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Abstract—Existing defenses against adversarial attacks are
typically tailored to a specific perturbation type. Using adver-
sarial training to defend against multiple types of perturbation
requires expensive adversarial examples from different pertur-
bation types at each training step. In contrast, manifold-based
defense incorporates a generative network to project an input
sample onto the clean data manifold. This approach eliminates
the need to generate expensive adversarial examples while achiev-
ing robustness against multiple perturbation types. However, the
success of this approach relies on whether the generative network
can capture the complete clean data manifold, which remains an
open problem for complex input domain. In this work, we devise
an approximate manifold defense mechanism, called RBF-CNN,
for image classification. Instead of capturing the complete data
manifold, we use an RBF layer to learn the density of small
image patches. RBF-CNN also utilizes a reconstruction layer
that mitigates any minor adversarial perturbations. Further,
incorporating our proposed reconstruction process for training
improves the adversarial robustness of our RBF-CNN models.
Experiment results on MNIST and CIFAR-10 datasets indicate
that RBF-CNN offers robustness for multiple perturbations
without the need for expensive adversarial training.

Index Terms—Deep Learning, Adversarial attack, Robustness,
Image classification, RBF filter, EM algorithm.

I. INTRODUCTION

Despite the impeccable success of deep neural network
(DNN)-based models in various applications, there is a grow-
ing awareness of their vulnerability against adversarial attacks
[1], [2]. An adversary deliberately introduces minor perturba-
tions that mislead the networks to produce wrong predictions
for the perceptually identical inputs. The adversarial vulnera-
bility of DNN models has led to concern about the safety and
reliability of these models for real-world applications [3]–[5].

Several methods have been proposed to improve the ro-
bustness of DNN models against adversarial attacks. Two of
the most successful defense frameworks against adversarial
attacks are adversarial training and randomized smoothing.
The adversarial training mechanism trains a model using
adversarial examples of a specific `p perturbation type to
achieve robustness for that perturbation type [6], [7]. This
training process is expensive as it requires the generation
of adversarial examples at each training iteration. Tramèr
and Boneh (2019) [8] demonstrates that adversarial training
can achieve robustness for multiple perturbation types only
by incorporating different types of adversaries for training.

However, this raises the question of how many perturbation
types one should include for training?

Randomized smoothing technique introduces run-time ran-
domization that evaluates multiple noisy copies of a test image
and returns the most probable class as their final prediction
[9], [10]. This framework provides certified robustness for
minor-`2 perturbation. However, it offers no guarantee for
other perturbation types.

In contrast, manifold-based defenses incorporate a gener-
ative network to project an input image into the clean data
manifold and have the potential to achieve robustness for
multiple perturbation types [11]–[13]. However, due to the
limited capacities of existing generative models, they often
fail to capture the complete data manifold for complex image
domains and project the adversarial images into the clean data
manifold. To date, Schott et al. (2019) [13] provide the only
effective manifold-based defense to achieve robustness for
MNIST. Even then, they cannot train a single robust classifier
for all `p≥1 perturbation types.

In this work, we propose a novel manifold-based defense
framework for image classification that can scale to complex
data manifold and achieve robustness against any minor for
`p≥1 perturbation. Given an image, x and some perturbation
bound εp, for all p ≥ 1, the goal is to build a classifier F such
that the prediction remains unchanged, that is,

F(x) = F(x+ δ), ||δ||p < εp, ∀ p ≥ 1 (1)

To this end, we devise an approximate manifold defense
mechanism called RBF-CNN that can achieve robustness for
any minor `p≤1 perturbation. Our RBF-CNN models consist of
a radial basis function (RBF) layer and a reconstruction layer
followed by a convolutional neural network (CNN) image
classifier. An RBF layer consists of RBF filters and is utilized
as a generative structure to capture the density of small image
patches, instead of the distribution of full-sized training images
[14]. Each RBF filter acts as a template matching function
by producing similar match scores for two similar patterns
in any `p≥1-norms [2]. We show that our reconstruction layer
utilizes this property to mitigate any minor perturbation in any
`p≥1-norm. Further, incorporating the reconstruction process
for training allows us to improve the adversarial robustness of
our RBF-CNN models.
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Experimental results on MNIST and CIFAR-10 demonstrate
that our RBF-CNN models achieve robustness against all `1,
`2 and `∞ bounded adversarial attacks and provide certified
robustness for `2 bounded perturbations. The saliency maps
produced by RBF-CNN models conform to human interpre-
tation and thereby ensure that our RBF and reconstruction
layers do not cause gradient obfuscation [15]. Therefore, our
framework does not provide a false sense of robustness by
resisting attackers to generate optimal adversarial examples
[16]. Further, these interpretable saliency maps provide visual
evidence of robustness against adversarial attacks [17]. To the
best of our knowledge, RBF-CNN is the first manifold based
defense framework to achieve robustness for any `p≥1 pertur-
bations and provides a desirable trade-off between robustness
vs. accuracy at run-time.

