
Towards Quantifying Intrinsic Generalization of
Deep ReLU Networks

Shaeke Salman1, Canlin Zhang2, Xiuwen Liu1 and Washington Mio2

1Department of Computer Science, Florida State University, FL 32306, USA
2Department of Mathematics, Florida State University, FL 32306, USA
{salman, liux}@cs.fsu.edu, czhang@math.fsu.edu, wmio@fsu.edu

Abstract—Understanding the underlying mechanisms that en-
able the empirical successes of deep neural networks is essential
for further improving their performance and explaining such
networks. Towards this goal, a specific question is how to explain
the “surprising” behavior of the same over-parametrized deep
neural networks that can generalize well on real datasets and
at the same time “memorize” training samples when the labels
are randomized. In this paper, we demonstrate that deep ReLU
networks generalize from training samples to new points via
piece-wise linear interpolation. We provide a quantified analysis
on the generalization ability of a deep ReLU network: Given a
fixed point x and a fixed direction in the input space S, there
is always a segment such that any point on the segment will be
classified the same as the fixed point x. We call this segment
the generalization interval. We show that the generalization
intervals of a ReLU network behave similarly along pairwise
directions between samples of the same label in both real
and random cases on the MNIST and CIFAR-10 datasets.
This result suggests that the same interpolation mechanism is
used in both cases. Additionally, for datasets using real labels,
such networks provide a good approximation of the underlying
manifold in the data, where the changes are much smaller along
tangent directions than along normal directions. Our systematic
experiments demonstrate for the first time that such deep neural
networks generalize through the same interpolation and explain
the differences between their performance on datasets with real
and random labels.

I. INTRODUCTION

In recent years, deep neural networks have improved the
state of the art performance substantially in computer vi-
sion [1]–[3], machine translation [4], speech recognition [5],
healthcare [6] and game playing [7] among other applications.
However, the underlying mechanisms that enable them to
perform well are still not well understood. Even though they
typically have more parameters than the training samples and
exhibit very large capacities, they generalize well on real
datasets trained via stochastic gradient descent or its variants.
In an insightful paper, Zhang et al. [8] have identified a number
of intriguing phenomena of such networks. In particular,
they demonstrate that over-parametrized neural networks can
achieve 100% accuracy trained on datasets with the original
labels and generalize well. At the same time, the exact same
neural network architectures can also achieve 100% accuracy
on the datasets with random labels, and therefore “memorize”
the training samples. Clearly, this is not consistent with the
statistical learning theory [9] and bias-variance trade-off [10],

where models should match the (unknown) capacity of the un-
derlying processes in order to generalize well. Understanding
and explaining this typical behavior of deep neural networks
has attracted a lot of attention recently with the hope of
revealing the underlying mechanisms of how deep neural
networks generalize (e.g., [11], [12]).

Fundamentally, while training, a deep neural network itera-
tively minimizes a loss function defined as the sum of the loss
on the training samples. The parameters in the trained network
depend on the initial parameter values, the optimization pro-
cess, and training data. As 100% accuracy on the training
samples can be achieved even with random labels, finding
good solutions for such networks that minimize the loss is
therefore not a key issue. While regularization techniques can
affect the parameters of trained networks, Zhang et al. [8] have
demonstrated that their effects are typically small, suggesting
that they are not a key component. Therefore, the general-
ization performance of a trained over-parametrized network
should depend on the training data and network architecture. In
this paper, we focus on deep ReLU networks as the ReLU net-
works are easy to analyze mathematically and more commonly
used. We show that such networks generalize consistently
and reliably by interpolating among the training points. Using
generalization intervals defined as the range of the data that
have the same classification along a direction, we discover
that pairwise generalization intervals on datasets with real and
random labels are almost identical for high dimensional inputs
(e.g., MNIST and CIFAR-10 samples). Furthermore, we show
that pairwise interpolations approximate the underlying mani-
fold in the data well, enabling the networks to generalize well.
We show that the properties are remarkably consistent among
networks with different architectures and on different datasets.
The properties enable us to characterize the generalization
performance of neural networks based on their behaviors on
the training sets only, which we call intrinsic generalization.
This notion of generalization is very different from the typical
definition of the performance gap on the training set and test
set. While intrinsic generalization of a network on a training
set can be quantified through generalization intervals, the gap-
based generalization performance can not be studied without
having a validation set or test set. Furthermore, the gap-based
definition is extrinsic as it can vary when a different validation
set is used. In other words, for the first time, we demonstrate

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

the underlying mechanisms that enable over-parametrized net-
works to generalize well when all the training samples are
classified correctly. The systematic results demonstrate the
effectiveness of the proposed method and therefore validate
the proposed solution.

The rest of the paper is organized as follows. In the next
section, we review recent works that are closely related to
our study. After that, we present the theoretical foundation of
the generalization mechanism via interpolation for deep ReLU
networks. We introduce a novel notation called generalization
interval (GI) to quantify the generalization of such networks.
Then, we illustrate our proposed ideas on intrinsic gener-
alization behavior of deep ReLU networks with systematic
experiments on representative datasets such as MNIST and
CIFAR-10 along with a two-dimensional synthetic dataset. Fi-
nally, we discuss correlations between generalization intervals
on training sets and validation accuracy and whether there
exists a mechanism in deep neural networks that supports deep
memorization. We conclude the paper with a brief summary
and plan for future work.

