPIT-based PSM model with Equations (18)
and (19), respectively.

S
TP = % > [Z > 5. _IRM ~ S(z,*(i)_IRM} *as)
i=1 t f

S
Tou = % 3 [Z > S, PSM ~ S(b*(l-)_PSM} (19
=1t f

As for those masking-based methods without using uPIT,
the order of targets source is fixed, and there is only one
permutation for estimated speech and target speech pairs,
whose cost functions have the same form with the uPIT ones.

input 1 input 2

Target1 real cIRM

Target2 real cIRM

I— 1
! 1
' (M frames) (M frames) '
i MSE i
i assignment 1 H
1 —
! Pairwise scores Minimum |
H error !
1 MSE 1
i assignment 2 :
' Mask1 Mask2 1
! (M frames ) (M frames) 1
1

source? real
mask estimation

mask estimation loutput 1

LSTM-RNN Network

T [ MsE Assignment: O(S!) ~ (summation)

Mixed speech Features |

input

[ Painvise scores: O(s'S)  (distance)

Fig. 3. uPIT-based cIRM estimate model



C. pcIRM Method

It is worthy noting that our proposed method pcIRM is
inspired by the works [15, 20] and Bi-LSTM RNN, whose
main idea is shown in Figure 4.

In the training stage, the STFTs of speech source and mix-
ture are obtained in the feature extraction module. Then, the
real and imaginary components of STFT of the speech source
are used to calculate the compressed real mask ¢/RM, and
the compressed imaginary mask c/RM/ as the training tar-
gets for Bi-LSTM RNNI1 and Bi-LSTM RNN2, respectively.
During each iteration, the estimated T-F mask is optimized to
minimize the MSE between the compressed targets masks of
the clean speech signal and the Bi-LSTM RNN outputs in the
uPIT module.

In the testing stage, the STFT of the mixed speech obtained
in feature extraction is the input of the trained Bi-LSTM RNN1
and Bi-LSTM RNN2. In the compound module, we recover
the output of these two networks by using Equation (15),
which are the T-F real and imaginary masks of the estimated
source speech, respectively. The real and imaginary compo-
nents of the estimated signal are obtained by multiplying the
estimated T-F real mask and the imaginary mask with the
STFT of the mixture speech. Then, the separated speech signal
is reconstructed in the reconstructed module.

i [ Source Tratining |
| stage 1
! Speech Target Mask !
| Calculation I
' | Mixture !
: [Micre ] C ' :
I I
| Compressed real Compressed I
| mask of source imaginary mask of \
' speech sources speech '
i i) J i
\ Training Training !
! LSTM RNN1 [ ] LSTM RNN2 !
i I i
| eature I
I I
Feature Trained Trained
Extraction LSTM RNN1 [€7 LSTM RNN2

| separated speech |(_| Reconstruction Module

I I
I I
] I
I I
I I
| 1 1 |
I I
! [ Mixture | Compound Module | !
] I
I i I
I I
] I
I

Fig. 4. The architecture diagram of the proposed pcIRM method with the
example of two-talker source separation.

Compared with the IRM-based and PSM-based methods
without using uPIT, the proposed pcIRM-based method has
two following advantages:

1) A Y-shaped Bi-LSTM RNNs is exploited to predict
the cIRM as the training target, the magnitude and
phase information of the speech signal are be effectively
utilized.

2) uPIT is integrated into the Bi-LSTM RNNs, elegantly
solving the label permutation problem and speaker trac-
ing problem in one shot.

IV. EXPERIMENTS

We compare the pcIRM method with IRM-based method
and PSM-based method using the uPIT or conventional train-
ing approach to show the advantage of the utterance permuta-
tion invariant training. Moreover, we also evaluate the cIRM-
based uPIT speech separation model that is implemented
with the vanilla DNN or the Bi-LSTM RNN to validate the
superiority of our proposals.

A. Datasets

We evaluate the proposed monaural source separation model
on the WSJO-2mix datasets, using 129-dimensional STFT
complex spectral computed with a sampling frequency of
16KHz. The WSJ0-2mix datasets are derived from WSJO cor-
pus [21], which are introduced in [14]. WSJO corpus is made
up of a training set namely set si_tr_s and two validation
sets, namely set si_dt_05 and set si_et_05. Note that, the set
si_tr_s consists of 101 speakers and each speaking contains
about 140 or 90 utterances with a duration of approximately
5 seconds.

