
Analysis and Learning of Capsule Networks Robust
for Small Image Deformation

Nozomu Ohta∗, Shin Kawai∗ and Hajime Nobuhara∗
∗Department of Intelligent Interaction Technologies,

University of Tsukuba,
Tsukuba-City, Ibaraki, Japan

{ohta, kawai, nobuhara}@cmu.iit.tsukuba.ac.jp

Abstract—The Capsule Network (CapsNet) is a deep learning
model proposed for image classification that is robust to pose of
change of objects in images. A capsule is a vector representing the
position, size and presence of an object. However, with CapsNet,
the number of capsules increases, depending on the number of
classification classes, and learning is computationally expensive.
Thus, we propose a method for reducing computational costs by
enabling a single capsule to represent multiple object classes. To
learn the distance between classes, we incorporate the ArcFace
distance learning method in the error function. In a prelimi-
nary experiment, the distribution of capsules was visualised by
principal component analysis to demonstrate the validity of the
proposed method. Using the MNIST and CIFAR-10 datasets,
as well as an the affine transformed dataset, we compare the
accuracy and learning time of the original CapsNet and proposed
method. The results demonstrate that accuracy is improved by
2.74% on the CIFAR-10 dataset, and the learning time is reduced
by more than 19% in both datasets.

Index Terms—Deep learning, Convolutional neural networks,
Capsule Network, Image recognition, ArcFace

I. INTRODUCTION

Convolutional neural networks (CNNs) are commonly ap-
plied in the image recognition field; however, CNNs have
some drawbacks. The general structure of a CNNs is presented
in Fig. 1. CNNs recognise high-level features, e.g. eyes and
mouth, from low-level features, e.g. line inclination, thickness
and colour, by repeating a convolution layer for feature detec-
tion and a pooling layer for shift invariance. However, with
CNNs, large-scale data expansion and very deep networks are
required if the pose of the same object differs. This problem
occurs because the pooling layer does not preserve the posi-
tional relationship between extracted features; thus, different
poses of the same object result in entirely different internal
representations (Fig. 2). To address this issue, the Google

Fig. 1. Overview of CNN image recognition method

Brain team proposed the capsule network (CapsNet) [1], [2].

Fig. 2. Schematic diagram of CNN recognizing objects in different postures

Fig. 3. Difference between CNN and CapsNet

A pixel of a feature map, which is an intermediate layer of
conventional CNNs, determines whether a feature exists at a
corresponding location. A capsule, which is a middle layer of
CapsNet, outputs information about a part of an object as a
vector. Fig. 3 shows that there are two types of capsules. The
sub-capsules hold some features of the object as vectors, and
the super-capsules are computed from multiple sub-capsules
to represent the features and presence of the entire object.

CapsNet requires a long time for training and estimation. It
is because in CapsNet, the number of parameters to be learned
increases as the number of classes increases. This increase in
the number of parameters is since the capsule network requires
a super-capsule for each class to be classified. Therefore, it can
be said that the problem with CapsNet is that it takes a long
time to train and estimate.

The purpose of this study is to reduce the training and
estimation time by reducing the number of parameters. For this
purpose, we propose a learning method that can classify using
a single super-capsule regardless of the number of classes to
be classified. The proposed method is devised based on the
analysis of the visualisation of CapsNet’s internal representa-
tion. The results demonstrate that accuracy is improved on the
CIFAR-10 dataset, and the learning time is reduced by greater
than 19% in both datasets.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

The remainder of this paper is organised as follows. Sec-
tion II describes the structure of CapsNet, as well as the related
studies and applications. Section III visualises super-capsules
and examines the validity of the proposed method. Section IV
discuss the proposed method in detail. Section V descirbes
the experiments conducted to demonstrate the effectiveness
of the proposed method. These experiments investigated the
classification accuracy of the proposed method, the proposed
method’s robustness against small deformation, the time re-
quired to train the proposed method, and a subjective evalu-
ation of images reconstructed by the proposed method. Sec-
tion VI presents and discusses the results of these experiments.
Section VII discusses the results of these experiments and
further work.

II. RELATED WORK

A. CapsNet Overview

This section briefly describes CapsNet and its related and
applied studies. An overview of CapsNet is presented in
Fig. 4, and the CapsNet calculation procedure is described
in reference to this figure.

