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Abstract—Recent works have shown that graph neural net-
works (GNNs) can substantially improve the performance of few-
shot learning benefitting from their natural ability to learn inter-
class uniqueness and intra-class commonality. However, previous
GNN methods have not achieved satisfactory performance due to
the absence of a strong relational inductive bias which determines
how entities interact and are isolated. In this paper, inspired by
the fuzzy theory, we propose a novel meta-learning method called
Fuzzy GNN (FGNN), which obtains superior relational inductive
biases in each episode, for few-shot learning. Specifically, we
employ an edge-focused GNN to perform the edge prediction
by iteratively updating the edge-labels. According to the output
of edge prediction, we design a fuzzy membership function
to achieve more exact relationship representations for node
classification. The parameters of the FGNN are learned by
episodic training with mixed loss including node-label and edge-
label. Extensive experimental evaluation clearly demonstrates the
effectiveness of FGNN. The results show that our method achieves
state-of-the-art performance and a significant improvement over
other GNN methods on two few-shot learning benchmarks.

I. INTRODUCTION

The recent success of deep neural networks [1], [2] has
boosted research on many computer vision tasks such as image
classification, object detection, and semantic segmentation.
However, the power of deep models is partially attributed to
the availability of large training data. This precondition not
only limits the domain in which the models can be applied, but
also does not conform to human cognitive process. They can
rapidly learn a new concept from only one or a few examples
based on their past experiences. Therefore, more and more
researchers are turning their attention to few-shot learning [3]–
[5]. The aim of few-shot learning is to learn new objects with
only a few training examples for each of them. This is not too
difficult for humans, but still a challenging problem for the
machine.

Inspired by human learning, researchers have explored a
meta-learning process for few-shot learning, which solves new
tasks with few labeled data based on knowledge obtained
from previous experiences. More specifically, meta-learning
strategies can learn how to efficiently recognize unseen classes
with few training data by leveraging a distribution of similar
tasks. They learn an across-task meta-learner from multiple
similar tasks to summarize a common representation, provid-
ing a better initialization for new tasks with unseen classes.
Recent research [5]–[9] has successfully exploited this meta-

learning paradigm to tackle the problem of few-shot image
classification. Essentially, these methods learn a similarity
measure and propagate the label information from the support
sets of images to the query sets.

Since the full exploitation of relationships between a support
set and a query is greatly required in few-shot learning [9]–
[11], Graph Neural Networks (GNNs) have been introduced
to handle rich relational structures on each recognition task.
GNNs aggregate features from neighbors iteratively by mes-
sage passing algorithm, and therefore express complex interac-
tions among support and query instances. In particular, GNN
methods in few-shot learning learn inter-class uniqueness and
intra-class commonality by optimizing the nodes and edges
update functions to achieve a better performance. For example,
Garcia et al. [9] use a node-focused GNN to propagate mes-
sages between connected nodes to classify unlabeled samples.
Kim et al. [11] update edge-labels iteratively for inferring a
query association to an existing support set. However, each
few-shot task is constructed as a fully connected graph with
edge weights in the existing methods since they do not have
intrinsic graph structures. This kind of structure results in a
weak relational inductive bias for GNN, making it hard to learn
the accurate relationship in the graph due to the inexact graph
structure, which may propagate noise through edges between
unrelated nodes.

The relationship in few-shot tasks is the similarity between
samples. However, ’similar’ is a fuzzy concept, which is not
clearly defined. To solve the problem of the fuzzy relationship,
we introduce fuzzy theory which is good at dealing with
problems relating to ambiguous, subjective and imprecise
judgments. In this paper, we propose a novel meta-learning
method called Fuzzy Graph Neural Network (FGNN)1 to ob-
tain superior relational inductive biases in learning episodes for
few-shot learning. Compared with the previous GNN methods,
FGNN offers a new relationship representation strategy for
graph construction instead of adopting the fully connected
graph structure. In our model, we treat the relationship con-
struction between nodes as a fuzzy problem(in Section 2) and
design a membership function to compute the membership
degree of each element from the universe of discourse to a
fuzzy set. The universe of discourse is defined by the relation-

1Code: https://github.com/sadbb/few-shot-fgnn
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ship representations, that is, the edge feature in GNNs, which
generated by the edge prediction. The membership degree
can be understood as a more reasonable updated relationship
representation and offer superior relational inductive biases for
different learning episodes.

