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Abstract—Next Point-of-Interest (POI) recommendation aims
to rank a list of POIs by their attractiveness to users based on the
users’ historical records of POI visits. This task is challenging,
because user preferences may be influenced by various contextual
factors. In this paper, we consider the temporal contextual
factor, i.e., the time of users’ POI visits. Previous attempts for
modelling the impact of temporal contexts can be categorized into
two groups: factorization based methods and recurrent neural
network based methods. The first group adds a time dimension
to their latent recommendation spaces, which may suffer from
the data sparsity problem due to the additional dimension. The
second group uses time-aware contextual gates to update the
hidden and cell states in RNNs, which may have limited capability
in capturing long-range temporal dynamics. In this paper, we
propose a time-modulated self-attentive network (TimeSAN) for
next POI recommendation. This model learns the relevance
between a user’s next POI visit and her historical visits via
the self-attention mechanism, where the relevance is modulated
by the temporal contextual influence. The learned time-aware
relevance is further fused with users’ long-term interests to
provide final recommendations. We conduct extensive experi-
ments on real-world datasets. The results confirm that TimeSAN
outperforms previous methods consistently and significantly in
recommendation accuracy, while attaining a high model training
efficiency.

I. INTRODUCTION

The rapid growth of location-based social networks (LB-
SNs), such as Foursquare1 and Yelp2, has enabled researchers
to incorporate better personalization in location-based recom-
mendation tasks. A widely studied location-based task is the
next Point-of-Interest (POI) recommendation, which aims to
rank a list of POIs by their attractiveness to users, based on
the users’ historical records of POI visits (e.g., check-ins).

Temporal contexts of users’ POI visits are crucial to POI
recommendations. We use Fig. 1 to illustrate how users’ check-
ins are influenced by the temporal contexts. We present an
example of three users’ check-ins within a day. We observe
that the preferences of the three users change with the time:
they prefer to visit “refreshing” POIs (e.g., Cafe) in the
morning and “relaxation” POIs (e.g., Bar) at night. Suppose
that we need to make a recommendation for User 3 at
20:00. Models that are solely based similarity but agnostic to
temporal contexts may suggest “Pool” for User 3, since User 2
and 3 are more similar according to their previous check-ins.

*Primary contact
1https://foursquare.com/
2https://www.yelp.com/

Fig. 1: An example of three users’ check-ins within a day.

However, if we take the recommendation time “20:00” into
consideration, “Bar” is a more preferable choice for User 3.

Capturing the temporal influence is nontrivial, mainly for
two reasons. First, real-world check-in datasets are sparse,
making it difficult to infer a complete time-varying profile for
each user. Secondly, the number of possible timestamps that
are need to be considered is large and even infinite, which
calls for a recommendation model that utilizes the impact of
timestamps collaboratively and effectively.

Existing studies that consider the temporal contexts can
be categorized into two groups. The first group is developed
based on factorization. The entire set of possible timestamps
is mapped into a finite set of time slots, assuming that the
timestamps within the same time slot have the same influence
on user check-ins [21]. Then a low-dimensional latent space is
used to capture the features of the time slots, which are further
combined with users’ other types of preferences. However, it
is difficult to determine which time granularity to be used for
time slot mapping. If certain time granularity has significant
impact on users’ preferences but is not incorporated, the model
may not be able to make accurate recommendations. On the
other hand, if a model considers all possible time granularity,
the user-POI check-in matrix within each time slot will be too
sparse, which will also deteriorate the model performance.

The second group is built based on recurrent neural net-
works (RNNs). RNN cells are used to process users’ historical
check-ins sequentially and predict users’ next POI visits. To
incorporate the temporal influences, various time-aware cell
structures are proposed [5, 23]. However, RNNs may not
effectively capture long-range temporal dynamics, since the
historical records are represented only by the cell and hidden
states with limited dimensions. Moreover, RNN models are
inefficient in training, since the intrinsic recurrent structure
cannot fully utilize parallel computation.
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To address the above limitations, we introduce a time-
modulated self-attentive network, TimeSAN, for time-aware
next POI recommendation. TimeSAN treats the POI recom-
mendation as a sequence-to-sequence translation task, which
aims to translate the sequence consisting of a user’s historical
check-ins to the sequence consisting of the user’s future check-
ins. TimeSAN adapts the the multi-head self-attention mech-
anism [16] for the translation between check-in sequences.
To consider the influence of temporal contexts, TimeSAN
enhances the vanilla self-attention mechanism with a time-
modulated self-attention module, which allows the attention
among the temporal contexts to modulate the self-attention of
the input check-in sequence. Further, TimeSAN introduces a
temporal encoding method which maps timestamps to their
multi-scale periodic representations. The proposed encoding
method is shown to be more effective in capturing the features
of temporal information compared with existing encoding
methods. Finally, thanks to the inherited self-attention archi-
tecture, TimeSAN retains the state-of-the-art training speed,
and is more than one order of magnitude faster compared with
the RNN-based methods.