The calculation procedure of CapsNet is described as fol-
lows:

1) The two layers of the convolutional layer convert the
input image to a feature map of 256 channels and 6×6.
This conversion corresponds to a transformation between
the input image in Fig. 4 and Conv1 and between Conv1
and PrimaryCaps.

2) Split the feature map pixel by pixel and 256 channels
by eight channels. In ohter words, there are 6 × 6 ×
32 = 1152 eight-dimensional vectors. Here, the i-th
vector is defined as the sub-capsule ui ∈ R8, i =
{1, 2, . . . , 1152}. This corresponds to PrimaryCaps in
Fig. 4.

3) ûj|i ∈ R16 is defined as the product of sub-capsule ui
and weight matrix Wij ∈ R16×8:

ûj|i =Wijui, (1)

where j is the ordinal of the super-capsule. In the
proposed CapsNet, j ∈ {1, 2, . . . , 10}. Note that weight
matrix Wij is trained by an error backpropagation
method.

4) sj ∈ R16 is given by the weighted sum of the product
of ûj|i and cij ∈ R:

sj =
∑
i

cijûj|i, (2)

where cij is calculated by dynamic routing, which is
described later.

5) The following squash function,

squash(s) =
‖s‖2

1 + ‖s‖2
s

‖s‖
, (3)

calculates the super-capsule vj = squash(sj) ∈ R16.
This squash function is an activation function that con-
verts the norm to the [0, 1) range, thereby preserving the

directions of vectors. The super-capsule vj corresponds
to DigitCaps in Fig. 4.

6) Repeat steps in 3–5 to construct 10 super-capsules vj .
The dynamic routing algorithm is presented in Algorithm 1.

dynamic routing extracts sub-capsules ui which are useful
for classification and reconstruction in CapsNet. Essentially,
dynamic routing algorithm extracts information, similar to the
pooling layer in a CNN. Here, r is the number of routing
times, and l is the number of layers. Previous studies [2] fixed
r = 3 and l = 1. The dynamic routing process is summarised
as follows.

1) Super-capsule vj is calculated from sub-capsule ui
using the provisional weight cij .

2) The dot product of the calculated super-capsule vj
and each sub-capsule ui is calculated. The calculation
result can be considered as the similarity between super-
capsule vj and sub-capsule ui.

3) A new super-capsule vj is calculated from sub-capsule
ui with the new weight cij for similarity.

4) Repeat steps 2 and 3 r times.
Thus, dynamic routing simultaneously estimates super-capsule
vj and selects sub-capsule ui. Here, super-capsule vj cor-
responds to each class to be classified. Super-capsule vj is
used to classify and reconstruct images. The total loss function
L is the weighted sum of the classification error Lclass and
reconstruction error Lrecon :

L = Lclass + αLrecon , (4)

where α is a factor used to balance classification and recon-
struction errors (α = 0.0005 in a previous study [2]).

B. Classification

The norm of each super-capsule vi is defined as the exis-
tence probability of the corresponding object. The following
margin loss function is used for the classification loss func-
tion:

Lclass =
∑
k

(
Tkmax(0,m+ − ‖vk‖)2

+ λ(1− Tk)max(0, ‖vk‖ −m−)2
)
, (5)

where k is the number of classification classes, and Tk is 1 for
a true class and 0 otherwise. m+ is the threshold for errors
in the true class, and m− is the threshold for errors in the
incorrect class. λ is a factor used to balance the errors of
true and incorrect classes. In a previous study [2], m+ = 0.9,
m− = 0.1 and λ = 0.5.

C. Reconstruction

CapsNet reconstructs an input image by combining three
coupling layers to each super-capsule vj . The loss function
Lrecon of the reconstruction is the mean square error between
the input and reconstructed images. A previous study [2] re-
vealed that capsule elements, which are the elements of vectors
represented capsules, describe how the corresponding object

Fig. 4. Overview of CapsNet

Algorithm 1 Routing algorithm
procedure ROUTING(ûj|i, r, l)

for all capsule i in layer l and capsule j in layer(l + 1): bij ← 0
for r iterations do

for all capsule i in layer l : ci ← softmax(bi)
for all capsule j in layer (l + 1): sj ← cijûj|i
for all capsule i in layer (l + 1): vj ← squash(sj)
for all capsule i in layer l and capsule j in layer (l + 1): bij ← bij + ûj|i · vj

end for
return vj

end procedure

Fig. 5. MNIST Reconstructed Images with CapsNet

is positioned and scaled. They demonstrated that changes in
a reconstructed object differ from element to element when
each capsule element is increased or decreased slightly.