The proposed FGNN consists of a node-focused GNN
and an edge-focused GNN. In the beginning, the graph is
initialized to a fully connected structure to perform edge
prediction. After edge-focused updating, some edges will be
broken off according to membership degree computed by a
designed membership function. Then the graph will be updated
with the new structure for node classification. Ultimately, the
node loss and the edge loss will be computed to update the
parameters of the FGNN, and the total model is learned in
meta-learning strategy [12], [13].

In the learning process of the edge prediction, we only use
one graph instead of using two graphs [11] because embedding
two opposing relationships in one graph can force the model
to learn their difference, which is beneficial for learning inter-
class uniqueness and intra-class commonality. We conduct
experiments on two benchmark few-shot image classification
datasets to show our performance and compare them with few-
shot learning methods.

To sum up, our contributions are three-fold: 1) We propose a
novel FGNN method that obtains superior relational inductive
biases in learning episodes for solving few-shot learning
tasks. 2) We develop a novel fuzzy strategy for generating
more reasonable relationship representations. 3) We conduct
extensive experiments on two challenging few-shot learning
benchmarks, and FGNN outperforms other few-shot learning
methods including the existing GNN methods.

In the following sections, we review the related work in
Section II. It is followed by the elaboration of the proposed
FGNN approach in Section III. We provide experimental
results in Section IV, and finally we conclude in Section V.

II. RELATED WORK

A. Few-Shot Learning

The aim of few-shot learning is to classify samples from
unseen classes with only a few labeled training examples. The
classification of few-shot learning methods is not immutable,
because some methods combine several mechanisms at the
same time. We focus on the methods that most relevant to ours
and divide them into two branches according to the emphasis
of their works.

Works of the first branch are based on metric-learning.
Obviously, these methods explore a similarity metric, which
can be viewed as learning to compare. In 2015, a Siamese
network [4] trains a parallel network in a supervised way and
then compares the similarity between their extracted features
for few-shot learning. A year later, Matching nets [5] based
on memory and attention introduced the episodic training
mechanism into few-shot learning for the first time, but it can
only be used in the 1-shot tasks. To deal with this problem,
the Prototypical network [6] takes the mean of each class in
episodic training as its corresponding prototype representation

and then treats few-shot learning as 1-shot learning. To explore
the relationship between query images and support images,
Sung et al.[6] proposed Relation Network to learn a deep non-
linear measure.

Works of the second branch are based on meta-learning. The
idea of meta-learning has been proposed more than a couple of
decades ago [14]. For few-shot learning, these meta-learning
methods aim to train a meta-learner on multiple few-shot
tasks, in which only a few labeled samples are available, to
classify samples from unseen classes. For example, Ravi et al.
[12] trained an LSTM-based meta-learner, which learns weight
initialization and an optimizer of the model weights. MM-Net
[15] used memory slots to structure a contextual learner to
predict the parameters of an embedding network for unlabeled
images. But most of the meta-learning methods typically use
shallow neural networks which limit their effectiveness and
they always suffer from overfitting. Sun et al. [8] proposed a
method called meta-transfer learning (MTL) which learned to
adapt a deep CNN for few-shot learning tasks. MTL employs
deep neural networks to improve performance and design two
neuron operations to reduce the probability of overfitting.
However, MTL and other meta-learning methods treat the
samples in the same task as independent individuals which
makes it difficult to learn the relationship between the samples.
Therefore, several GNN methods are proposed to explore
inter-class uniqueness and intra-class commonality in training
episodes.