To summarize, the contributions of this paper are as follows.
• We propose a time-modulated self-attentive network for

time-aware next POI recommendation. The model uti-
lizes a proposed time-modulated self-attention module
to capture the influence of temporal contexts on users’
preferences. Moreover, we propose a multi-scale periodic
encoding for temporal contexts which facilitates capturing
temporal dynamics in user preferences.

• We conduct an extensive evaluation on the learning
capability of the proposed model using synthetic data.
The results confirm that TimeSAN can capture the impact
of temporal contexts effectively. The results also confirm
that, compared with existing time encoding methods, the
proposed method provides a more effective representation
of the temporal contexts.

• We conduct extensive experiments on real-world datasets.
The experimental results confirm that the proposed model
outperforms the state-of-the-art recommendation models
significantly and consistently. In particular, TimeSAN
improves the recommendation accuracy by up-to 17.1%.
Meanwhile, TimeSAN retains high training efficiency,
and is faster than RNN-based models by more than one
order of magnitude.

II. RELATED WORK

We review three groups of related studies: (1) time-agnostic
POI recommendations; (2) time-aware POI recommendations;
and (3) attention mechanisms.

A. Time-Agnostic POI Recommendations

Many models have been proposed for POI recommen-
dations, such as user-based collaborative filtering (CF) [2]
and matrix factorization (MF) [9]. To enhance the prediction
accuracy, several contextual factors have also been studied
and incorporated, e.g., geographical locations of POIs [9], and

social connections of users [3]. Recently, sequential patterns in
users’ check-ins have attracted lots of interests. Many models
for capturing sequential patterns have been proposed, e.g,
Markov-chain models which capture the patterns using the
transition probabilities between POIs [11] and recurrent-neural
network models [5] which utilize RNNs to model the long-
and short-term dynamics in users’ check-ins.

B. Time-Aware POI Recommendations

There exist two categories of studies on time-aware POI
recommendations. The first category is based on factorization.
Gao et al. [4] propose a recommendation model based on
matrix factorization. They split the time axis into hourly slots,
which result in 24 sub-matrices from the original user-POI
check-in matrix. To overcome the data sparsity, they propose a
smoothing method that jointly factorizes the sub-matrices and
estimates users’ hourly preferences. Liu et al. [10] embed users
and POIs into a low-dimensional latent space. To incorporate
temporal contexts, they consider 168 time slots (24 hours per
day × 7 days per week), which are embedded into the same
latent space, where the proximity between a time slot and a
POI captures the characteristics of their interaction.

The second category of studies seek to use RNNs to model
the temporal impact. Zhu et al. [23] propose the Time-LSTM,
a variant of long- and short-term memory (LSTM), for time-
aware recommendation. Specifically, they introduce a time
gate into a LSTM cell. At each step, a Time-LSTM cell takes
two inputs: an input POI (check-in) and an input timestamp.
It uses the input POI to update the current hidden and cell
states, where the update mechanism is controlled by time gate
using the input timestamp. Huang et al. [6] also use RNN
for time-aware POI recommendation. They propose the ATST-
LSTM network that aggregates the latent features of each
check-in and the associated temporal context at each step.
To enhance the learning of long-range temporal dependencies,
ATST-LSTM augments the RNN network with an attention
layer on top. However, due to the recurrent structure of RNNs,
these models cannot fully utilize parallel acceleration.

C. Attention Mechanisms

Attention mechanisms have attracted extensive interests due
to its effectiveness in a wide range of tasks including machine
translation, acoustic modelling, and image captioning. There
exist some studies on recommendations using attention mech-
anisms. Chen et al. [1] augment Bayesian pairwise ranking
(BPR) with an attention layer that simultaneously capture two
types of attentions: the user-item level attention and the user-
feature level attention. Self-Attentive sequential recommender
(SASRec) [7] is a recent recommendation system that is
based on self-attention mechanism. This model is the most
related work to ours since it’s also a model solely based on
self-attention, without relying on other deep neural networks
such as RNNs and CNNs. However, it differs from our work
because it does not consider the temporal contextual influences
on user preferences.



Fig. 2: The architecture of TimeSAN.

III. PROBLEM DEFINITION

Let U be a set of users, L be a set of POIs, and S be
a set of check-ins post by users in U . The check-ins of a
user u form a chronologically ordered check-in sequence:
Su = (〈su1 , tu1 〉, 〈su2 , tu2 〉, . . . , 〈su|Su|, t

u
|Su|〉). The tuple 〈sui , tui 〉,

i ∈ [1, |Su|] represents the i-th check-in of user u, where sui
represents the POI ID, and tui represents the timestamp of the
check-in. Given a recommendation time trec, the task of time-
aware POI recommendation is to recommend a POI li ∈ L,
such that r(li|u, Su, trec) > r(lj |u, Su, trec), ∀lj ∈ L, j 6= i.
Here, r(li|u, Su, trec) represents the ranking score of POI li
for user u at time trec.

