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Abstract—Research in dolphin communication and cognition
requires detailed inspection of audible dolphin signals. The man-
ual analysis of these signals is cumbersome and time-consuming.
We seek to automate parts of the analysis using modern deep
learning methods. We propose to learn an autoencoder con-
structed from convolutional and recurrent layers trained in an
unsupervised fashion. The resulting model embeds patterns in
audible dolphin communication. In several experiments, we show
that the embeddings can be used for clustering as well as signal
detection and signal type classification.

Index Terms—Bio Acoustics, Dolphin Communication, Neural
Network, Deep Learning

INTRODUCTION

Audible dolphin signals provide insight into dolphin cogni-
tion and social structure. Marine mammalogists collect large
datasets of underwater recordings when encountering dolphins
in the wild. For example, for 29 summers, each with 100 field
days, researchers of the Wild Dolphin Project have collected
audio and video data while observing wild Atlantic spotted
dolphins (Stenella frontalis) underwater, in the Bahamas. The
analysis of this data involves annotating the videos with
observed dolphin behavior as well as dolphin names and
audible signal type categories. In order to understand dolphin
communication, researchers desire to correlate patterns in the
audio with observed behavior. However, finding patterns in
audible communication manually involves intensive measure-
ments and comparisons across multiple spectrograms of the
field recordings. Every hour of field recordings requires ten
hours of manual analysis. We seek to automate several parts
of the analysis: signal detection, sound type classification, and
pattern identification. In the signal detection step, we locate
dolphin signals temporally in the field recordings. The sound
type classification step is needed to automatically determine
the type of dolphin signal. There are several sound types in
dolphin communication. Three prominent types are whistles,
burst pulses and echolocation (see Fig. 1) [13]. These types
are often indicative of dolphin behavior. For example, dolphins
use signature whistles to name each other while echolocation
is often used during foraging.

Signal detection and signal type classification can help
researchers to browse the data more efficiently. However, the
ultimate goal is to automatically identify patterns in audible
dolphin communication. A model of the patterns in dolphin

Fig. 1. Example spectrogram of several dolphin signals. Top: a whistle,
middle: a series of echolocation clicks, bottom: a burst pulse.

signals needs to be robust to frequency shifting and time
warping. One source of these variations is that dolphins are
known to shift their communication into higher frequency
bands depending on the noise floor. Other variations occur due
to the angle of recording and the dolphins’ sound production
itself, among others. Another challenge is that there is no fully
annotated large dataset that could enable us to train a deep
neural network.

We developed a deep autoencoder constructed from convo-
lutional and recurrent layers. Through several experiments we
show that we can indeed train a model in an unsupervised
manner that enables us to find patterns in dolphin communi-
cation and can be used in a transfer learning setup.

Our contributions are
• A deep neural network for audible dolphin signals trained

in an unsupervised manner
• A clustering experiment using embeddings from our

architecture
• A dolphin signal detection experiment
• A dolphin type classification experiment
• Clustering all non-silent regions of a complete year of

audio recordings.

RELATED WORK

Marine mammalogists use interactive tools for the manual
analysis of animal communication recordings. For example,
Cornell’s RAVEN [21] allows researchers to annotate animal
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audio recordings in spectrogram form. Furthermore, Raven
includes algorithms for animal signal detection in larger
recordings. Noldus Observer enables users to annotate audio
and video data together. Observer is primarily used to annotate
annotate animal behavior data manually and does not offer
automatic analysis capabilities. The automatic analysis of
dolphin communication can increase the research speed of
marine mammalogists. Previous models required several sepa-
rate machine learning algorithms. For example, one approach
involves learning a feature space that is invariant to signal
shifts in frequency using convolutional k-means [3]. The next
step is to cluster all examples using the dynamic time warping
distance in order to account for temporal warpings of the
signal. The last step is to learn a probabilistic model using a
mixture of hidden Markov models. In order to build a classifier
on top of the unsupervised results, the algorithm uses a bag-
of-words approach on the cluster IDs [1]–[3]. One drawback
is that these methods have to be tuned independently, which
requires significant manual labor.