B. Graph neural network

Graph Neural Network (GNN), a deep learning architecture
on graph-structured data, was first introduced by Gori et al.
[16]. Due to the ability to exchange messages with neighbor
nodes, some approaches have introduced GNN into few-shot
learning [9], [11], [17], [18]. Works on GNNs can be divided
into two categories: spectral-based methods [19] and spatial-
based methods [20]–[22]. In few-shot learning, different tasks
generate different graph structures which the spectral-based
methods cannot adapt to [23], so we focus on spatial-based
methods. Garcia et al. [9] for the first time, incorporated GNNs
into few-shot learning and generalized several proposed few-
shot learning models into the GNN framework. Kim et al.
[11] adapted a deep neural network on the edge-labeling graph
called EGNN, which is a concatenation of feature extractor and
edge-focused GNN and use fully-connected structure. They
use the output of edge prediction to evaluate the model. In
FGNN, the model is evaluated by the output of node classifica-
tion. The output of edge prediction is only used to generate the
relational inductive bias with the membership function. This
strategy offers a strong inductive bias for different episodes to
optimize the propagation process.

C. Fuzzy theory

Since its inception in 1965 by Zadeh [24], the theory
of fuzzy sets has advanced in a variety of disciplines. Not
all concepts in the world, such as ’young’, are crisp which



Fig. 1: The overall framework of the proposed FGNN model. As can be seen from the number of types of support nodes, it is obvious
that this is a 3-way 1-shot problem. Different colors represent different categories. Nodes with solid lines represent labeled support samples,
while nodes with dashed lines represent the unlabeled query sample. It is shown that some edges have broken during the graph update. The
detailed process is described in Section III-B.

means dichotomous, that is, yes-or-no type rather than more-
or-less type. These are called fuzzy sets, and each fuzzy set
contains a universe of discourse and a membership function.
The membership function measures the membership degree
of element in the universe of discourse to the fuzzy set.
In brief, fuzzy theory is a research approach that can deal
with problems relating to ambiguous, subjective and imprecise
judgments, and it can quantify the linguistic facet of available
data and preferences for individual or group decision-making
[25]. Actually, the fuzzy theory has been used in neural
networks for many years [26]–[30]. In GNN methods for few-
shot learning, the relationship between nodes is a fuzzy and
subjective concept, which forces previous work to use a fully
connected graph structure with little information. Inspired by
the fuzzy theory, we design a membership function to map
the relationship in the graph to the real unit interval [0,1] and
generate a strong relational inductive bias by the membership
degree.

III. METHOD

To make our paper more self-contained, we introduce the
concept of few-shot classification task and meta-learning pat-
tern involved in our FGNN, following related work [8], [12],
[13], [31]. Then, we describe the modules and algorithm of
the proposed FGNN in more detail.

A. Problem definition

The goal of few-shot classification is to classify unlabeled
samples training on a few labeled samples from each class.
Formally, in each classification task T , there are two datasets:

a support set S and a query set Q, which share the same label
space. The support set S is a labeled set of input-label pairs
and the query set Q is an unlabeled set to be predicted. N-
way K-shot classification problem means that the number of
classes is N and each class contains K labeled samples in the
support set S.

Meta-learning has been demonstrated as an effective ap-
proach to tackle the problem of few-shot learning. The meta-
learning model learns a base-learner and a meta-learner to
adapt to new tasks quickly. During meta-training, the param-
eters of the base-learner are optimized by a training subset
from a task, and then the parameters of the meta-learner are
optimized by a test subset. In this paper, we adopt episodic
training in MAML [13]. Since the few-shot learning here is
an i.i.d. problem, the episode length of a task is set to 1.

B. Model

As shown in figure 1, our model consists of three parts: a
pre-trained feature extractor, a relation encoder, and a GNN
classifier. The relation encoder and the classifier are GNNs. In
the first place, we train the feature extractor together with a
temporary classifier on large-scale data, e.g. on the training set
of miniImageNet [5] (Section III-B1). During a meta-learning
phase, we designed a membership function to generate the
membership degree which offers a strong inductive bias into
the graph for the GNN classifier(Section III-B2).