D. CapsNet Applied Research

Many studies have applied the characteristic of learning the
whole part relation of CapsNet hierarchically to solve practical
problems. In the imaging field, various studies have used
CapsNet, to simultaneously solve the problem of classifying
the motion of a person from a moving image and object
detection [5] and to detect oddness in a falsified part of
a forged image [3]. CapsNet has also been applied in the
natural language processing field. For example, in a previous
study [6], the subject, objects, and their relationships in a

sentence were expressed as capsules and words and embedded
by converting them to super-capsules. In the medical field, a
previous study [4] attempted to classify brain tumours from
MRI images using less training data than a CNN by utilising
CapsNet’s robust affine transformation.

III. CAPSNET EXPERIMENT

The problem with CapsNet is that it takes a long time to
train and estimate because it has many parameters. This section
demonstrates that each super-capsule vj is concentrated in a
small part of each feature space, and discusses the scope of
parameter reduction.

To examine the distribution of super-capsules vj by class,
super-capsules vj are projected and visualised in a two-
dimensional space based on two main components with high
contribution rates, which are selected from super-capsules vj
by principal component analysis (PCA) [8]. PCA is a tech-
nique to compress multidimensional data into low-dimensional
space. Figs. 7, 8 present the visualisations of super-capsules
vj classified using the MNIST and CIFAR-10 datasets, re-
spectively. MNIST is a dataset of monochrome images of
handwritten digits (0 to 9 28× 28 pixels), which are used to
evaluate image recognition. The CIFAR-10 dataset contains
RGB images (32 × 32 pixels), with 50,000 learning data
and 10,000 testing images, respectively. Note that there is
no deviation in the number of images between classes in the
CIFAR-10 dataset. In Figs. 7, 8, the super-capsules vj of each

Fig. 6. Sample MNIST and CIFAR-10 datasets

Fig. 7. Visualization of super-capsules of MNIST by PCA

class are distributed to extend in one direction from the origin.

Here, the following observations should be considered:
1) The super-capsules vj of each class are not distributed

throughout the feature space; therefore, there is no need
to use a separate feature space for each class.

2) The conventional CapsNet uses the L2 norm of the
super-capsule vj , i.e. the distance from the origin, as
a loss function. However, it is more appropriate to use
the angle with the class centre rather than the distance
from the origin for the loss function.

From the above considerations, we propose a classification
method based on the angle with the representative point of
each class that reduces the number of parameters Wij by using
a single super-capsule v.

IV. PROPOSED METHOD

A. Outline

Based on the discussion in the previous section, this section
describes the proposed method. In the conventional method,
super-capsules are output for each class, however, in the
proposed method, the parameters are reduced by outputting a
single super-capsule. With this change, the margin loss is not

Fig. 8. Visualization of super-capsules of CIFAR-10 by PCA

available; thus, we also propose a new loss function based on
ArcFace, a type of metric learning. ArcFace is a classification
method based on the similarity between the super-capsule and
representative vector of each class held as a parameter.

B. Metric Learning

The prposed method is inspired by a technique called
metric learning, which is training method such that the outputs
of images of the same class are close to each other, and
the outputs of images of different classes are distant from
each other. Metric learning is primarily used to determine
whether input face images are the same person and to de-
tect abnormalities. In the proposed method, we employ the
ArcFace [7] metric learning loss function to calculate the
similarity between a class representative vector and a single
super-capsule. Fig. 9 presents an overview of ArcFace. A
feature of ArcFace is that it is trained such that a margin can be
made with other representative vectors by imposing a penalty
that the angle with the representative vector corresponding to
the correct answer label must be less than the angle with other
representative vectors by m or more.

C. Proposed Method

The procedure of the proposed method is described as
follows:

1) A single super-capsule v is calculated using the tradi-
tional method.

2) Super-capsule v is then L2 normalised to v̂.

v̂ =
v

‖v‖2
, (6)

3) Let âj be the L2 normalisation of the representative
vector aj of class j. The representative vector is held in
the network as a parameter. Here, j is the class number
(j ∈ {1, 2, . . . , 10}).