Previously, researchers have used the above methods in
isolation. For example, Lampert and O‘Keefe detect dolphin
whistles in spectrograms under various distortions using hid-
den Markov models [8]. The dynamic time warping distance
is also used to measure similarity between manually extracted
contours from spectrograms of dolphin whistles [9]. Other
models for dolphin communication classification and cluster-
ing use neural networks [10].

There are also several specialized models for dolphin whis-
tles. Two closely related methods are a Viterbi algorithm based
pitch tracker [17] and a Kalman filtering approach [19]. Other
approaches include a frame-based Bayesian approach [18] and
a pitch detection algorithm designed for human telephone
speech that is also capable of extracting whale vocalizations
[20]. All of these approaches seek to extract the contour of
a dolphin whistle. While these methods are very effective
for whistle based communication, we wish to model a wider
variety of dolphin signals and underwater artifacts.

In the proposed architecture we want to enable an end-to-
end deep learning approach to the feature extraction step that
handles frequency shifts and temporal warps in one model.
Furthermore, each pattern should be encoded by the model
into a single vector. Our model is inspired by the machine
translation community. Specifically, we are inspired by the
encoder-decoder model [6].

In a survey [23] of neural networks as models for animal
communication, the authors suggest to use a sequence to
sequence model on top of convolutional neural networks and
show how these models can be used for visualization. We will
use a similar model and study its performance on our dolphin
communication dataset.

The encoder in these models encodes a sequence of words
into a single vector using a many-to-one recurrent neural net-
work. The decoder creates the translation from the embedding
vector using a one-to-many recurrent neural network. Instead
of words, we pass the encoder the output of a convolutional
layer, followed by max-pooling. The decoders output is not

the result itself, but the resulting sequence is passed to a
deconvolution layer, similar to a convolutional autoencoder
[7]. Instead of training the model for translation, we train the
encoder and decoder to reconstruct a spectrogram window of
dolphin communication. In the following section, we describe
our model in more detail.

PROPOSED ARCHITECTURE

Our goal is to learn a feature space that maps small spec-
trogram windows (128 spectrogram frames or 3/4 seconds)
into a single embedding vector. We propose an autoencoder
to account for signal variations in time and frequency. The
first layers of our encoder seek to achieve invariance to signal
shifts in frequency by using a convolutional layer followed
by a pooling operation. The recurrent layers compensate for
time warping effects in the dolphin signals. After encoding
a window of dolphin communication into a single vector,
the decoder reconstructs the input window. Therefore, the
encoding process is reversed. In other words, we reconstruct
a sequence with the length of the input sequence from the
embedding vector using several recurrent layers, and the signal
is reconstructed by a series of deconvolutions.

Our architecture is shown in Fig. 2, and our Keras imple-
mentation can be found at https://github.com/dkohlsdorf/wdp-
ds/tree/v4.0/ml pipeline

Architecture Details

We extract sliding windows

x = {x1...xT }, xi ∈ RF

from a spectrogram with F frequency bins. Each spectro-
gram window is convolved by 256 filters resulting in a novel
sequence:

x̂ = {x̂1...x̂T }, x̂i ∈ RFx256

.
Each sample in the new sequence x̂ has 256 channels per

frequency bin. Each filter spans 0.02 seconds and 680 Hz. In
the next step, we apply max pooling. For every channel in
a sample, we pool across all frequency bins. In other words,
for each spectrogram frame and filter, we select the maximum
response across all frequencies. The result is a new sequence:

pooled(x̂) = {pooled(x̂1)...pooled(x̂T )}, pooled(x̂i) ∈ R256

with the same length as the spectrogram and one dimension
per filter. In this way, we account for frequency shifts since
we discard the frequency of the maximum response of a filter.

In order to account for temporal warping effects, we use the
filter response sequence as input to several layers of recurrent
units. The first layer is a many-to-many bidirectional long short
term memory (LSTM) cell [12], [14]. The second layer is a
many-to-one LSTM. The resulting vector is our embedding:

e = LSTM(pooled(x̂)), e ∈ R128



Fig. 2. The autoencoding architecture. Left: the encoder constructed from
convolutional and recurrent layers. Right: The decoder constructed from
deconvolutional and recurrent layers.