1) Feature Extractor: As shallow neural networks will limit
the effectiveness, we employ pre-trained ResNet-12 [2] to
enhance the capabilities of the feature extractor. The loss L



we use to optimize the feature extractor Θ and the classifier
θ′ is as follows:

L([Θ, θ′]) =
1

|Dtrain|
∑

(x,y)∈Dtrain

lp(x, y; [Θ, θ′]), (1)

where lp is defined as cross-entropy loss and Dtrain is the
training split of the entire dataset D.

After learning the feature extractor Θ, it will still be
optimized with a small learning rate during the meta-learning
phase.

2) Fuzzy GNN: The relation encoder outputs the relational
representation by performing the edge prediction with node
features. Then the membership function transforms the rela-
tional representation into a strong relational induction bias in
the graph for node classification. In GNN methods for few-
shot learning, only our FGNN provides a strong bias for the
graph according to the output of the edge prediction.

In FGNN, the node represents each sample and the edge
represents the relationship between the two connected nodes.
We define G = (V, E ; T ) to be the graph on which the task
T is learned. The V = {Vi}i=1:|T | is the set of nodes(of
cardinality |T |), where each vi is the node’s feature. The E =
{Eij}i,j=1:|T | is the set of edges, where each eij is the edge’s
feature. Let X = {xi}i=1:|T | be samples of each T , and Y =
{yi}i=1:|T | be category labels of samples. The ground truth
of the edge prediction Ŷ = {ŷij}i,j=1:|T | is defined as:

ŷij =

{
0 if yi = yj ,

1 if yi 6= yj .
(2)

Relation encoder. Relation encoder is a metric network based
on GNN that computes the similarity scores between samples.
As the message propagates through the graph, nodes and edges
can aggregate information from all nodes and edges in the
graph, not just from their neighbors. As a result, the calculation
of the similarity score does not depend solely on two nodes,
but also on other pairs of nodes.

Different from EGNN [11], we improve their structure and
transform the result of edge-label prediction to the bias for the
node-focused GNNs by a designed membership function. In
the edge prediction, features extracted from feature extractor
are nodes’ initial features. In l-th layer of relation encoder,
edge features are updated firstly by the edge-update function,
and the input is the feature of the nodes at both ends of the
edge:

el+1
ij = f le(v

l
i, v

l
j)i,j=1:|T |, (3)

and then node features are updated by the node-update func-
tion,

vl+1
i = f lv(

∑
j e
l−1
ij vl−1

j∑
j e
l−1
ij

||vl−1
i ), (4)

where || is the concatenation operation.

Fig. 2: The illustration for the membership function.

Relation encoder φ will be optimized by loss L′ at the end
of task T ,

L′(φ) =
1

|E|
∑

i,j=1:|T |

le(e
L1
ij , ŷij ;φ), (5)

where L1 represents the number of layers in the relation
encoder. To avoid using a separate classifier, we set the output
of the edge-update function of the relation encoder to an 1-
dimensional vector for edge prediction.
Membership function. Theoretically, a fuzzy inference sys-
tem can encompass any fuzzy aggregation strategy desired to
be utilized. Herein, we focus on the membership function µ
to infer the relationships predicted by the relation encoder. In
general, a membership function is a mapping of data from the
universe of discourse which is defined by the output of the
edge-focused layers in our FGNN:

µ(eij) =


1 if eij > ζ,

fµ(eij) if ζ ≥ eij ≥ η,
0 if eij < η,

(6)

where ζ is larger than η.
Figure 2 shows the membership function we design for

inferring the relational representations in our FGNN. Con-
sidering the outputs of the relation encoder is fuzzy, we
artificially strengthen the relationship between samples that
the model determines to be similar extremely and cut off the
edges between two nodes with significant differences. The
relationships with the similarity score between ζ and η are
difficult for the relation encoder, and the score is unreliable.
We employ a linear function fµ to deal with these edges. The
graph made up of these preserved edges will no longer be fully
connected and have a strong relational inductive bias. Note
that, the values of ζ and η affect the effect of the membership
function for a long time.
GNN classifier. After transforming E by the membership
function, it will be the adjacent matrix A of the graph for the
GNN classifier θ. Different from it in the previous work [9],
[11], [17], this adjacent matrix is sparse and offers a relational



inductive bias to the graph. The GNN classifier updates the
node feature by a neighborhood aggregation procedure as
Eq.(4). Note that node-update function in the relation encoder
and GNN classifier have different parameters.