As for WSJO-2mix datasets, the 30h training set and the 10h
validation set are both constructed by randomly selecting two
speakers and utterances from the WSJO training set si_tr_s,
which includes 49 males and 51 females, and then mixing
them at a various SNRs ranging from 0dB to 5dB. The
5h testing set is generated using utterances of 18 speakers,
including 7 females and 11 males, from the WSJO validation
set si_dt_05 and set si_et_05, with the same construction
method as the 30h training set. As these 18 speakers in the
testing set are not included in the training set, we conduct our
experiments in the speaker-independent situation.

B. Network Architecture

All the vanilla DNN-based methods evaluated have 3 hidden
layers with 1792 units each, and all the Bi-directional LSTM
RNN based methods have 3 hidden layers, each of which
has 896 units, so that all models have similar number of
parameters. To avoid the overfitting, all models contain random
dropouts when fed from a lower layer to a higher layer with
a dropout rate of 0.5. There are |S| output streams for |S|-
speaker mixed speech, and in our study |S| is set to 2, which
is the same as in most of the existing studies. Then, data is
poured into a |S| X 1792-unit linear layer and a |S| x 1792-
unit rectified linear unit (ReLU) layer successively, aiming at
avoiding the gradient vanishing problem.

The input to the network is the stack (over multiple frames)
of the 129-dimensional STFT spectrum of the mixture speech,
with a frame length of 16ms and an 8ms shift. The input data is
a three-dimensional tensor shaped as (D x T x 129), and each
dimension is the size of batch (or the number of utterances in
a batch), the maximum of frames in a batch, the number of
frequency bins, respectively. The output consists of |.S| output



masks/streams, and each output mask vector has a dimension
of T" x 129.

As for the training target of the cIRM, the corresponding
neural networks outputs are the real components estimation
and the imaginary components estimation of the predicted
cIRM. Two Bi-LSTM RNNs are trained separately with the
MSE cost functions J¢  and J¢, respectively. Adam opti-
mization algorithm [22] is used both in the DNN and the Bi-
LSTM RNN models with a weight decay of 10>, while the
learning rate varies. The training process is terminated when
the learning rate gets below 1071°. In addition, the batch size
is 8, meaning that each minibatch load 8§ utterances randomly
selected from datasets. The number of the epoch is set to
100. Note that, in our study the training data is used to train

the model, and the validation set is only used to control the
learning rate.

50 (a) uPIT-based methods

the MSE on the training and validation sets. Apparently, the
MSE of the conventional training methods decreases slowly,
whose remains almost unchanged since 10th epoch, showed
in the subgraph (b), and that is probably a consequence of the
permutation problem. In contrast, the MSE converges quickly
when uPIT is used. The big gap between the MSE of the
conventional training approach based cIRM and the MSE of
pcIRM demonstrates the latter’s effectiveness of the solving
the label permutation problem discussed in [14].

In Figure 6, we display the training progress of vanilla DNN
based and the pcIRM source separation methods with uPIT,
on the same datasets as experiments in Figure 5. Note that,
from Figure 6 we can see that the training MSE and validation
MSE of these two methods decrease quickly and show almost
the same trend, and the values of Bi-LSTM-based method are
much smaller than the vanilla DNN ones, which indicates that
pcIRM methods are more effective in processing the long-
range context than other vanilla DNN-based methods.

35
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Fig. 6. Training progress of vanilla DNN based source separation method
and the pcIRM-based source separation method.

D. Signal-to-Distortion Ratio Improvement

Generally, the separation performance is often evaluated
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Fig. 5. The performances of the uPIT-based source separation methods (a)
and the conventional training based source separation methods (b).

C. Training Behavior

In Figure 5, we compare the training progress of cIRM-
based, IRM-based, PSM-based source separation methods with
the uPIT approach and conventional training approach on the
mixed speech datasets described in Section IV-A, measured by

with three measurements, including the short-time objective
intelligibility (STOI), the perceptual evaluation of speech
quality (PESQ), and the signal-to-distortion ratio (SDR) [23].
The STOI and the PESQ measure the intelligibility scores
and human speech quality scores, respectively. Since the SDR
is used to indicate the overall separation performance, we
evaluate our proposed method on its potential to improve the
SDR in this paper.

Table I summarizes the SDR improvement in dB from
different separation methods for two-speaker mixed speech
in the speech-independent situation, where bold indicates the
best results. In our experiments, we reconstruct each frame by
averaging over all output metaframes involved in the same
frame. In the uPIT, it is assumed that the permutation of

speakers keep constant across the utterance, which is not true
in the real-world situation.