II. RELATED WORK

The ability to perform well on new data is one of the
hallmarks of any useful machine learning system, including
deep neural networks. Traditionally, the statistical learning
theory [9] ties a model’s ability to generalize well to whether
its capacity matches the underlying (unknown) complexity of
the problem. In contrast, in recent years, deep neural networks
have empirically improved the performance of many tasks
even with more parameters than the number of training sam-
ples. Understanding the generalization ability and mechanism
of deep neural networks has become central to get their full
practical benefit in real applications [13]. While important, it
is difficult to study the generalization performance of a deep
neural network as it is defined as the performance gap on a
training set and test one.

Zhang et al. [8] have demonstrated concretely that the
same deep neural networks can generalize and at the same
time can “memorize” training set with random labels, which
makes it clear that the capacity of deep neural networks [11]
can not explain their ability to generalize. Consequentially, a
central research question is to discover the properties of deep
networks, the data, or the interplay that allow the network to
generalize well and at the same time “memorize”.

Mechanically, training deep neural networks is based on
minimizing a loss iteratively using gradient descent from an
initial, often randomized, solution. As deep neural networks
implement continuous functions, similar inputs will produce
similar outputs. If we use the literal definition of memoriza-
tion, i.e., the learning process associates a particular input with
a particular label [14], deep neural networks are not capable
of memorization only. Therefore, deep neural networks must
“generalize” in that after trained on a training set, they
will also produce answers for other inputs. For example, for
classification, a trained (deep neural network) model divides
the input space into decision regions, and the inputs in the

same region produce the same output. In other words, all the
inputs in a decision region are associated with the same output.
As a result, for deep neural networks, the question becomes
how they generalize, rather than whether they generalize.

It appears that the discussions about memorization and
generalization of deep neural networks are often due to dif-
ferent definitions of memorization. For example, in [11], [12],
memorization is simply defined to be a point when a network
reaches 100% accuracy on the training set. Note that for the
network to generalize, it should perform well on the training
set, i.e., it should memorize at the same time. This could not
help elucidate the underlying mechanism that enables a deep
neural network to generalize.

In this paper, to quantify the intrinsic ability of a deep neural
network to generalize, we introduce generalization intervals
to measure how far a trained deep network can generalize.
Through systematic experiments, we discover that pairwise
generalization intervals are remarkably similar on datasets
with real and random labels, confirming that generalization
of deep neural networks is independent of the labeling of
data. Furthermore, we show that on real datasets, pairwise
interpolations provide a way to approximate the underlying
manifolds that allow such models to generalize well.

III. THEORETICAL FOUNDATION FOR DEEP RELU
NETWORKS

A. Notations and ReLU Networks

In this paper, we use the following commonly used nota-
tions. We focus on feed-forward deep neural networks having
Rectified Linear Unit (ReLU) activations for classification
which is defined by t 7→ max(0, t). The neural network
functions can be defined as f : Rdx → Rdy , where dx
and dy are the input and output dimension respectively. We
consider x ∈ Rdx is an input vector and y ∈ Rdy is a target
vector. We define a set of n training samples as {(xi, yi)}ni=1.
The functions f are parameterized by θ, which is a vector
that includes all the parameters (i.e., weights and biases).
Furthermore, we would use the function interchangeably to
denote the pre-activation output of the last layer (i.e., output
from the penultimate layer).

By restricting the activation function to be ReLU, a neu-
ral network provides a piecewise approximation of com-
plex decision regions [15] by minimizing the empirical risk,
minθ

1
n

∑n
i=1 `(f(xi; θ), yi), where ` : Rdx × Rdy → R

denotes some loss function such as `2 loss, hinge loss, cross
entropy loss etc. The gradient based methods update the
weights by W = W − η

∑n
i=1∇W `(f(xi; θ), yi), where η is

known as the step size. To simplify our classification model,
we have considered the cross entropy loss. Let l denotes a
particular layer, L the last layer of the network, k the index of
a neuron and c the number of classes. Given that the last layer
is a softmax layer, the activations for the neurons in the last
layer would be defined by aLk = softmax(zLk) =

ez
L
k∑c

j=1 e
zL
j

,

where zLk denotes weighted summation of activations from
prior layer and E = −

∑
i yi log a

L
k , is the cross entropy loss.

Now, from the definition of the loss, we can derive the
weight updates for the last layer as the following.

∂E

∂WL
kj

= −rL−1p

∑
i

(yi −
ez

L
k∑c

j=1 e
zLj

), (1)

where rL−1p denotes the ReLU activations of previous layer.
Note that yi is 1 for the target class (which can be a real
label or a random label assigned to the sample) and 0 for
all the other classes. Equation 1 shows the importance of
labels for gradient descent. The weights are getting closer to
the representation of the neuron in the assigned class in the
previous layer while pushing away from that of the neurons
in the other classes, representing competitive learning [16].

B. Generalization Intervals

In order to study generalization behavior quantitatively, we
introduce the Generalization Interval (GI), which is defined as
the generalization interval of a trained deep neural network at
input point x0 along a particular direction d as the following.

GI(f(x; θ), x0, d) = sup{ε : f(x0 + td; θ) =

f(x0; θ), 0 ≤ t ≤ ε}+ sup{ε : f(x0−
td; θ) = f(x0; θ), 0 ≤ t ≤ ε}

(2)
Intuitively, the above equation defines the generalization

interval at a given point as the range of the inputs that
have stable classification along a particular direction. When
the samples are from a meaningful data distribution, i.e.,
when the samples are from an underlying manifold [17],
the generalization intervals along the tangent directions of
the manifold should be large. By connecting the samples
with the same true labels in a pairwise manner, one can
approximate the tangent directions smoothly of the manifold.
In contrast, the directions with other labels approximate the
normal directions generally, resulting in poor generalizations
(i.e., small generalization intervals).