Dolphin signals can develop in complex ways over time.
Therefore, we decided to use LSTM cells in our recurrent
neural network for their ability to hold information longer.
The first recurrent layer returns a sequence of the same length
as the original sequence (many-to-many) serving as the input
to the final embedding layer. Furthermore, the first recurrent
layer is a bidirectional LSTM enabling the outputs to depend
on information from the future and the past. The embedding
layer is a simple LSTM with one output (many-to-one).

The decoder aims to reconstruct the input spectrogram from
the encoding by reversing the encoding process. First, we build
a new sequence from the embedding vector using a one-to-
many LSTM which is followed by a bi-directional LSTM. The
output is a sequence of the same length as the spectrogram:

x′ = {x′1...x′T }, x′i ∈ RF

.
The hope is that the embedding vector holds enough

information to construct a whole sequence resembling the
spectrogram input from it. We then apply a convolution with
256 filters:

x̂′ = {x̂′1...x̂′T }, x̂′i ∈ RFx256

.
followed by a 1x1 deconvolution which creates the final

spectrogram.
Using the convolutions in the decoder we upsample the

number of channels to model the decoder as a reverse of the
encoder. In order to reshape the final sequence to the same
shape as the input spectrogram, we apply a 1x1 deconvolution
layer with one kernel. This technique reduces the shape of
each sample from RFx256 to RF .

Preprocessing And Training

Before the training, we compute the spectrogram using a
0.01 second window with a 0.005 second skip. Then, we apply
a Hanning window before computing the discrete Fourier
transform. We normalize each of the spectrogram windows
(3/4 seconds) to its standard score. Therefore, we compute
the mean and standard deviation for each spectrogram frame
and then subtract the mean of the frame and divide it by its
standard deviation.

During training, we use a batch size of 50 spectrogram
windows and train for 128 epochs. We optimize the model
by minimizing the mean square error between the input
spectrogram and the decoder’s reconstruction using the ADAM
optimizer [15].

Transfer Learning

The autoencoder can be trained in an unsupervised manner.
Collecting a large amount of unlabeled data is easy and can
be used to learn a feature space embedding appropriate for
dolphin communication. Once the model is trained, we can
use a smaller labeled dataset to construct a classifier on top
of the embedding.

In our experiments, we will show how to use the embedder
to distinguish between spectrogram windows with dolphin
communication and water noise and how to use the embedder
to distinguish between different dolphin communication types.

When building a classifier we simply add three dense
layers on top of the encoder’s output and freeze all other
layers’ weights except for the last LSTM. The first two dense
layers’ activations are rectified linear units and the last layer’s
activation is either a sigmoid for binary classification problems
or a softmax activation for multiclass problems. By retraining
on a labeled dataset we can easily construct a classifier.

EXPERIMENTS

With the following experiments, we will highlight several
aspects of our model. We run a clustering experiment to show
that similar patterns are embedded close to each other. In two
experiments using the same model, we show that the encoder
can be adopted to tasks such as dolphin signal detection and
dolphin type classification.

Datasets

In our experiments we use data from in-water field record-
ings collected by the Wild Dolphin Project. The audio data
is extracted from video files from underwater cameras filming
Atlantic spotted dolphins.

For our experiments we collect four datasets:
• An unlabeled dataset of 24 minutes collected form several

field recordings from 2008, 2010 and 2012
• A small signal detection dataset containing 33 seconds of

signal and 83 seconds of noise from field recordings in
2011

• A full year of field recordings consisting of 16 hours
collected in 2011.

• A small labeled signal-type classification dataset



The classification dataset is labeled for dolphin signals
containing:
• Noise: basic water noise, 82 seconds
• Echolocation: echolocation of dolphins, 118 seconds
• Burst Pulses: dense click packages, 71 seconds
• Whistles: the dolphins whistles, 64 seconds
The last dataset is a full year of field recordings. It consists

of ≈ 16 hours collected in 2011. All audio is recorded with a
sample rate of 44100Hz.

Autoencoding

In the first experiment, we train our autoencoder on the
22 minute long unsupervised dataset. In order to inspect the
learned model, we visualize the first layer’s convolutional ker-
nels. As one can see in Fig. 3 the result is filters representing
up and down sweep in whistles (single line) as well as several
representing burst pulses (multiple lines).