4) The angle θj [rad] between the normalised super-capsule
v̂ and class vector âj is calculated.

Fig. 9. Overview of ArcFace system [7].

5) Margin angles m [rad] are added to correct labels only.
Here, let θ = [θ1 θ2 . . . θ10]

T ∈ R10 be the vector of
the result θj of each class.

6) θ is multiplied by s and input to the softmax function.
7) The squared error is learned from the one hot class label.

The overall error function L is given as follows:

L = − 1

N

N∑
i=1

log
es cos(θyi+m)

es cos(θyi+m) +
∑
k 6=yi

es cos(θk)
, (7)

where N is the number of batch samples and yi is the correct
label of the i-th data. The inner product of the representative
vector and the super-capsule is a simple cosine similarity
because each is L2 normalised.

cos θj = v̂ · âj . (8)

ArcFace has two hyperparameters; a scaling parameter s and
a margin parameter m. A larger s value results in the input
difference being better reflected in the output and a larger m
value means that the margin to be taken by the model will
be larger, which makes it more difficult to train. Note that
parameter m is not required in the test; thus, m = 0.

As in previous studies, the reconstruction of input images
from super-capsules is performed simultaneously with classi-
fication. The error function of the reconstruction component
is the mean square error, and the total loss function is the
weighted sum of the classification and reconstruction errors.

V. EXPERIMENT

This section describes the experiments to validate the pro-
posed method. Four experiments were conducted; comparison
experiment with various hyperparameters was conducted to
observe the change in accuracy rate caused by varying the Ar-
cFace hyperparameters s and m; comparison experiment with
conventional CapsNet confirmed the proposed method’s valid-
ity; visualisation experiment of the super-capsule demonstrated
that the super-capsule of the proposed method distributed in
whole feature space; image reconstruction experiment pre-
sented that CpasNet is not suitable for image reconstruction;

The experiments were conducted using the MNIST, CIFAR-
10, and their deformed datasets. In reference to a previous

TABLE I
TEST ACCURACY WITH VARIED HYPERPARAMETER s

s MNIST CIFAR-10

1 99.24 59.28
5 99.59 73.80

30 99.33 70.96
100 99.57 10.00

study [2], we make deformed datasets by the following pro-
cedure.

1) Rotates images uniform randomly in the range of
[−20, 20] degrees around the image centre.

2) Deforms images shears uniform randomly in the range
of [−0.2, 0.2] along the x axis and y axis.

3) Enlarge the image uniform randomly by a factor in the
range of [0.8, 1.2].

15% of each learning data is used as validation data.
Python 3 and pyTorch were used for the implementation,

and a Geforce GTX 1080 Ti was used for computation.
In addition, optimisation algorithm was performed using the
Adam.

VI. RESULT AND DISCUSSION

A. Comparison Experiment with Various Hyperparameters

TABLE I, TABLE II present the change in accuracy rate
caused by varying the ArcFace hyperparameters s and m.
As can be seen, no significant changes were observed in
the MNIST dataset. In constant, with the CIFAR-10 dataset,
setting s too small or too large decreased the accuracy rate.
Even when m was 0, the accuracy rate did not decrease
significantly. This indicates that the feature space is sufficiently
wide to perform classification, and there is no need to set a
margin m. Therefore the hyperparameter s and m are set to
s = 5,m = 0.1 in the following experiments.

B. Comparison Experiment with Conventional CapsNet

The experimental results are presented in TABLE III when
the ArcFace hyperparameters are s = 5 and m = 0.1. Here,
the deformed and original columns represent cases where the
test data were deformed and not, respectively. With the MNIST
dataset, there was not much change in the accuracy rate. With

TABLE II
TEST ACCURACY WITH VARIED HYPERPARAMETER m

m MNIST CIFAR-10

0 99.55 73.36
0.01 99.43 73.12
0.1 99.59 73.80
1 99.33 64.78

the CIFAR-10 dataset, the accuracy of the proposed method
improved by more than 2.74% regardless of the presence
or absence of small deformations. TABLE IV presents the
learning time for one epoch of the conventional and proposed
methods. As can be seen, the learning time was reduced with
both datasets by more than 19%. Obtained results imply that
the reduction of the number of parameters by the proposed
method is valid to reduce training and estimation time of
CapsNet.