Since there are many such pairwise paths, a question is
whether multiple lines interfere with each other. In a high
dimensional space (such as MNIST or CIFAR-10; see the
Experiments Section), the probability of two lines intersecting
with the other lines or getting very close to other lines is
low. However, when the dimension gets smaller, the chance
of having two lines interfering with each other will be higher.
In addition, the interference affects the performance of a
trained neural network only if the two points are from different
classes. On datasets with random labels, one would expect
higher chances of interference if closer points with different
labels are much more common. However, we argue that
deep neural networks still do not simply memorize training
points even when the labels are randomized. Please see the
Experiments Section for numerical results.

C. Generalization Along Tangent and Normal Directions

As ReLU networks partition the input space into linear re-
gions [15], we consider two samples from same class denoted
as x1 and x2. The linear network can be defined as

yx =WL(x) . . .W1(x)x, (3)

where x is the input and W1, . . . ,WL are the weights of the
layers 1,. . . , L respectively. While the weights remain constant
in one linear region, the weights in general depend on x, as
indicated in Equation 3.

At a particular point, we have a specific linear network.
Therefore, we have the following linear model at x1.

yx1
=WL(x1) . . .W1(x1)x1 (4)

If we consider a particular direction from point x1 to another
point x, then we have the network as

yx =WL(x) . . .W1(x)(x1 + (x− x1)) (5)

The change of the output of the network in that particular
direction is

yx − yx1 = (WL(x) . . .W1(x)−WL(x1) . . .W1(x1))x1

+WL(x) . . .W1(x)(x− x1)
(6)

If two training samples (i.e., x1 and x2) are classified correctly,
then the difference between yx2

and yx1
should be small. If

the two points are in the same linear region, the first part of
Equation 6 (i.e., (WL(x2) . . .W1(x2)−WL(x1) . . .W1(x1)))
will be zero; if the linear regions are similar, the part should be
small. In general, we have established a bound of the change
of weight matrices of ReLU networks; see the Appendix for
detailed mathematical analysis. Currently we are working on
improving the bound. More generally, whether the change of
the output (i.e., yx−yx1

) would be small or not along the direc-
tion (x− x1) depends largely on the change of weight shown
on the second part of the equation (i.e., WL(x) . . .W1(x)).
The part (x − x1) corresponds to tangent direction loosely
when both x1 and x2 are on the same manifold.

This observation is closely related to the one by Simard
et al. [18], where learning should be more efficient along
the tangent directions, compared to that of normal vectors
on the underlying manifold. Their proposed tangent propa-
gation algorithm makes sure that learning involves using the
information of the derivatives of the classification function
that is supplied by the tangent vectors. The tangent vectors
are defined explicitly in their method, while in our case, we
argue that the samples from the same class approximate the
tangent vectors of the underlying manifold using pairwise
interpolations defined by the data.

The analysis shows that deep ReLU networks generalize via
interpolation. In the random data point case, we have checked
the generalization intervals and show that they generalize
similarly like the real data points. If there is an underlying
manifold, samples from the same class form a compact and
possibly directional set, a small number of samples may be
sufficient to approximate the manifold, enabling a trained

2 0 2 4 6
20

10

0

10

20
ar

gu
m

en
t t

o
so

ftm
ax

0
1
2
3
4

5
6
7
8
9

2 0 2 4 6
20

10

0

10

20

ar
gu

m
en

t t
o

so
ftm

ax

0
1
2
3
4

5
6
7
8
9

2 0 2 4 6

30

20

10

0

10

20

30

ar
gu

m
en

t t
o

so
ftm

ax

0
1
2
3
4

5
6
7
8
9

Fig. 1. (to be viewed in color) Outputs from the penultimate layer when network is trained on real labels, along a certain direction. (left) from one sample
to another sample in the same class (class 9). (middle) from one sample (class 9) to another sample in a different class (class 1). (right) random direction.

15 10 5 0 5 10 15
30

20

10

0

10

20

ar
gu

m
en

t t
o

so
ftm

ax

0
1
2
3
4

5
6
7
8
9

1.0 0.5 0.0 0.5 1.0 1.5 2.0

20

10

0

10

20

30

ar
gu

m
en

t t
o

so
ftm

ax

0
1
2
3
4

5
6
7
8
9

15 10 5 0 5 10 15

20

10

0

10

20

30

ar
gu

m
en

t t
o

so
ftm

ax

0
1
2
3
4

5
6
7
8
9

Fig. 2. (to be viewed in color) When the models are trained with real labels, outputs from the penultimate layer along the direction defined by class 9
samples. (left) first principal component. (middle) perpendicular (mean class 9 to mean class 1) to the first principal component. (right) principal component
having a small eigenvalue (i.e., approximately a normal direction).

network to generalize well from a small training set. When
there is no manifold as in the random label case, it is difficult
to characterize the set that a network generalizes to, but it still
interpolates between samples with the same label.