Fig. 3. A subset of the first layer convolutional kernels. Kernels that show
multiple lines will be able to detect burst pulse signals while kernels with a
single line will detect dolphin whistles. Vertical lines in a kernel indicate the
presence of echolocation clicks.

In another test, we visually inspect the reconstructions of
several windows using the autoencoder. As one can see in
Fig. 4 the reconstructions are indeed recognizable as dolphin
signals. Clicks and whistles are especially visible, while burst
pulses are often smeared.

We then embed all of the training data and cluster the
resulting vectors using k-means. We use 100 clusters and
initialize the clustering using k-means++ [16]. We also restrict
k-means to 1024 iterations. In order to visualize the clustering,
we project the embeddings into 2D using T-SNE [11]. The
results are plotted in Figure 5. A magnified version is shown
in Figure 6.

Signal Detection

In this experiment, we desire to show that the basic model
can be adapted to the signal detection task. Therefore, we split
the signal detection dataset into 60% training data and 40%
testing data with each set containing data from all years. We
employ a standard neural network for binary classification.
In this experiment, we add three dense layers on top of the
encoder’s output. First, we batch normalize the output of the
encoder and then add two dense layers (64 neurons and 32

Fig. 4. Some reconstructions of dolphin signals. One can clearly see whistles
and echolocation sounds. The reconstructed whistles include up and down
sweeps as well as turning points. The echolocation reconstructions are visible
as one or more vertical lines. Most of the burst pulse sounds are not
reconstructed sharply since the stereotypical harmonics are not present.

Fig. 5. Embedding of the spectrogram windows from the train set. The
position is determined by the T-SNE projection of the embeddings. With
colors indicating the cluster, in the background we plotted the complete T-
SNE map and in the foreground, we zoomed into the four corners. Best viewed
in color. For details please enlarge.

neurons). Before adding the classification layer we add one
dropout layer with a dropout rate of 0.5. The last layer has
one output neuron with a sigmoid activation. During training,
we use a batch size of 10 instances and train for 25 epochs
using an ADAM optimizer. The results are shown in Table I.



Fig. 6. Elarged version of the training set embedding. Signals densely cluster
by type and also shape

As one can see, we achieve an accuracy of 96% on the test set.
In the experiment, we do not fix the layers of the encoder and
initialize the weights with the encoder from the unsupervised
experiment.

truth / prediction dolphin noise
dolphin 83 10
noise 5 347

TABLE I
THE CONFUSION MATRIX FOR THE SIGNAL DETECTION EXPERIMENT.

Signal Type Classification

In another experiment, we adapt the model to perform
dolphin signal type classification. We classify the dolphin
signals into the four categories contained in the dataset. Again
we use a 60 / 40 split from all years, and we use the same
architecture and training as in the signal detection experiment,
except we adjust the last layer to have four neurons with a
softmax activation. As can be seen in Table II, we achieve an
85% accuracy in this experiment.

Mining a year of data

In our final experiment, we use the trained encoder and
the signal detector to extract and cluster patterns from the
whole year of data from 2011. We extract windows classified
as dolphin communication using the signal detector. We then

truth / prediction noise echo burst whistle
noise 291 27 15 1
echo 35 434 9 7
burst 38 30 207 8

whistle 8 12 5 181
TABLE II

THE CONFUSION MATRIX FOR THE SIGNAL CLASSIFICATION EXPERIMENT.

embed the windows using the encoder and cluster the resulting
embeddings into 100 clusters using the same method as in the
previous clustering experiment. We visualize the result in the
same way. After clustering, we estimate the silhouette coef-
ficient for each window. The silhouette coefficient measures
how windows are clustered with similar samples [22]. We then
filter all samples with a coefficient lower than the medium
coefficient across all samples. The results are shown in Fig.
7. In this case, we only plot 25% of the instances for better
visibility. A zoomed in version is shown in Figure 8.

Fig. 7. Embedding of the spectrogram windows from the test set. The position
is determined by the T-SNE projection of the embeddings. The colors indicate
the cluster, in the background we plotted the complete T-SNE map and in the
foreground we zoomed into the four corners. Best viewed in color. For details
please enlarge.