TABLE I
SDR IMPROVEMENTS(DB) FOR DIFFERENT SOURCE SEPARATION
METHODS USING UPIT ON THE SPEECH-INDEPENDENT SITUATION

Index Model | Opposite gender | Same gender | Average

Conv-IRM-BiLSTM 6.51 5.73 6.13
Conv-PSM-BILSTM 7.19 6.30 6.75
Conv-cIRM-BiLSTM 6.47 5.82 6.15
uPIT-IRM-BiLSTM 10.39 7.19 8.81
uPIT-PSM-BiLSTM 10.47 7.69 9.10
pcIRM 10.48 7.26 8.89
uPIT-cIRM-vanillaDNN 9.24 6.78 8.03
Oracle IRM 12.86 12.27 12.57
Oracle PSM 15.79 15.20 15.50
Oracle cIRM 73.09 73.56 73.33

From Table I, we can make several observations. Firstly,
with the current experiment settings, the proposed pcIRM
method achieves the best performance in the opposite-gender
situation. At the same time, PSM-based Bi-LSTM RNN
method almost obtains the maximum SDR improvement, with
using conventional training methods or uPIT, which demon-
strates the effectiveness of phase information in promoting
the source separation results. Secondly, comparing with the
SDR values of conventional training methods and uPIT-based
methods, the latter show great advantages among different
types of training targets. In addition, we can see that Bi-
LSTM RNNs get better scores than vanilla DNNs in this task,
which demonstrates great advantages of the Bi-LSTM RNN
in capturing sequence information.

Moreover, Table I reports SDR (dB) improvements on test
sets of WSJ0-2mix divided into opposite-gender and same-
gender. From Table I, we can clearly see that our approach
achieves much better SDR improvements on the opposite-
gender mixed speech than the same-gender mixed speech,
though the gender information is not explicitly used in our
model and training procedure. With more training epochs,
IBM-based and PSM-based methods would be more close
to the oracle IRM and oracle PSM results for the opposite-
gender condition. These results are consistent with breakdowns
from other works [24] and generally indicate that same-gender
mixed speech separation is a harder task.

Furthermore, it is worth discussing the problem that, the
SDR improvements of oracle cIRM are over six times that
of oracle IRM and are almost five times than of oracle PSM,
whereas the performance of cIRM-based methods are inferior
to PSM-based methods besides the instances of pcIRM’s
achievement in the opposite-gender situation. On one hand, as
aforementioned, the values cIRM, € R and ¢IRM,. € R are
both unbounded, and we compress the cIRM with the hyper-
bolic tangent function as well as recover the estimation using
Equation (15), which corrodes the accuracy of the pcIRM.
On the other hand, depending on the difference of the real
part and the imaginary part of the spectrum, we propose a Y-
shaped Bi-LSTM RNNs, and the architecture of the Y-shaped
neural network is depicted in Figure 2, where the output of the
real component and the imaginary component are optimized
individually. Figure 7 shows the total MSE loss, the real

component MSE loss and the imaginary component MSE loss
of pcIRM on the training and test stage in the first 30 epochs,
respectively. The total MSE loss is the summation of the
real component MSE loss and and the imaginary component
MSE. Specifically, the values of loss for 3rd, 15th, and 29th
epoch are marked in this line chart. The loss of the real part
decreases continuously over the period, while the imaginary
part is almost unchanged, whose reduction is tiny. In terms of
these results, the Y-shaped neural network for the imaginary
part makes a limited difference in optimizing the MSE loss.
In theory, the real part can be understood as the projection
of the spectrum, which is another expression of the PSM, but
it is difficult to understand the imaginary part. Consequently,
the model of the imaginary component is difficult to be well
trained than the model of the real component. Compared with
the results of cIRM-based methods in [13, 20], our proposed
pcIRM method obtains slightly higher SDR improvement,
displaying the effectiveness of the pcIRM method.
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Fig. 7. The total MSE loss, the real component MSE loss and the imaginary
component MSE loss of pcIRM method on the training and test stage in the
first 30 epochs.

V. CONCLUSION AND FUTURE WORK

In this paper, the pcIRM method is proposed to address
the speaker-independent monaural source separation problem.
The proposed method achieves the cIRM estimation with the
utterance-level permutation invariant training, and was imple-
mented with a Y-shaped Bi-LSTM RNNSs, where the output
of real component and imaginary component are optimized
individually. We report separation results for the proposed
method and compare them to related systems with the WSJO-
2mix datasets. The experimental results show the importance
of the phase information and the effectiveness of the uPIT
method in the tasks of the source separation, in terms of the
SDR metric.

To the best of our knowledge, this is the first study to
integrate uPIT method and cIRM method as a whole model to
address speech separation, there will likely be room for future



improvement. For example, effective features for such a task
should be systematically examined and new features may need
to be developed. Additionally, a more sophisticated network
may need to be introduced for a more effective complex
masking estimate.
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