IV. EXPERIMENTS

A. Datasets

Our experiments are based on the widely used representative
MNIST [19] and CIFAR-10 datasets [20]. The CIFAR-10
dataset consists of 32×32 color images in 10 classes. The
images are split into 50,000 training samples and 10,000
test/validation samples. On the other hand, The MNIST dataset
consists of 70,000 handwritten digit images of size 28×28 for
each image; 60,000 training samples and 10,000 test/validation
samples. However, to get some computational advantage, we
have considered 1000 training samples (100 from each of the
10 classes). We have trained our deep neural network models
with real labels and randomized labels after randomizing the
class labels. We have made sure our network architectures
and optimization procedures to get the training error to be
very close to 0. We have mainly used the models that have
three hidden dense layers with 128 ReLU units in each
of the layers. However, to illustrate our proposed methods
working on different architectures too, we have also conducted
experiments on models with 1, 2, and 4 hidden layers having
512, 256, and 128 ReLU units respectively in each of the
layers. The weights are initialized with random uniform, and
the networks are optimized using SGD with learning rate
of 0.01. The validation accuracy of the model trained on
MNIST dataset is found around 90% when trained on real
labels (i.e., 0% randomized) and 10% when trained on random
labels (i.e., 100% randomized). To illustrate the impact of the
dimension of input space on our proposed methods, we have
also considered a two-dimensional synthetic dataset based on

the paper by Rozza et al. [21]. This dataset is known as the
“two moons” dataset having an equal number of points in two
classes (red and blue). Those points are split such that we get
300 training samples and 100 test/validation samples.

B. Pairwise Interpolations That Approximate the Underlying
Manifold

Figure 1 shows the output of the network trained on
meaningful data (i.e., with real labels); along the path defined
by samples from the same class, the neural network output for
the correct class does not change much (i.e., stable) compared
to other directions and the network classifies all the inputs
along the path correctly. This behavior of the networks shows
that they interpolate between the samples.

To demonstrate the neural networks’ ability to approximate
the underlying manifold, we show the network outputs along
the principal components for a class, which capture the tangent
directions of the local manifolds. Similarly, minor components
approximate normal directions. In a high-dimensional space,
there are many normal directions to a local low-dimensional
manifold. As examples, Figure 2(left) shows the output along
the first principal component of a particular class, while
Figure 2(middle) depicts the result along a normal direction
by making the direction from class 9 (mean) to class 1 (mean)
perpendicular to the first principal component. In addition,
Figure 2(right) shows the output for another component that
has very small eigenvalue. Along the principal directions, the
output of the correct class is more or less constant, which is
expected as it approximates the tangent directions. Similarly,
Figure 3 illustrates the behavior of a network trained on
random labels. While the neural network output of the correct
class changes more compared to that in Figure 1(left), all the
samples along the path are still classified “correctly”, i.e.,
the same as the random label assigned to the two samples.

2 1 0 1 2 3
10

5

0

5

10

15
ar

gu
m

en
t t

o
so

ftm
ax

0
1
2
3
4

5
6
7
8
9

2 1 0 1 2 3
20

10

0

10

ar
gu

m
en

t t
o

so
ftm

ax

0
1
2
3
4

5
6
7
8
9

15 10 5 0 5 10 15

15

10

5

0

5

10

ar
gu

m
en

t t
o

so
ftm

ax

0
1
2
3
4

5
6
7
8
9

Fig. 3. (to be viewed in color) When the models are trained with random labels, outputs from the penultimate layer along the direction defined by (left) two
samples in the random class 9. (middle) two samples in the random class 1. (right) first principal component of random class 9.

0.5 1.0 1.5 2.0 2.5 3.0
generalization_interval

0

1

2

3

4

5

6

7

8

de
ns

ity

real
random

0.0 0.5 1.0 1.5 2.0 2.5 3.0
generalization_interval

0

1

2

3

4

5

de
ns

ity

real
random

0.0 0.5 1.0 1.5 2.0 2.5 3.0
generalization_interval

0.0

0.5

1.0

1.5

2.0

2.5

3.0

de
ns

ity

real
random

Fig. 4. Generalization intervals density plots for lines defined by the samples of MNIST having real and random labels of class 5. (left) dimension unchanged.
(middle) down-sampled to 14×14. (right) down-sampled to 7×7.

0.5 1.0 1.5 2.0 2.5 3.0
generalization_interval

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

de
ns

ity

real
random

Fig. 5. Generalization intervals density plots for lines defined by the CIFAR-
10 samples of having real and random labels of class 5.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
generalization_interval

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

de
ns

ity

real
random

Fig. 6. Generalization intervals density plots for lines defined by the two-
dimensional “two moons” samples of having real and random labels of class
0 (red).

However, as expected, the mean of random class “9” is not
very different from that of any other random class, and there is
no meaningful local manifold to differentiate different classes.
Figure 3(right) verifies that there is indeed no manifold to
approximate. However, the models still interpolate pairwise
linearly as the other plots show.

C. Generalization Intervals for Lines and Triangles on MNIST
and CIFAR-10

To illustrate our idea of intrinsic generalization via in-
terpolation, we have conducted a series of experiments on

MNIST and CIFAR-10 datasets. For the pairwise lines, we
observe almost similar generalization intervals for both real
and random labels. In addition, to illustrate the role of
the dimension of input space in interpolation, we explore
generalization intervals on the MNIST dataset with reduced
dimensions. To compute the generalization intervals, we con-
sider the directions from particular training points to other
points in the same class for both real and random labels. We
have limited the maximal range to 3 (from -1 to 2 which
is symmetric to the interval from x1 to x2) for pairwise
lines centered at one of the two points. Figure 4(left) shows
the distributions of generalization intervals with unchanged
dimension of MNIST dataset (28 × 28); the generalization
intervals do not vary significantly between real and random
labels. As one expects, different paths may interfere with each
other when they are close. While the interference is small in
the original dimension, the effects are shown as the small bump
around 1.3. When the dimension is reduced, the interference
should be more prominent. To demonstrate such effects, Figure
4(middle) and 4(right) illustrate the behavior when the samples
are down-sampled. Both of the figures clearly show that,
with lower dimensions, generalization intervals get lower with
random labels. Note that there is no significant change in
generalization intervals with real labels. This further confirms
our claim of generalization via interpolation of the underlying
manifold of the data. We have also repeated the experiments on
CIFAR-10 dataset. As shown in Figure 5, they behave similarly
with real and random labels as on the MNIST dataset.