II. RELATED WORK

Several defense models have been proposed to improve
the robustness of DNN classifiers against adversarial pertur-
bations. Among the existing defense frameworks, adversarial
training provides the best empirical robustness against adver-
sarial attacks. Madry et al. (2018) [6] achieve `∞-robustness
by training the classifier using expensive `∞-bounded PGD
adversaries. This framework can be generalized to any pertur-
bation type, and the interpretable loss-gradients indicated that
the classifiers do not cause gradient masking [15] [16]. Recent
works such as TRADES [7], LLR [18] propose additional
loss regularizer for adversarial training models. Shafahi et al.
(2019) [19] propose a ‘free’-adversarial training to improve the
training efficiency by unfolding the PGD-adversary generation
step. However, Tramèr and Boneh (2019) [8] demonstrates that
it would require the generation of adversarial examples for
different perturbation types to achieve robustness for multiple-
perturbation, leading to a linear increase in the training time.
Their findings have also raised concerns that adversarial
training may not be the appropriate direction to improve the
adversarial robustness for multiple perturbations [8] [13].

Input transformation techniques such as feature squeezing
[20], pixel-deflection [21] have been proposed to heuristically
alter the pixels in images. However, these techniques did not
induce the correct amount of alteration and thus, could not
improve the robustness [16]. Xie et al. (2018) [22] achieve
`∞-robustness by incorporating adversarial training with their
denoising network. In contrast, randomized smoothing de-
fenses induce the correct amount of noise to achieve certified
robustness [23] [9] [10]. However, their success is limited to
minor-`2-perturbations.

Image quilting [24] is another type of input transformation
technique. It replaces the original input patches using the clean
patches, selected from a large set of 50, 000 clean patches.
This defense has been broken by the adaptive BPDA attack
[16]. Unlike the quilting technique, we reconstruct patches
using a combination of patch samples, randomly drawn from
a much smaller set of our RBF filters, that also inject noises to
the images. Instead of using pre-trained weights for the CNN
classifiers like [24], we train our model by incorporating the

reconstruction layer and achieve a robust classifier for any
minor `p≥1 perturbations.

Our proposed defense can be categorized under manifold
defense strategy where generative models are applied to
project the input or the hidden activations onto the (learned)
data manifold. Examples include DefenseGAN [11] using gen-
erative adversarial networks [25], Ape-GAN [26] using auto-
embedding GAN [27], defense using Variational Autoencoder
(VAE) [12], PixelDefend [28]. [13] train multiple VAEs for
each class and chose the class with maximum-likelihood score
as their prediction. Similar ideas using non-generative models
include auto-encoders to project the input images into the
‘known’ data manifold [22], [29]. However, all these defenses,
except [13], are found to be ineffective [16] [30].

The key reason why these defenses fail is that they rely
on their generative model(s) to completely remove adversarial
perturbations. This would require the generator to completely
capture the underlying data manifold. However, due to the
limited capacities of the existing generative (or non-generative)
models, they fail to efficiently capture the complete data mani-
fold and often over-estimate or under-estimate different modes
of the underlying distribution. Further, the classifier used to
classify these projected images, often remain adversarially
vulnerable as before. Hence, these models are either broken
or fail to scale to complex image domains. Here, we address
these limitations by using an RBF layer to capture the density
of smaller input image patches. Our reconstruction process
allows us to train classifiers that is robust against any minor
`p≥1-perturbations and remain effective on a more complex
image dataset such as CIFAR-10.

The most recent work Croce and Hein (2020) [31] design a
regularization scheme to provide robustness for small networks
for all `p≥1 perturbations. However, their success remains
limited for much smaller perturbation boundaries and at the
cost of much reduced clean data classification accuracy.