We inspect all clusters visually as well. Therefore, we export
each cluster into a single wav file. The audio in each window
is concatenated with a short gap of silence (see Fig. 9). We
then inspect each spectrogram and note how many clusters
have the same type and how many silence clusters still made
it through the silence detector. We found that 14 clusters are
still mostly noise resulting in an 86% accuracy for the silence
detector. We also found four clusters of mixed type (mix of
whistles, burst sounds and echolocation).

In the example in Figure 9 we see three clusters with slight
time warps and shifts in frequency.

DISCUSSION

In our experiments, we showed that our model is indeed
able to learn an embedding for audible dolphin signals in



Fig. 8. Elarged version of the training set embedding. Signals densely cluster
by type and also shape.

Fig. 9. A cluster showing spectrograms of a whistle warped in time and
shifted in frequency. Especially in the middle row, we see several distortions
of the signal including overlapping signals.

an unsupervised manner. We showed that the embedding can
be trained using an autoencoder that reconstructs dolphin
signals. Fig. 3 shows the first layer’s convolutional kernels.
Nearly all of these kernels look like spectrogram patches from
dolphin communication which can be interpreted as evidence
for successful training. In the same way, Fig. 4 presents suc-
cessful reconstructions of the autoencoder as further evidence.
While we are able to successfully reconstruct whistles and

echolocation sounds, the burst pulses blur more. Furthermore,
by visual inspection, the clusters in the 2D projection seem
tight, meaning that the embedding is able to model patterns
in dolphin communication. We also showed that the embedder
can be used for transfer learning. The signal detector and the
type classifier achieve high accuracy on their test sets despite
the significantly smaller training data. Because labeling of
dolphin signals is cumbersome for marine mammalogists it is
expected that more directed efforts towards dolphin commu-
nication in specific behavioral contexts will produce smaller
datasets. However, our transfer learning results indicate that
the model can be adjusted with little data to other tasks. In the
final experiment, we ran the signal detector and the embedder
in a more realistic scenario. We showed that the signal detector
performs well across data recorded throughout a whole year.
Furthermore, we showed that the embedding of the detected
regions produces clean clusters. In total, we think that we
trained a successful feature extractor which will be the basis
of our future research.

FUTURE WORK

Our experiments show that the model is indeed an effective
model of short term fixed-size windows of dolphin communi-
cation. In the future, we plan to investigate several methods
for sequence analysis, in contrast to the fixed sized windows
utilized in our approach. Sliding the encoder across the spec-
trogram together with the silence detector will create vari-
able length embedding sequences of dolphin communication
bounded by silence. We aim to replace the k-means clustering
of single embedding vectors with agglomerative clustering
of sequences of embedding vectors using the dynamic time
warping distance. Furthermore, we aim to create multiple
sequence alignments of dolphin communication. We hope that
the visualization of aligned spectrograms will ease the compar-
ison of longer sequences of dolphin communication. Finally,
we seek to answer questions about the structure of dolphin
communication. One question marine mammalogists have is
whether dolphin communication displays a similar structure
to human communication. One idea is to use recursive neural
networks [5] on top of sequences of embedding vectors in
order to find structural patterns.

CONCLUSION

We proposed an autoencoder constructed from convolu-
tional and recurrent layers in order to construct an embed-
ding of short windows of audible dolphin communication.
Our architecture is inspired by encoder-decoder models in
natural language processing. The encoder transforms short
spectrogram windows into a single encoding vector. The
decoder reconstructs the complete spectrogram from just the
embedding vector. In a series of experiments, we showed
the effectiveness of the embedding. First, we visualized the
first layer’s convolutions and found that the convolutional
kernels seem to pick up on dolphin signals. When plotting
the decoder’s reconstructions we clearly saw that we are
able to encode enough information in the embedding vector



to reconstruct the signals. When clustering the embedded
spectrograms we saw that the clusters seem distinct as well.
We also showed the model’s performance on two transfer
learning tasks. In a signal detection experiment and a type
classification experiment, the retrained model showed high
accuracies. When running the trained models on a whole
year of data we found good clustering and signal detection
performance.
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