To further validate the effect of dimension of data, we
observe the pairwise generalization intervals on “two moons”
dataset. Figure 6 illustrates the density of the generalization
intervals for one of the two classes before and after ran-
domizing the labels. This shows that the density changes
dramatically after randomizing the labels of two-dimensional
data. According to current definitions, apparently, it seems

0 1 2 3 4 5
generalization_interval

0

1

2

3

4

5

6

7

de
ns

ity

real
random

0 1 2 3 4 5
generalization_interval

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

de
ns

ity

real
random

0 1 2 3 4 5
generalization_interval

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

de
ns

ity

real
random

Fig. 7. Generalization intervals density plots for connecting midpoints of triangles defined by the samples of MNIST having real and random labels of class
5. (left) dimension unchanged. (middle) down-sampled to 14×14. (right) down-sampled to 7×7.

0.5 1.0 1.5 2.0 2.5 3.0
generalization_interval

0

1

2

3

4

5

6

7

8

de
ns

ity

real
random

0.5 1.0 1.5 2.0 2.5 3.0
generalization_interval

0

1

2

3

4

5

6

7

8

de
ns

ity

real
random

0.0 0.5 1.0 1.5 2.0 2.5 3.0
generalization_interval

0

1

2

3

4

5

6

7

de
ns

ity

real
random

Fig. 8. Generalization intervals density plots for lines defined by the samples of MNIST having real and random labels of class 5 and for different architectures
with (left) 1 hidden layer. (middle) 2 hidden layers. (right) 4 hidden layers.

0 500 1000 1500 2000 2500
epochs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

av
er

ag
e

GI

avg_GI
train_acc
val_acc

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

Fig. 9. Correlation of average generalization intervals with training and
validation accuracy of using the models trained on the MNIST dataset using
the actual labels.

the network is memorizing data with random labels as the
generalization intervals are much lower compared to data with
real labels. In the two-dimensional case, almost all the lines
have high probability of being interfered with each other.

To study the generalization intervals of higher-order struc-
tures, Figure 7 shows the density of the generalization intervals
along the directions defined by the pairwise lines connecting
the midpoints of a triangle (i.e., the midlines; range as 5)
formed by the samples of MNIST from class 5. We observe
that the generalization intervals do not change much with those
directions with real labels. However, we observe a significant
change in the case of random labels. This confirms that there
is no underlying manifold for random labels and midline
directions behave like random directions.

We also find similar behavior with networks having different
number of layers. Figure 8 shows the pairwise generalization
interval distributions for three different architectures. Even
though the number of layers is different, the distributions of
the pairwise generalization intervals remain roughly the same.
As the number of layers increases, the nonlinearity increases,
and the bump around 1.3 becomes more visible. Therefore, the
experiments suggest that generalization is largely decided by

how the networks generalize between the points. In addition,
the experiments confirm that the results are valid with different
datasets and architectures.

To further validate the relationship between generalization
intervals and generalization performance of a neural network,
Figure 9 shows the correlation of generalization intervals with
training and validation performance for MNIST dataset during
the training process. One can see clearly that the generalization
intervals correlate very well with the model’s generalization
performance on the validation set.

V. DISCUSSION

In this paper, by analyzing the mechanism of training
deep neural networks, we demonstrate quantitatively that deep
neural networks generalize from training samples via roughly
linear interpolation, even when the labels are randomized. The
remarkable similarity of distributions of pairwise generaliza-
tion intervals on datasets with real and random labels answers
the question that deep neural networks generalize and do not
simply memorize (i.e., associate a label to a particular input
only). Furthermore, pairwise interpolations provide a good
approximation of the underlying manifolds of real datasets.
The experiments lead to several further research questions. For
example, how regularization techniques and neural network
architectures affect details of specific solutions even though
the pairwise generalization intervals are similar. In particular,
the differences can and will affect the generalization perfor-
mance on particular validation sets as variations are expected.
Additionally, as shown by Zhang et al. [8], the performance
differences due to regularization techniques are often small.
However, small differences could also be significant because
models are often designed and trained for a small amount
of improvements. It is important to analyze whether such
improvements are extrinsic simply due to optimization or the

choice of test sets or other factors. Similarly, as data are
important in determining the generalization performance of
deep neural networks, neural network architectures should
be important. Clearly, different architectures can behave dif-
ferently locally and therefore affect the details of general-
ization along pairwise paths. In this paper, we have used
principal components to capture linear and local manifolds.
Manifolds of real datasets are often complex and exhibit
globally nonlinear structures. As the interpolations are data-
driven, we expect that the interpolations can also approximate
nonlinear manifolds well. How to quantify the relationships
between nonlinearity of manifolds and deep neural network
generalization needs to be further investigated.

The correlation of generalization intervals with training and
validation accuracy demonstrates an intrinsic way to quan-
tify the generalization performance of deep neural networks
without relying on particular choices of validation sets. The
performance measure can be useful for neural architecture
search [22] and for designing better neural network compo-
nents and architectures. The linear interpolations, while effec-
tive for ReLU networks without any additional nonlinearity,
need to handle nonlinearity due to other nonlinear components
such as max pooling and maxout. Such nonlinear components
allow inputs not to be aligned but have the same outputs.
For example, we have observed that the correlation between
the generalization intervals and validation accuracy for the
CIFAR-10 dataset is lower than that on the MNIST dataset.
This is being investigated further.