III. PROPOSED FRAMEWORK

Figure 1 gives an overview of our proposed RBF-CNN
framework. An input image is first passed through the RBF
layer to obtain the activation maps of match scores. The
reconstruction layer then combines the patch samples, drawn
from the RBF filters and use the match scores to produce
pseudo-clean images for classification.

a) RBF Layer: An RBF layer is similar to a convolu-
tional layer, except that the convolutional filters are replaced
by RBF filters. Given an input image x, we slide a fixed-sized
window to obtain the image patches zi, i = {1, 2, · · · }. For
each image patch z, we compute the match score s(z, g) from
an RBF filter g(µ, σ) as follows:

s(z, g) = log

(
1√
2πσ

exp−||z − µ||
2
2

2σ2

)
(2)

where the filter-mean µ is of the same shape as the image
patch z, and σ ∈ R denotes the spread of the filter.



Fig. 1: Overview of the proposed RBF-CNN framework.

As we can see in Eqn. 2, an RBF filter produces a high
match score s(z, g) for all the nearby patches z such that the
Euclidean distance ||z − µ||22 is small. Thus, an RBF filter
g(µ, σ) can be viewed as a template matching function where
the mean µ acts as a template to be matched with the input
image patch z to produce the match score. Figure 2 visualizes
a few RBF filter means of size (3 × 3) learned from clean
CIFAR-10 training images.

Fig. 2: Visualization of a few RBF filter means of patch size
3× 3 for the CIFAR-10 classification model.

However, learning the RBF filters, along with the CNN
classifier, using the back-propagation algorithm is difficult as
they may not be able to efficiently capture the density of image
patches while minimizing classification loss. We overcome
this by separately training the RBF layer in an unsupervised
fashion to capture the density of the image patches. Here,
we use a non-parametric variant of expectation maximization
(EM) algorithm to learn the filter parameters and capture the
density of the image patches [14].

The non-parametric EM is a hard clustering algorithm that
automatically determines the required number of filters. We
start with one filter g1(µ1, σ1) where the filter mean µ1 and
scaling parameter σ1 are randomly initialized. New filters are
then created subsequently in the following iterations consisting
of E and M steps.

The E-Step computes the match score s(zi, gj) of the filter
gj(µj , σj) for each clean training image patch zi. We assign
patches with maximum match scores to the RBF filters. If the
score is lower than some pre-determined threshold, we create
a new filter for zi. The M-step updates the parameters of the
RBF filters using the assigned patches as follows:

µnextj =

∑
zi∈J zi

nJ
, σnextj =

√∑
zi∈J ||zi − µ

next
j ||22

nJ
(3)

where J is the set of patches assigned to the filter gj and nJ
denotes the cardinality of set J .

b) Reconstruction Layer: Our reconstruction layer does
not contain any learn-able parameters. It reuses the RBF filters
to separately reconstruct each input patch to produce a pseudo-
clean image in the following two steps.

Step 1. Compute weight-vector from the match scores.
For each input patch z, we obtain the match scores
s(z, gj) ∀j = 1, 2, · · · and apply sigmoid activation to obtain
the vector v. The dynamic range of v is increased by applying
an element-wise exponential function exp(β1v) where β1 is a
hyper-parameter. This is followed by a normalization operation
to obtain the weight vectors w.
Step 2. Draw samples from RBF filters.
We draw samples from all the RBF filters gj(µj , σj) as:

z̃j ∼ N (µj , σjβ2I) = µj +N (0, σjβ2I) (4)

where β2 is a hyper-parameter that controls the amount of
noise to be added to the patch z̃j , and I is the identity matrix.

We reconstruct the patch as the weighted sum of these
samples wTZ. The reconstructed image is obtained by recon-
structing all the original input patches of image x and stitching
them together by averaging the overlapping regions. Note
that RBF-CNN is a randomized framework where the noise
is injected during the sampling process in the reconstruction
layer. This differs from the existing randomization smoothing
techniques, where noise is injected in the input layer [9] [23].