C. Visualisation Experiment of the Super-Capsule

Visualisation of super-capsule given by poposed method is
presented in Figs. 10, 11. Here, the spherical distribution of
the data points relative to Figs. 7, 8 is due to the normalisation
of the super-capsules. CIFAR-10 has a denser distribution of
super-capsules than Fig. 10 does Fig. 11.

Fig. 10. Visualisation of the internal representation of MNIST datasets by
PCA with the proposed method

D. Image Reconstruction Experiment

Figs. 12, 13 present the input images of each class without
deformation (default input) and with the affine transforma-
tion (affine input), respectively, and their corresponding re-
constructed images (reconstruction). With the MNIST dataset,
the reconstructed image changed according to the rotation. In
addition, with the CIFAR-10 dataset, the reconstructed image
is not clear, and only the entire colour tone was learned.

Figs. 14, 15 present the success rate learning curve. With
the CIFAR-10 dataset, learning was unstable; however, the

Fig. 11. Visualization by PCA of internal representation of CIFAR-10 dataset
by proposed method

Fig. 12. Comparison of MNIST and reconstructed images

accuracy rate of validation slowly increased, which indicates
that learning was successful.

VII. CONCLUSION

From the experimental results, we conclude that the pro-
posed method improves accuracy and reduces the learning
time. The ArcFace hyperparameter s significantly affects the
classification accuracy, whereas m does not contribute to the
classification accuracy.

This indicates that the feature space is sufficiently wide to
perform classification, and there is no need to set a margin.
There are two limitations to this study. One is that the classifi-
cation accuracy of CIFAR-10 is still low and the reconstructed
image is blurred. This problem is thought to be due to the fact
that the number and dimensions of the super-capsules are not
enough to represent the features of the image. Second, in the
proposed method, as the image size increases, the number of
parameters increases and learning becomes difficult.

In the future, we plan to apply CapsNet to super-resolution
video. In addition, it will be improved so that CapsNet can be
trained on large data.

REFERENCES

[1] G. E. Hinton, A. Krizhevsky, and S. D. Wang, “Transforming auto-
encoders,” International Conference on Artificial Neural Networks, pp.
44–51, Jun. 2011.

TABLE III
ACCURACY RATE BETWEEN CONVENTIONAL (CAPSNET) AND PROPOSED METHODS

Original Deformed

MNIST CIFAR-10 MNIST CIFAR-10

CapsNet 99.47 70.96 97.90 61.63
Proposed 99.59 73.80 97.37 69.92

TABLE IV
ONE EPOCH AVERAGE LEARNING TIME [S] BETWEEN CONVENTIONAL

(CAPSNET) AND PROPOSED METHODS

MNIST CIFAR-10

CapsNet 176.69 210.82
Proposed 142.58 158.99

Fig. 13. Comparison of CIFAR-10 and reconstructed images

[2] S. Sabour, N. Frosst, G. E. Hinton, “Dynamic routing between capsules,”
Advances in Neural Information Processing Systems, pp. 3856–3966,
2017.

[3] H. H. Nguyen, J. Yamagishi, I. Echizen, “Capsule-forensics: Using
Capsule Networks to Detect Forged Images and Videos,” International
Conference on Acoustics, Speech and Signal Processing, pp. 2307–2311,
May 2019.

[4] P. Afshar, A. Mohammadi, and K. N. Plataniotis, “Brain Tumor Type
Classification via Capsule Networks,” International Conference on Im-
age Processing, pp. 3129–3133, Oct. 2018.

[5] K. Duarte, Y. Yogesh, and M. Shah, “VideoCapsuleNet: A Simplified
Network for Action Detection,” Advances in Neural Information Pro-

Fig. 14. Learning curve of accuracy rate on MNIST dataset

Fig. 15. Learning curve of accuracy rate on CIFAR-10 dataset

cessing Systems, pp. 7610–7619, 2018.
[6] H. Ren, H. Lu, “Compositional coding capsule network with k-means

routing for text classification,” ArXiv, 2018.
[7] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “Arcface: Additive angular

margin loss for deep face recognition,” Advances in Neural Information
Processing Systems, pp. 4690–4699, 2019.

[8] K. Pearson, “Principal components analysis,” The London, Edinburgh,
and Dublin Philosophical Magazine and Journal of Science, vol. 6, no.
2, p. 559, 1901.