VI. CONCLUSION

In this paper, we demonstrate for the first time that
deep ReLU neural networks generalize through interpolations.
While the pairwise generalization intervals on real and random
datasets are remarkably similar on high dimensional datasets
such as MNIST and CIFAR-10, the pairwise interpolations
also approximate the underlying manifolds well when they
exist, enabling the models to generalize well. While we have
characterized systematically for networks with ReLU as the
sole source of nonlinearity, how to compute the generalization
intervals efficiently for networks with additional nonlinearity
such as max pooling and maxout still need to be investigated.
Even though regularization techniques and neural network
architectures may not have a significant impact on generaliza-
tion, they can and do have impacts. Analyzing and modeling
their impacts is also being studied.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural Infor-
mation Processing Systems 25, 2012.

[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

[3] S. Salman and X. Liu, “Sparsity as the implicit gating mechanism
for residual blocks,” in 2019 International Joint Conference on Neural
Networks (IJCNN), Budapest, Hungary, 2019.

[4] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Advances in Neural Information Processing
Systems 27, 2014.

[5] A. Graves, A. Mohamed, and G. E. Hinton, “Speech recognition with
deep recurrent neural networks,” CoRR, vol. abs/1303.5778, 2013.

[6] R. Miotto, F. Wang, S. Wang, X. Jiang, and J. T. Dudley, “Deep
learning for healthcare: review, opportunities and challenges,” Briefings
in Bioinformatics, 2017.

[7] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. R. Baker, M. Lai, A. Bolton, Y. Chen, T. P.
Lillicrap, F. Hui, L. Sifre, G. van den Driessche, T. Graepel, and
D. Hassabis, “Mastering the game of go without human knowledge,”
Nature, 2017.

[8] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals, “Under-
standing deep learning requires rethinking generalization,” CoRR, vol.
abs/1611.03530, 2016.

[9] V. Vapnik, Statistical learning theory. Adaptive and learning systems for
signal process- ing, communications, and control. Wiley, 1998.

[10] S. Geman, E. Bienenstock, and R. Doursat, “Neural networks and the
bias/variance dilemma,” Neural Computation, 1992.

[11] D. Arpit, S. K. Jastrzebski, N. Ballas, D. Krueger, E. Bengio, M. S.
Kanwal, T. Maharaj, A. Fischer, A. C. Courville, Y. Bengio, and
S. Lacoste-Julien, “A closer look at memorization in deep networks,” in
Proceedings of the 34th International Conference on Machine Learning,
ICML, 2017.

[12] S. Chatterjee, “Learning and memorization,” in Proceedings of the 35th
International Conference on Machine Learning. PMLR, 2018.

[13] D. Jakubovitz, R. Giryes, and M. R. D. Rodrigues, “Generalization error
in deep learning,” CoRR, p. arXiv:1808.01174, 2018.

[14] E. Collins, S. A. Bigdeli, and S. Süsstrunk, “Detecting memorization in
relu networks,” CoRR, p. arXiv:1810.03372, 2018.

[15] G. Montúfar, R. Pascanu, K. Cho, and Y. Bengio, “On the number of
linear regions of deep neural networks,” in Proceedings of the 27th
International Conference on Neural Information Processing Systems -
Volume 2, ser. NIPS’14, 2014.

[16] D. E. Rumelhart and D. Zipser, Feature Discovery by Competitive
Learning. Ablex Publishing Corp., 1988.

[17] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016, pp. 156–159.

[18] P. Simard, Y. LeCun, J. S. Denker, and B. Victorri, “Transformation
invariance in pattern recognition-tangent distance and tangent propa-
gation,” in Neural Networks: Tricks of the Trade, This Book is an
Outgrowth of a 1996 NIPS Workshop, 1998.

[19] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, 1998.

[20] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
University of Toronto, Tech. Rep., 2009.

[21] A. Rozza, M. Manzo, and A. Petrosino, “A novel graph-based fisher
kernel method for semi-supervised learning,” in 22nd International
Conference on Pattern Recognition, 2014.

[22] T. Elsken, J. Hendrik Metzen, and F. Hutter, “Neural Architecture
Search: A Survey,” arXiv e-prints, p. arXiv:1808.05377, 2018.

APPENDIX

A. Generalization and Interpolation of Deep ReLU networks
Based on Matrix Norm

In this appendix, we apply basic operator theory to show
that the rate of change of the output from the deep ReLU
network is overall bounded with respect to the rate of change
of the input. Moreover, this boundary is “reasonable” in most
portion of the input space. Then, we will further interpret the
results shown in Figures 1, 2 and 3.

We start with deep linear networks. That is, we first remove
the ReLU layers. A multi-layer linear network can be defined
as

y =WL . . .W1x,

where x is the input and W1, . . . ,WL are the matrices
representation of layers 1,. . . , L respectively. Then, suppose
W = WL . . .W1 and so that the linear network can be

represented as y =Wx, which is a linear projection by matrix
W from x ∈ Rn to y ∈ Rm.

Before going on, we shall briefly introduce the notions of
vector’s p-norm and matrix norm: Let p ≥ 1 be a real number.
Then, we can define a measure of distance called p-norm on
the real space Rn:

||x||p :=

(
n∑
i=1

|xi|p
) 1

p

, for any x = {x1, . . . , xn} ∈ Rn.

It only takes a routine derivation to show that || · ||p is indeed
a norm, which is not discussed in this paper. However, we
do want to note that: When p = 2, we shall get the typical
Euclidean distance. And when p approaches positive infinity,
the p-norm becomes the infinite norm:

||x||∞ := max
i=1,··· ,n

|xi|, for any x = {x1, . . . , xn} ∈ Rn.