The noise-level hyper-parameter β2 controls the trade-off
between robustness and accuracy during inference. We can
pick an appropriate value for β2 to obtain the desired level of
robustness at run-time. To achieve high accuracy, we can set
β2 = 0 and obtain zj = µj in Eqn. 4. In our experiments,
we evaluate the robustness of RBF-CNN for different values
of β2, and demonstrate that our proposed framework remains
robust for all `1, `2 and `∞ perturbations even for β2 = 0.
Alternatively, as we choose a higher value for β2, the sample
space of image patches for reconstruction is increased, thus
improving the robustness of the classifier.

c) Classification: The RBF and reconstruction layers ef-
fectively mitigate any minor `p≥1 perturbations before feeding
the images into the CNN classifier. Since the reconstruction



Fig. 3: Visualizing the effect of our reconstruction process to mitigate minor perturbations in any `p≥1 norm.

process incorporates randomization, we obtain the final pre-
diction as an average of m different runs as:

argmax

m∑
i=1

rCNNβ2(x) (5)

In our experiments, we use m = 10. In other words, for each
test image, we create a batch of size m for the same image
and execute them in parallel and obtain the final prediction by
averaging these m prediction.

A. Analysis of the Reconstruction Process
An RBF filter acts as a template matching function that

computes the match score as a function of the Euclidean
distance between an input patch and the filter mean (see
Eqn. 2). Hence, as an attacker chooses minor `p≥1 adversarial
perturbations, the match scores produced by the RBF filters
change minimally. The reconstruction layer then combines the
samples drawn from the RBF filters using the normalized
match scores as the weight vectors to reconstruct pseudo-clean
images, thereby mitigating minor perturbations.

Claim 1. Reconstruction process mitigates the effect of minor
`p≥1 bounded adversarial perturbations and produces pseudo-
clean images for classification.

Proof. We provide the proof for only `∞-norm. The proof for
other `p≥1 can be obtained similarly. Let x′ be an adversarial
image, obtained from a clean image x by modifying the pixels
as: x′i = xi + δi. Let z′ be the patch obtained from the
adversarial image x′. Suppose g(µ, σ) is an RBF filter that
produces a match score, s(z, g) for a clean patch z of x (recall
Eqn. 2). Then we can express the match score s(z′, g) as:

s(z′, g) = s(z, g)−
∑
i δ

2
i

2σ2
−
∑
i δi(xi − µi)

σ2
(6)

We first establish that s(z′, g) − s(z, g) is bounded. For `∞
perturbations, we can bound

∑
i δi(xi − µi) as follows:∣∣∣∑

i

δi(xi−µi)
∣∣∣ ≤ δmax∑

i

|(xi − µi)|

= δmax||z − µ||1 ≤ δmax
√
nz||z − µ||2,

(7)

where δmax = ||δ||∞ and nz is the number of pixels in z.

Here, we use Cauchy-Schwarz inequality to get ||z−µ||1 ≤√
nz||z−µ||2. Since

∑
i δ

2
i

2σ2 > 0, we combine Eqn. 6 and Eqn.
7 to obtain the bound as:

−nzδ
2
max

2σ2
−
δmax

√
nz||z − µ||2
σ2

≤ s(z′, g)− s(z, g) <
δmax

√
nz||z − µ||2
σ2

(8)

We show that this is insignificant to mitigate any minor `∞-
perturbation. Since δmax is small, the term

∑
i δ

2
max

2σ2 → 0 in
Eqn. 8. If g(µ, σ) produces a high match score for patch z,
then ||z − µ||2 must be small. Hence, δmax

√
nz||z−µ||2
σ2 → 0.

Thus, the lower bound of s(z′, g) of g(µ, σ) remains almost
the same as s(z, g) and g still produces a high score.

In contrast, a low match score for z by an RBF filter
g′(µ′, σ′) implies ||z − µ′||2 is large (recall Eqn. 2). We
analyze the maximum value attained by g′(µ′, σ′) and obtain:

s(z′, g′) < log
1√
2πσ′

−
(||z− µ′||2 − 2δmax

√
nz)||z− µ′||2

2(σ′)2
(9)

Hence, to achieve a high value of s(z′, g′), the term (||z−
µ′||2 − 2δmax

√
nz) should be small. However, since δmax

is small and ||z − µ′||2 is large, we have ||z − µ′||2 >>
2δmax

√
nz . Hence, g′ still produces low match score for z′.

Since the difference between the match scores of clean
images and the corresponding adversarial images remain in-
significant, the weight vectors for the reconstruction process
will hardly change. Hence, the reconstruction process miti-
gates their distance when reproducing images from the same
set of samples, drawn from the RBF filters. �

Figure 3 illustrates that our reconstruction process mitigates
the distances between the images irrespective of all minor per-
turbation in any `p≥1 norm. Hence, our reconstruction process
would enforce the adversaries to choose larger perturbation
bounds to circumvent the classifiers. However, we still need
to robustly classify these reconstructed images with mitigated
perturbations.