We optimize the GNN classifier θ for each task T before
optimizing the entire model using the following empirical loss:

L(θ) =
1

N ×K
∑

i=1:|T |

lθ(v
L2
i , yi; θ), (7)

where N is the number of classes, K is the number of samples
for each class in N -way K-shot learning, lθ represents cross-
entropy loss and L2 represents the number of layers in the
GNN classifier. Actually, the samples in Eq.(7) are all from
the support set S. The updated θ will be more suitable for
present task T .

We define Tq as the query set Q sampled from T and Yq
as the label of the query set Q. Then, we consider the Cross-
entropy loss evaluated at node ∗ for all parameters:

L([Θ;φ; θ]) = −
∑
k=1:N

yk log(P (Y∗ = yk|Tq)). (8)

Algorithm 1 outlines the training process of our method.
In summary, FGNN has benefits in three aspects. 1) It offers
a strong relational inductive bias for GNNs to obtain a more
general representation. 2) It employs a membership function
from the fuzzy theory to generate a more reasonable relational
representation. 3) Mixed losses from edge prediction and node
classification can achieve a better generalization ability to new
tasks.

IV. EXPERIMENTS

In this section, we firstly describe the miniImageNet dataset
and the tieredImageNet dataset. Then we report experimental
results to evaluate the efficacy of the proposed FGNN method
in terms of the few-shot recognition accuracy and compare
with other state-of-the-art methods. We also do an ablation
research to explore the contribution of each module in our
framework.

A. Datasets

miniImageNet. Proposed by Vinyals et al. [5], miniImagenet
is the most popular few-shot learning benchmark. There are
100 classes with 600 samples of 84×84 color images per class
from ImageNet ILSVRC-12 [32]. It is divided into training,
validation, and test meta-sets, with 64, 16, and 20 classes
respectively [12].
tieredImageNet. Similar to miniImageNet, tieredImageNet
[33] is also a subset of ILSVRC-12 dataset [32], but it has
a larger number of classes from ILSVRC-12. There are 608
classes with average 1281 samples of 84×84 color images per
class. Note that, different from miniImageNet, tieredImageNet
adopts a hierarchical category structure for broader categories
corresponding to high-level nodes in ImageNet. The 34 cat-
egories belong to top hierarchy are divided into 20 training
(351 classes), 6 validation (97 classes) and 8 test (160 classes)

Algorithm 1: Fuzzy Graph Neural Network for Few-
Shot Learning
Input: G = (V, E ; T ) where T is sampled from p(T ),

dataset D, learning rates α,β and γ, weight λ
Output: Feature extractor Θ, Relation encoder φ and

GNN classifier θ
1 Randomly initialize Θ and a temporary classifier θ′;
2 for samples in D do
3 Evaluate LD([Θ; θ′]) by Eq.(1);
4 Optimize Θ and θ′ by gradient descent;
5 [Θ; θ′]← [Θ; θ′]− α∇LD([Θ; θ′]);
6 end
7 Randomly initialize Relation Encoder φ and GNN

classifier θ;
8 for number of training iterations do
9 Sample batch of tasks Ti ∼ p(T );

10 while not done do
11 Sample support set S = {(xi, yi)}i=1:N×K and

query set Q = {xi}i=N×K+1:N×(K+Q) from
Ti;