If we apply the same p-norm on both Rn and Rm, there in-
duces a corresponding operator norm (or matrix norm)
on the linear projection y =Wx as:

||W ||p = sup

{
||Wx||p
||x||p

, for x ∈ Rn with x 6= 0

}
.

where sup{} mean the supreme of the scales in this set.
And we note that in the special case of p =∞, the matrix

norm will have the formula:

||W ||∞ = max
1≤i≤m

n∑
j=1

|wij |,

which is simply the maximum absolute row sum of the matrix.
Intuitively, the matrix norm put an upper bound

to the variance in y with respect to that in x:
||dy||p = ||Wdx||p ≤ ||W ||p · ||dx||p. With this property,
we provide a strict mathematical analysis on linear network
generalization.

Suppose we are working with the dataset MNIST, so
that x ∈ R784 and y ∈ R10, with each dimension yl in
y corresponding to the digit-class l. Also, we assume that
the linear network y = Wx is well-trained: Say, for any
sample xi, the dimension of the labeled digit-class in yi is
larger than any other dimension by at least κ = 4.5. In this
case, suppose the dimension of the labeled digit-class is L.
Then, eyiL/eyil = eyiL−yil ≥ e4.5 ≈ 90, and so that the
output after softmax will be like (0.01, . . . , 0.9, . . . , 0.01).
But the exact value of κ may be set differently based on the
dimension of y and the training requirements. We call κ the
training requirement parameter. We shall put κ in use
shortly when interpreting experimental results.

Now, we add the ReLU layers back, so that

y = ReLU(WL ·ReLU(WL−1 · · ·ReLU(W1x) · · ·))

Suppose y1 =W1x, and the l’th dimension of y1 is less than
zero. Then, the ReLU function will turn the l’th dimension

of y1 into zero, which is also equivalent to turning all the
elements in row l of W1 into zeros. In fact, this means that
for the fixed value x, we shall have ReLU(W1x) = W ′1x,
where W ′1 is the matrix same to W1 except for some rows to
be all zeros.

We note that different values of x will lead to different W ′1,
i.e., different rows in W1 will become zeros. But due to the
continuity of ReLU(W1x), W ′1 will be fixed in local areas of
input space X. In fact, if dim(y1) = m1, the input space X
can be theoretically divided into 2m1 regions: X = ∪2m1

r=1Xr

with Xr ∩Xs = ∅ for r 6= s, so that W ′1 is fixed in each Xr.
Hence, we can see that the operation ReLU(W1x) is piece-
wise linear throughout the input space X. (Also note that we
use W1(x)x to represent ReLU(W1x) in our main paper. But
in this appendix, we always use W ′1 to represent the matrix
W1 after ReLU function.)

Taking this analysis into the entire deep ReLU network, we
can have that: There exists a space division X = ∪Rr=1Xr

with R < ∞ and Xr ∩Xs = ∅ for any r 6= s, such that in
each Xr, we have

y = ReLU(WL ·ReLU(WL−1 · · ·ReLU(W1x) · · ·))
=W ′LW

′
L−1 · · ·W ′1x =W ′x,

where each matrix W ′l is the same to Wl except for some
rows to be all zeros, and all the matrices W ′1, · · · ,W ′L (and
hence W ′) are fixed in each Xr. Therefore, we can see that
the deep ReLU network is piecewise linear throughout the
input space X.

Since W ′1 is obtained by erasing rows in W1 into zeros, it is
obvious that ||W ′1||∞ ≤ ||W1||∞ for any W ′1. However, although
||W ′2W ′1||∞ ≤ ||W2W

′
1||∞ holds true, ||W2W

′
1||∞ ≤ ||W2W1||∞

is not guaranteed. Hence, we cannot claim that ||W ′2W ′1||∞ ≤
||W2W1||∞. Therefore, we cannot claim that ||W ′||∞ ≤ ||W ||∞.

But anyway, the deep ReLU network is indeed bounded by
K = supRr=1{||W ′||∞, for each W ′ corresponding to Xr},
due to R <∞. In fact, we claim that for most W ′, ||W ′||∞ is
suppose to be in the same magnitude of ||W ||∞: Suppose W ′ =
W ′2W

′
1, i.e. L = 2. The variance |W2i ·W ′1j | − |W2i ·W1j |

should be randomly positive or negative. Then, if the row i
in W ′2 is not erased to zeros, we shall have W ′2i =W2i. And
so that the difference between the absolute summation of i’th
row in W ′ and that in W will be:

n′∑
j=1

|w′ij | −
n′∑
j=1

|wij | =
n′∑
j=1

|W2i ·W ′1j | −
n′∑
j=1

|W2i ·W1j |

=

n′∑
j=1

(
|W2i ·W ′1j | − |W2i ·W1j |

)
.

According to this form, the absolute summation in one row
of W ′ shall hardly show significant change comparing to the
same row in W . This is because most amount of variance may
be cancelled out due to the randomness in |W2i ·W ′1j |−|W2i ·
W1j |. Hence, ||W ′||∞ ≈ ||W ||∞ shall hold true for most W ′

when L = 2. When L ≥ 3, we may set W ′′ =W ′L−1 · · ·W ′1,

so that W ′ =W ′L ·W ′′. Then the same result shall be obtained
by mathematical induction.

We use the concept “most” for many times in the above
analysis. In fact, the more nodes in the hidden layers, the
closer ||W ′||∞ and ||W ||∞ should be. This is because the
random differences caused by ReLU may be balanced in the
high dimension of row Wl+1i and column W ′l j . Given that
our deep ReLU network has 3 hidden layers with 128 nodes
in each layer, we assume that the probability of any input x
to locate in a region Xr with ||W ′||∞ ≤ 2||W ||∞ is 99%. We
call this statement the norm distribution assumption.