Incorporating the reconstruction process for training im-
proves the adversarial robustness. Schmidt et al. (2018) [32]
and Hendrycks et al. (2019) [33] have shown that adversarial
robustness of a DNN classifier improves by incorporating



more training images. On the other hand, by following our
Claim 1, we argue that our reconstruction process mitigates the
distance between any two images within a small neighborhood
in any `p≥1 norm. In other words, it projects the original
manifold of input images into a more compact manifold
of reconstructed images. Hence, incorporating our proposed
reconstruction process for training reduces the requirement of
additional images to improve the robustness of our RBF-CNN
models. Moreover, our Claim 1 implies that our reconstruction
process would produce almost the same image for a set of
input images in a small neighborhood of any `p≥1-norm.
Hence, by augmenting minor random noise to our training
images, we can efficiently train our models to be more aware
of the surroundings of the data manifold. Our experiments on
MNIST and CIFAR-10 supports this observation.

IV. PERFORMANCE STUDY

We carried out three sets of experiments to evaluate the
robustness of our RBF-CNN models on MNIST [34] and
CIFAR-10 [35]1. First, we empirically evaluate the robustness
against a wide range of `1, `2 and `∞ bounded attacks. We
demonstrate that RBF-CNN models improve certified robust-
ness for `2 perturbations. Next, we visualize that our RBF-
CNN models produce interpretable saliency maps to ensure
that our framework does not cause gradient obfuscation [15].
Finally, we demonstrate that our RBF-CNN models allow
robustness vs. accuracy flexibility at run-time.

Experimental Setup. We use a 4-layer CNN for MNIST,
and VGG-16 [36] for CIFAR-10. We train two sets of RBF-
CNN models, denoted as rCNN and rCNN+. We use 3× 3
filters for the RBF layer and train with the non-parametric
EM that automatically learns 24 and 232 filters for MNIST
and CIFAR-10 respectively. The CNN components of these
models are trained using label smoothing. We use only clean
images to train our rCNN models. For rCNN+ models, we
use the clean images as well as noisy images, perturbed within
a `∞ boundary of 0.3 and 0.03 for MNIST and CIFAR-10
respectively. Here, the noises for rCNN+ is sampled from an
isotropic Gaussian (N (0, 0.35) and N (0, 0.05) respectively)
and clipped within those predefined `∞ boundaries. We also
generate one set of PGD-adversarial examples of the train-
ing images at 25 and 200 epochs for MNIST and CIFAR-
10 respectively. Then we obtain the adversarial noises by
subtracting the original training images from the adversarial
examples. We randomly add this adversarial noise to the clean
training images for the rest of the training epochs.

During testing, β1 is set to 25 for both datasets. The hyper-
parameter β2 controls the trade-off between accuracy and
robustness for the classifiers. We do not inject any noise
through the reconstruction layer during training. For testing,
we set β2 to 1.75 for both MNIST and CIFAR-10. For CIFAR-
10, we choose β2 such that the classification accuracy for clean
images does not drop less than 85%.

1Code is available at //github.com/jayjaynandy/RBF-CNN.

A. Performance against Adversarial Attacks
The robust accuracy of a defense model is defined by their

performance against the strongest adversarial attack within a
specified `p boundary [16]. For RBF-CNN, we reconstruct
images by drawing samples from the RBF filters. Noise is
injected to the images during this sampling process using an
isotropic Gaussian distribution (see Eqn. 4). The RBF filters
and the reconstruction step are otherwise differentiable.

We apply the following wide range of adversarial attacks to
evaluate the robustness of our models:
• Static Attacks. Adversarial examples are generated by

removing the non-differentiable noise injection step from
the reconstruction layer, i.e zj = µj in Eqn. 4. Here, we
consider single-step attack FGSM [2], iterative attacks
such as PGD [6], MI-FGSM [37], CW [38], DAA [39],
EAD [40].

• Adaptive Attacks. An adaptive attack is constructed after
the defense model has been completely specified, such
that the adversary can find the optimal adversarial pertur-
bations within the specified perturbation boundaries [16].
For our RBF-CNN models, we design the adaptive attack
as a combination of BPDA and EoT (Expectation of
Transformations) [16], as follows. In the forward prop-
agation, we do not change anything in the network. In
the backward propagation, we choose a differentiable ap-
proximation for the reconstruction layer, by considering
zj = µj in Eqn. 4 to efficiently compute the gradients.
Since the RBF filters are already differentiable, we do not
need any approximation for the RBF layer. We compute
the expected loss using a Monte-Carlo method with 50
simulations to find the strongest adversarial examples.