12 initialize graph node vi = fΘ(xi),∀i;
13 for l = 1, ..., L1 do
14 E l ← EdgeUpdate(V l−1);
15 V l ← NodeUpdate(E l,V l−1);
16 end
17 Evaluate L′ by Eq.(5);
18 Transform E by Eq. (6);
19 for number of temporary iterations do
20 for l = 1, ..., L2 do
21 V l ← NodeUpdate(E ,V l−1);
22 end
23 Evaluate L(θ) by Eq.(7);
24 Optimize θ by gradient descent;
25 θ ← θ − β∇L(θ);
26 end
27 Evaluate L([Θ;φ; θ]) by Eq.(8);
28 Optimize Θ,φ and θ by gradient descent;
29 [Θ;φ; θ]← [Θ;φ; θ]− γ∇(L([Θ;φ; θ]) + λL′);
30 end
31 end

categories, which ensures that the training classes are distinct
from the test classes semantically.

B. Experimental setup

Network architecture. We present the details for the feature
extractor, relation encoder, and GNN classifier. Limited by the
small-scale of datasets, the architecture of feature extractor Θ
is ResNet-12, which is popular in recent works [8], [31], [34],
[35]. ResNet-12 contains 4 residual blocks and each residual
blocks consists of 3 CONV layers with 3 × 3 kernels. A
2 × 2 max-pooling layer is used to downsample feature map
at the end of each residual block. As other works do, we
set the number of filters to 64 at the first block and double



it every next block. Between the CNN residual block and the
classifier of ResNet-12, a mean-pooling layer is employed. The
relation encoder φ is an edge-focused graph neural network
consists of edge-update function and node-update function.
We employ FC layers, followed by batch normalization and a
sigmoid activation function to update edges. The node-update
function also consists of an FC layer, batch normalization
and a LeakyReLU activation function. The GNN classifier
θ is a node-focused graph neural network. Compared with
the relation encoder, θ does not have a proprietary edge-
update function because its edge features are provided by
the membership function. Generally, a GNN model is quite
shallow (2 or 3 layers) because if the model is deep with
many layers, the output features will be over-smoothed and
vertices from different clusters may become indistinguishable
[36]. We set the the number of relation encoder layers L1 = 2
and the number of the GNN classifier layers L2 = 1.
Pre-train. We train ResNet-12 with all training data points
and sampling task method as related works [8], [12], [13]
with Adam optimizer with an initial learning rate of 10−1 and
weight decay of 10−5. We perform standard data augmentation
techniques on training sets, e.g. random horizontal flips and
random crops. The training process takes 100 epochs, and
the learning rate is decreased in half every 30 epochs. In
the ablation study, when we use 4CONV rather than ResNet-
12, there is no pre-training operation because of its poor
performance for large-scale data training [8].
Meta training. In order to compare with other works, we
conducted 5-way 1-shot experiments and 5-way 5-shot exper-
iments. We take 12k episodes to train the FGNN model, with
each episode containing 1 or 5 supports and 15 queries from
each of the 5 classes. Both the relation encoder and the GNN
classifier are optimized with Adam, but the learning rate of
the former is 10−2 and the latter is 10−3. The learning rates
of both φ and θ are reduced by 4/5 after 1k episodes. We also
perform the same standard data augmentation techniques on
training sets as in the pre-train step.
Ablation study. To prove the effectiveness of our approach,
we designed four network structures and conducted both 5-
way 1-shot experiments and 5-way 5-shot experiments. For
the feature extractor, there are two options: 4CONV and
pre-trained ResNet-12. In 4CONV, each convolutional block
consists of 3 × 3 convolutions, a batch normalization [37],
a LeakyReLU nonlinearity and a 2 × 2 max-pooling. For
instance, [Θ4; θ] represents the model that used 4CONV and
the GNN classifier but didn’t use a relation encoder. To show
the effectiveness of FGNN, the auxiliary task for edges become
optional. To validate the importance of the fuzzy membership
function, we test to make edge set E to a binary matrix by
imposing threshold criteria for the GNN classifier and set the
threshold to 0.5.