Now, we are ready to interpret the experimental results in
our main paper. Once again, we only use MNIST as our
example. The situations with CIFAR-10 and other datasets
shall be the same.

We first deal with the performance of deep ReLU network
trained by actual labels. We assume that the training samples
are “dense”, with samples from the same class clustered
together. In particular, dense and clustered samples are typical
for many datasets. And these clusters usually form specific
structures such as manifolds or hyper-planes. But to be spe-
cific, we assume that there is a domain S in the sample space
satisfying:

(i) Every sample in S belongs to the class L.
(ii) For any x ∈ S, there exists a sample xi from class L

such that ||x−xi||∞ < κ
4||W ||∞ . Given the MNIST dataset, this

means that each pixel in x is within the range of κ
4||W ||∞ of

the corresponding pixel in xi.
Then, for any input x ∈ S, suppose xi is its closest sample.

We assume that xi ∈ Xr0 and x ∈ Xr1 , where Xr0 and
Xr1 are the small regions with fixed W ′, corresponding to
the well-trained deep ReLU network W . Then, suppose the
line segment −−−−→x− xi (starting at xi and ending at x) passes
through the R boundaries between R+1 small regions Xr0 =
X0, · · · ,XR = Xr1 . Then, suppose the points x̂1, · · · , x̂R are
on each boundary respectively.

According to the definition of S, we have that ||x−xi||∞ <
κ

4||W ||∞ , and there exists positive numbers α0, α1, · · · , αR with∑R
r=0 αr = 1 such that ||x̂r+1 − x̂r||∞ = αr · ||x − xi||∞

(we define x̂0 = xi and x̂R+1 = x). In addition, since the
deep ReLU network W is continuous, inputs on the boundary
between two regions can take either W ′ from each region.
That is, W ′r−1x̂r =W ′rx̂r for r = 1, 2, · · · , R.

Then, we have (for simplicity, we use || · || to note || · ||∞)

||y − yi|| = ||W ′Rx−W ′0xi||
= ||W ′Rx̂R+1−W ′Rx̂R+W ′R−1x̂R−· · ·−W ′1x̂1+W ′0x̂1−W ′0x̂0||
≤||W ′Rx̂R+1−W ′Rx̂R||+||W ′R−1x̂R−W ′R−1x̂R−1||+· · ·+||W ′0x̂1−W ′0x̂0||
= ||W ′R(x̂R+1−x̂R)||+||W ′R−1(x̂R−x̂R−1)||+· · ·+||W ′0(x̂1−x̂0)||
≤ ||W ′R||||x̂R+1−x̂R||+||W ′R−1||||x̂R−x̂R−1||+· · ·+||W ′0||||x̂1−x̂0||

According to our norm distribution assumption, 99% of W ′r
will have ||W ′r|| ≤ 2||W ||. We assume that ||x−xi||∞ < κ

4||W ||∞ ,
which is a small range. So, the value R should not be huge

enough to have more than 2 or 3 W ′r with ||W ′r|| > 2||W ||. As
a result, we can say that in most cases, we have

||y − yi|| ≤ 2||W || (||x̂R+1−x̂R||+||x̂R−x̂R−1||+· · ·+||x̂1−x̂0||)
=2||W ||(αR||x−xi||+αR−1||x−xi||+ · · ·α0||x−xi||)

= 2||W || · ||x− xi|| < 2||W || · κ

4||W ||
=
κ

2

This means that each dimension in y is within the range of
κ
2 of the corresponding dimension in yi. So for any dimension
yl in y, we have that:

yL − yl = (yL − yiL) + yiL − (yl − yil)− yil
= yL−yl = [(yL−yiL)−(yl−yil)]+(yiL−yil)

> [(−κ
2
)− (

κ

2
)] + (κ) = 0

That is, the dimension of class L in y will not be surpassed by
any other dimension, which means that x shall be classified
into L. Finally, due to the ambiguity of x in S and the norm
distribution assumption, we can conclude that the deep ReLU
network W is correctly generalized to most portion of the
domain S.

When moving the input x along −−−−−→x2 − x1 with x1 and x2
from the same class, it is likely that −−−−−→x2 − x1 is within a
domain S. Hence, the classification would not change due to
the generalization of the deep ReLU network in S. But as we
said, most dense cluster domains S preserve specific structures
such as manifolds or hyper-planes in the input space. Hence,
if x1 and x2 come from different classes or if x moves along
normal directions of a manifold domain, the vector −−−−−→x2 − x1
will likely stretch from domain S1 into domain S2 so that
the classification will change steadily when x passes through
the boundary of the two domains. But if we move x from x1
along a random direction, it is very likely that −−−−→x− x1 would go
beyond the manifold and stretch into areas where samples are
sparse. Hence, deep ReLU networks are not well generalized
in these areas and dimensions in y shall oscillate with chaos.
This analysis coincides with Figures 1 and 2.

However, if we randomly assign the labels, each domain S
in the input space will break down into pieces. This is because
different labels are assigned to the samples in a domain S,
cutting S into irregular local regions. These local regions
are not only irregular but also randomly distributed in the
input space, which permits no meaningful generalization. As a
result, moving along any direction from an input sample now
provides unstable output y, as shown in Figure 3.

In summary, we show that a deep ReLU network performs
piece-wise linear interpolation rather than memorization in the
input space, and its interpolation is bounded. Hence, if samples
from the same classes form dense clusters in the input space,
the deep ReLU network shall generalize well in the domains
covered by the dense clusters.