• Black-box Attacks. We also evaluate against gradient-
free SPSA attack [41] to ensure that our framework is
not giving any false sense of robustness using gradient-
masking [16]. We apply black-box transfer attacks where
the adversarial examples are generated by attacking a
standard CNN classifier with no defense.

`∞ Bounded Attacks. Table I presents the performance of
our rCNN and rCNN+ models against `∞ bounded attacks.
We choose the perturbation boundaries of 0.3 and 0.031 for
MNIST and CIFAR-10 respectively. We observe that for both
MNIST and CIFAR-10, rCNN+ achieves high robustness
under `∞ perturbations bounds of 0.3 and 0.031 respectively.

One main advantage of RBF-CNN compared to the adver-
sarial training frameworks is that it significantly reduces the
training time required. Here, we compare the training times
of our RBF-CNN models with Madry’s models, that achieved
robustness only for `∞ perturbations [6].

Table II shows the training times when executed on a
GTX 1080Ti GPU. We observe that the training time of
rCNN+ models are more than 4.5× and 7× faster than the
Madry models for MNIST and CIFAR-10 respectively. Even as
our proposed approach significantly reduces the training time
required, our RBF-CNN models are still able to achieve similar
performances as Madry’s models for `∞ perturbations in both

https://github.com/jayjaynandy/RBF-CNN


Attack Name MNIST CIFAR-10
rCNN rCNN+ rCNN rCNN+

(`∞ ≤ 0.3) (`∞ ≤ 0.031)
Clean Test Data 99.6 99.5 85.0 85.1
FGSM 94.7 98.0 75.6 78.2
PGD 78.3 94.9 63.1 60.0
MI-FGSM 70.5 94.5 65.8 70.2
CW 83.1 91.1 46.6 46.2
DAA 41.5 94.8 63.8 62.8
BPDA+EoT 39.4 88.4 47.2 49.8
SPSA (Black-box) 61.4 92.9 62.4 67.6
FGSM (Black-box) 77.9 90.9 76.0 78.7
PGD (Black-box) 39.6 90.5 80.3 81.8
CW (Black-box) 63.0 95.5 76.5 79.4

TABLE I: Accuracy of RBF-CNN models under `∞ attacks.

Defenses #Epochs Time/ Epoch Overhead Total

MNIST
Madry 85 112 0 9,520
rCNN 100 4 600 1,000
rCNN+ 100 11 900 2,000

CIFAR-10
Madry 205 1200 0 246,000
rCNN 600 29 2700 20,100
rCNN+ 600 51 3600 34,200

TABLE II: Training time comparison (in seconds).

MNIST and CIFAR-10 as shown in Table III. Also, our best
RBF-CNN model for MNIST significantly outperforms the
only successful manifold defense model by Schott et al. (2019)
[13]. We also compare with other input transformation [42]
[24] and network randomization [43] techniques to show that
unlike these defenses, our RBF-CNN models remain robust
against all type of attacks.

Another limitation of adversarial training models is that
they provide robustness only within a pre-specified boundary
from where the adversarial examples were produced for their
training, and offer no robustness guarantee slightly beyond
these boundaries. Table IV shows that [6] achieve high robust
accuracies within their specified `∞ bounds of 0.3 and 0.031
for MNIST and CIFAR-10 respectively. However, their robust
accuracies drastically drop beyond those bounds when tested
against PGD attack with `∞ ≤ 0.35 for MNIST and at

Defenses Robust Acc. Strongest Attack
Baseline (no defense) 0 PGD

M
N

IS
T Madry et al., (2018) [6] 88.6 DAA

Schott et al.,(2019) [13] 78.0 Deep-Fool
rCNN 39.4 BPDA+EoT
rCNN+ 88.4 BPDA+EoT
Baseline (no defense) 0 PGD

C
IF

A
R

-1
0

Madry et al., (2018) [6] 44.7 DAA
Buckman et al., (2018) [42] 30 BPDA
Ma et al., (2018) [44] 5 CW
Dhillon et al., (2018) [43] 0 EoT
Song et al., (2018) [28] 9 BPDA
Dezfooli et al., (2019) [45] 41.4 PGD
rCNN 46.6 CW
rCNN+ 46.2 CW

TABLE III: Comparison of robust accuracy against `∞
bounded adversarial attacks. Perturbation boundaries for
MNIST and CIFAR-10 are set to 0.3 and 0.031 respectively.