C. Results and analysis

Table I and Table II show the results of our experiment on
the miniImageNet dataset and the tieredImageNet dataset. The
tables are sorted according to the categories of the methods,

Models 1-shot 5-shot

Metric learning
Matching Nets [5] 43.44 ± 0.77 55.31 ± 0.73
ProtoNets [6] 49.42 ± 0.78 68.20 ± 0.66
Relation Net [7] 50.40 ± 0.80 65.30 ± 0.70

Memory network SNAIL [34] 55.71 ± 0.99 68.88 ± 0.92
TADAM [31] 58.50 ± 0.30 76.70 ± 0.30

Gradient descent

MAML [13] 48.70 ± 1.84 63.10 ± 0.92
Qiao et al [38] 59.60 ± 0.41 73.74 ± 0.19
LEO [39]† 61.76 ± 0.08 77.59 ± 0.12
wDAE-MLP [17] 60.61 ± 0.15 76.56 ± 0.11
MetaGAN [40] 52.71 ± 0.64 68.63 ± 0.67
adaResNet [41] 56.88 ± 0.62 71.94 ± 0.57
MTL [8] 61.20 ± 1.8 75.50 ± 0.8

GNN methods

GNN [9] 50.30 66.40
TPN [18] 55.51 69.86
EGNN [11] 58.98 76.37
EGNN [11]∗ 58.34 76.80
wDAE-GNN [17] 61.07 ± 0.15 76.75 ± 0.11
FGNN(Ours) 64.15 ± 0.28 80.08 ± 0.35

TABLE I: The 5-way, 1-shot and 5-shot Classification results on
miniImageNet dataset on 5-way setting. The top results are high-
lighted. †: using also the validation classes for training. ∗: we
implemented using pre-trained feature extractor.

Models 1-shot 5-shot

Metric learning ProtoNets [6] 53.31 ± 0.89 72.69 ± 0.74
Relation Net [7] 54.48 ± 0.93 71.32 ± 0.78

Gradient descent

MAML [13] 51.67 ± 1.81 70.30 ± 0.08
Meta-SGD [42] 62.95 ± 0.03 79.34 ± 0.06
Dynamic [43] 50.90 ± 0.46 66.69 ± 0.36
LEO [39]† 66.33 ± 0.0 81.44 ± 0.09

Memory network Incremental [44]‡ 51.12 ± 0.45 66.40 ± 0.36

GNN methods
TPN [18] 59.91 73.30
EGNN [11] 58.98 80.15
EGNN [11]∗ 59.30 80.22
FGNN(Ours) 69.09 ± 0.15 84.13 ± 0.18

TABLE II: The 5-way, 1-shot and 5-shot Classification results
on tieredImageNet dataset on 5-way setting. The top results are
highlighted. †: using also the validation classes for training. ‡:
replace all batch normalization layers with group normalization. ∗:
we implemented using pre-trained feature extractor.

and we compare our FGNN with other GNN methods for few-
shot learning.
Result on miniImageNet. In Table I, it is shown that our
FGNN achieves the best performance with 64.15% for 5-
way 1-shot learning on miniImageNet. On the 5-way 5-
shot experiment, our model also achieves 80.08% accuracy
and ranked first. Among these graph network methods, our
FGNN is also the best performer. On 5-way 1-shot and 5-
way 5-shot experiments, the accuracy for FGNN is 3.08% and
3.33% more than wDAE-GNN, the best GNN method for few-
shot learning previously. One thing to explain, wDAE-GNN
designed another experiment that used validation classes for
training and achieved accuracy similar to ours. But in order
to be fair, we choose the results of training using the training
set only.
Result on tieredImageNet. For tieredImageNet, as in Table
II, we also achieve the best results on both 5-way 1-shot and
5-way 5-shot experiments. The results of EGNN on 1-shot
experiments were not reported in their paper [11]. We get the
result using their public code of EGNN on the Github website.



Model Pre-train Edge prediction 1-shot 5-shot
[Θ4; θ] No No 55.73 72.30
[Θ4;φ; θ] No Yes 59.89 74.31

[Θ; θ] Yes No 59.50 74.07
[Θ;φ; θ](Threshold) Yes Yes 60.21 76.50
[Θ;φ; θ] Yes Yes 64.15 80.08

TABLE III: The 5-way, 1-shot and 5-shot Classification results on
miniImageNet dataset on 5-way setting using ablative models. Θ4
means that the model used 4CONV as the feature extractor.

Although the gap between the training set and test set in the
tieredImageNet is deeper than in miniImageNet, the model
achieved a better performance due to the more available data.
We can see that FGNN consistently outperforms EGNN by
large margins. Especially in the 1-shot experiment, the gap
reached 10.06%. And for 5-shot, FGNN surpasses EGNN by
around 3.91%.

The performance of FGNN with full components, member-
ship function, edge prediction and pre-trained ResNet-12, is
the best in all few-shot learning methods on both datasets, see
Table I and Table II. We can conclude that our GNNs with a
strong relational inductive bias significantly boost the few-shot
learning performance. Note that our FGNN performed better
than other GNN methods, which supports the effectiveness of
our framework for few-shot learning. In [9], nodes communi-
cate to each other only via their embedding feature similarities
which proved to be meaningless in preliminary experiments.
To generate a more reasonable graph structure, TPN [18] used
a Laplacian matrix rather than feature similarities to propagate
labels of the support set to the query set. In EGNN [11], they
propagate to each other not only their node features but also
edge-label information across to consider more complicated
interactions between query samples. However, updating edge
feature iteratively with the state at the previous time may
make the model suffer from noise during the whole update
process. In contrast, our FGNN allows us to consider a
more reasonable graph structure by optimizing the relational
representations with a membership function, and the relational
representation that is, the membership degree will be frozen
for node classification to exchange more relevant information
between neighbors.
Result on ablation experiment. The difference between
FGNN and the previous GNN method is mainly in two aspects:
pre-trained feature extractor and the strong relational inductive
bias from the membership function. Table III indicates the
impact of these two parts on the results. Comparing the results
of [Θ4; θ] and [Θ; θ], we found that pre-trained ResNet-12
gives around 4% improvement to the model. FGNN with a
strong relational inductive bias [Θ;φ; θ] surpasses the model
updating in fully connected structure [Θ; θ] by a relatively
larger number of 4% for 5-shot and with 6% for 1-shot on
miniImageNet. In particular, the performance of the model
using binary matrix rather than a membership function is
only a little better than that of [Θ; θ]. The effectiveness of
model [Θ; θ] and [Θ;φ; θ] is shown in Figure 3. As the

(a) (b)

(c) (d)

Fig. 3: (a)(b)show the results of 1-shot and 5-shot on miniImageNet;
(c)(d) show the results of 1-shot and 5-shot on tieredImageNet. The
only difference between the two models is in the relational inductive
bias.

test is invisible to the model during training, the accuracy
in Figure 3 is evaluated on the validation set. At the first
epoch, [Θ;φ; θ] surpasses [Θ; θ] by around 5%, which means
that the membership function can successfully map relational
representations to a more reasonable distribution, even if the
representations are learned preliminarily. It is interesting to
note that the gap between the results of these two models
become larger on tieredImageNet. The possible reason is that
there are more categories in tieredImageNet than in miniIm-
ageNet. The relationships between categories can be learned
better, which makes membership function more effective.

V. CONCLUSION

In this paper, we propose a novel FGNN with a strong
relational inductive bias to tackle few-shot classification prob-
lems. We incorporate the fuzzy theory into GNNs and design
a membership function to generate a more reasonable graph
structure from the samples with ambiguous relationships.
On the task-specific graph structure, FGNN can learn more
useful task-relevant features, which ensures the highly efficient
for learning unseen tasks. The superiority was particularly
achieved in both 1-shot and 5-shot tasks on two challenging
benchmarks - miniImageNet and tieredImageNet. In addition,
we believe that it also provides a new way to construct graphs
from fuzzy relationships in spatial-based GNNs.
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