`∞-bounds Madry’s rCNN rCNN+

MNIST 0.3 88.6 39.4 88.4
0.35 42.9† 10.5 75.8

CIFAR-10 0.031 44.7 46.6 46.2
0.05 25.7† 37.1 34.7

TABLE IV: Comparison of the robust accuracies at different
perturbation boundaries. †Evaluated only against PGD attacks.

`1 Attacks Static Adaptive Black-box
PGD EAD BPDA+EoT PGD EAD

MNIST
(`1 = 15)

Madry 77.5 90.4 - 97.9 98.2
rCNN 89.8 69.9 83.1 98.4 99.3
rCNN+ 95.7 83.4 90.5 98.9 99.3

CIFAR-10
(`1 = 20)

Madry 34.5 35.5 - 86.2 86.1
rCNN 69.2 61.0 55.5 82.0 81.1
rCNN+ 76.1 61.9 66.8 82.9 82.3

`2 Attacks Defenses Static Adaptive Black-box
PGD CW BPDA+EoT PGD CW

MNIST
(`2 = 2)

Madry 81.9 91.0 - 95.6 97.2
rCNN 80.0 72.3 64.2 88.3 97.0
rCNN+ 92.6 83.9 87.5 96.5 98.6

CIFAR-10
(`2 = 1)

Madry 28.1 43.3 - 85.2 85.1
rCNN 62.1 47.9 45.2 79.1 76.8
rCNN+ 67.3 54.5 54.8 81.1 79.5

TABLE V: Performance against `1 and `2 bounded attacks.

`∞ ≤ 0.05 for CIFAR-10. In contrast, RBF-CNN models
achieve significantly high accuracies at these `∞ boundaries.

`1 and `2 Bounded Attacks. For our experiments on `1 and
`2 bounded attacks, we choose `1=15 and `2=2 for MNIST
and `1=20 and `2=1 for CIFAR-10. For MNIST, we see that
the perception of the adversarial images is changing around
these bounds (see Fig. 4). Note that, such behavior cannot be
observed when attacking a non-robust classifier [15].

Fig. 4: Visual perception of MNIST images changed under `1
and `2 bounded attacks for RBF-CNN models.

Table V presents the performance of RBF-CNNs against
different `1 and `2 bounded attacks. We observe that RBF-
CNN models significantly outperform Madry’s models, that
are trained to provide robustness for `∞ perturbations.

Certification for `2-perturbations. Certification provides
a lower bound guarantee of robust accuracy. Since the re-
construction process of our RBF-CNN models mitigate any
minor perturbations, it also improves the classification perfor-
mance against random Gaussian perturbed images. We apply
the existing certification technique of randomized smoothing
defenses [9] to further demonstrate that our RBF-CNN models



`2 = 0.5 `2 = 0.7 `2 = 1.0

MNIST
Baseline 92.7 84.4 0.0
rCNN 94.7 85.3 0.0
rCNN+ 98.0 96.3 89.2

`2 = 0.25 `2 = 0.3 `2 = 0.35

CIFAR-10
Baseline 10.2 8.1 4.7
rCNN 37.2 32.3 25.3
rCNN+ 47.2 40.6 33.4

TABLE VI: Certified robust accuracy for `2 perturbations.

also improve the certified robustness for `2 perturbations
compared to the baseline models with no defense.

For each input x, we sample 50, 000 noisy samples from an
isotropic Gaussian distribution ε ∼ N (0, τ2I). For MNIST,
we set τ to 0.2 for the baseline and rCNN and 0.3 for
rCNN+. For CIFAR-10, we set τ = 0.1 for all the models.
Table VI shows the certified robust accuracies. We see that for
CIFAR-10, the robustness of the CNN classifier is improved
by adding RBF and reconstruction layers. The results for
rCNN+ suggests that the certified robustness of our models
are further improved by augmenting minor noises the images
for training. To summarize, our RBF-CNN models improves
the empirical robustness against any minor `p≥1 perturbations
as well as certified robustness for `2 perturbations.

B. Interpretable Loss Gradients

Figure 5 visualizes the loss gradients of our RBF-CNN,
rCNN+ versus standard CNN. These loss gradients represent
the most important pixels for the classifier. All these loss
gradients are obtained in one single step by computing the
losses with respect to the input pixels. For standard CNNs,
these gradients appear noisy and incoherent patterns. In con-
trast, the loss gradients for RBF-CNN are aligned with hu-
man perception without any pre-processing other than scaling
and clipping. This ensures that our RBF and reconstruction
layers do not introduce gradient masking in our RBF-CNN
framework. Further, Etmann et al. (2019) [17] demonstrate that
only the robust classification models exhibit such interpretable
saliency maps.

Fig. 5: Visualization of loss gradients.

A first-order adversary iteratively uses these loss gradients
to minimize the salient features of the original class and
maximize the salient features of a different class to fool a
model. Thus, it is often not possible to fool a robust classifier

as such perturbation may not exist within a small `p neigh-
borhood and the adversary would require larger perturbations.
Consequently, as we allow a large `2 boundary and apply
the static PGD attacks, we observe sharp salient features of a
different class appear in the generated images for our robust
RBF-CNN models (see Fig. 6). In contrast, the attack only
able to produce a noisy version of the clean image for the
non-robust standard CNN models.

Fig. 6: Adversarial Images generated using PGD attack.

C. Robustness vs. Accuracy Trade-off at run-time

Ideally, a user should be able to select an optimal trade-off
between robustness or accuracy performance at run-time. In
RBF-CNN, we can vary the level of injected noise, β2, during
test time to achieve a different degree of robustness versus
accuracy performance. Table VII presents the performance of
rCNN+ as we vary β2. We see that rCNN+ is able to
achieve robustness for all `1, `2 and `∞ bounded attacks even
when we remove the randomization step by setting β2 = 0.
Further, the robust accuracy doubles for CIFAR-10 when the
noise level of β2 = 1.75 is injected with minimum effect on
its clean data accuracy. To the best of our knowledge, none of
the existing methods allow such a trade-off between robustness
versus accuracy at run-time.

Attack Name MNIST CIFAR-10
β2 0.0 1.0 1.75 0.0 1.5 1.75
Clean Test Data 99.5 99.5 99.4 89.2 87.2 85.1

`∞ ≤ 0.3 `∞ ≤ 0.031
PGD 91.6 93.1 94.9 51.1 59.4 60.0
CW 77.7 85.8 91.1 20.9 44.3 46.2
BPDA+EoT - 88.4 88.4 - 50.6 49.8
PGD (black-box) 93.7 92.3 90.5 86.6 85.1 81.8

`1 ≤ 15 `1 ≤ 20
PGD 93.8 94.6 95.7 73.3 76.2 76.1
EAD 80.6 82.0 83.4 41.1 61.1 61.9
BPDA+EoT - 90.2 90.5 - 67.9 66.8

`2 ≤ 2 `2 ≤ 1
PGD 88.4 90.5 92.6 63.8 66.8 67.3
CW 80.4 82.2 83.9 36.5 52.7 54.5
BPDA+EoT - 87.1 87.5 - 56.4 54.8

TABLE VII: Robustness versus Accuracy tread-off at run-time
for RBF-CNN models, rCNN+ by varying the noise level
hyper-parameter, β2 in the reconstruction layer.



V. CONCLUSION

Existing successful defense models typically achieve ro-
bustness only for a specific perturbation type while providing
no guarantee for other perturbation types. Towards this, we
presented an “approximate manifold” defense called RBF-
CNN that achieves robustness for all minor perturbations in
any `p-norm with p ≥ 1. Our RBF-CNN utilizes an RBF and
a reconstruction layer. We propose to capture the density of
small image patches, instead of capturing the complete data
manifold to address the limitations of the existing manifold
defenses. Our experimental results on MNIST and CIFAR-10
demonstrate that we can train a single RBF-CNN model to
provide robustness for all `1, `2, and `∞ perturbations. While
previously, the success of the only effective manifold-based
defense remains limited to MNIST [13], we achieve robustness
for a much complex image dataset, called CIFAR-10.

Even though our proposed RBF-CNN models achieve ro-
bustness against minor additive perturbations in-terms of any
`p≥1 norms, we do not necessarily provide any guarantee
for other perturbation types such as spatial [46]–[48] or
color transformations [49] or naturally occurring common
perturbation types [50], [51]. While it is crucial to develop
universally robust defense models for real-world applications
to improve their reliability, it remains an open problem to the
AI community.
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