IV. MODEL ARCHITECTURE

Our proposed model, TimeSAN, treats the task of time-
aware next POI recommendation as a sequence-to-sequence
translation task which aims to convert an input sequence
(s1, . . . , sN ) to a target sequence (s2, . . . , sN+1). When
making a recommendation for user u, the input sequence
(s1, . . . , sN ) will be constructed from u’s N most recent
check-ins, and sN+1 in the output sequence will be the
recommendation for u. We illustrate the architecture of our
proposed TimeSAN model in Figs. 2. Next, we detail the
structure of the proposed model.

A. Embedding Layer

1) Embedding of a POI sequence: TimeSAN maintains two
embedding matrices: a POI embedding matrix L ∈ R|L|×d and
a positional encoding matrix P ∈ R|N |×d, where d represents
the latent dimensions of the model. Given an input sequence
S = (s1, . . . , sN ), the latent embedding of the i-th check-in is
computed as Ei = L(si) + P(i), where L(si) represents the
embedding vector of POI si and P(i) represents the positional
encoding of the index i. Then the embedding of S is computed
as the concatenation of the latent embeddings of the N check-
ins: E = [E1;E2; . . . ;EN ].

2) Embedding of temporal context: In addition to the
input and target check-in POI sequences, we also extract two
sequences of temporal contexts: Tpre = {t1, . . . , tN} and
Tpost = {t2, . . . , tN+1}. Note that we follow previous studies

and assume that the recommendation time tN+1 is known
for the time-aware recommendation purpose [19, 22]. In real
applications, the actual recommendation time can be used as
tN+1.

We embed Tpre and Tpost into a latent space as follows.
Given a timestamp t, we first map t to a multi-dimensional
feature vector, where the features can be chosen based on the
temporal characteristics of users’ check-ins. In this work, we
map a timestamp t to a four-dimensional feature vector:

f(t) = [fm, fd, fw, fh] (1)

Here, fm, fd, fw, fh represent the “month of a year”, “day
of a month”, “day of a week”, and “hour of a day” of t.
For instance, the timestamp “2019-Mar-12 Friday 10:10:56”
is mapped to vector [3, 12, 5, 10]. This vector forms an original
feature vector of the timestamp.

The mapping in Eq. 1 is a straightforward way to represent
timestamps. However, we find that it is not easy for neural
networks to learn the relative distance between timestamps
using such representations. A main reason is that the similarity
of timestamps is computed as their dot-products, which do not
directly reflect the relative distances between vectors. Inspired
by previous studies [16], we propose a multi-scale periodic
time encoding that maps the feature vector of a timestamp
with a set of sin and cos functions at different frequencies.
In particular, we expand each feature (e.g., fm) in f(t) to a
multi-dimensional vector (e.g., fm), where the i-th dimension
(e.g., fm(fm, i)) is computed through a sin/cos function:

fx(fx, 2i) = sin(fx/w
2i/df
x ) (2)

fx(fx, 2i+ 1) = cos(fx/w
2i/df
x ) (3)

Here, x ∈ {m, d,w, h} represents a feature from the feature
set, df represents the latent dimensionality of each feature, and
wx represents the width of value range of the corresponding
feature (e.g., wm = 12). The final time encoding of timestamp
t is computed as a 4df -dimensional vector f(t) by concate-
nating the expanded vectors of all features:

f(t) = [fm, fd, fw, fh] (4)

As shown by the evaluation conducted later in Section V, the
proposed multi-scale time encoding in Eq. 4 is more effective
in capturing the features of temporal contexts compared with
the encoding in Eq. 1. This is because the proposed time
encoding is much more sensitive to the relative distance, since
it allows the neural networks to examine the difference of
these timestamps at different periodic scales. With Eq. 4, we
compute the embeddings for the temporal contexts Tpre and
Tpost as follows:

Tpre = [f(t1); f(t2); . . . ; f(tN )] (5)
Tpost = [f(t2); f(t3); . . . ; f(tN+1)] (6)

B. Time-Modulated Self-Attention

We propose a time-aware self-attention module to capture
the temporal dynamics in the inputs. It computes the attention
among temporal contexts first, and then let the temporal



(a) Self-attention in [16] (b) Time-modulated self-attention

Fig. 3: Comparison of self-attention in [16] and time-
modulated attention in TimeSAN.

attention modulate the self-attention of the input sequence.
We illustrate the comparison of the self-attention in [16] and
the time-modulated attention in TimeSAN in Fig. 3.

Specifically, we compute three linear projections of E,
yielding a query Q, a key K, and a value V representation of
the check-in sequence, respectively. The three representations
are computed as: Q = EWQ, K = EWK , and V = EWV ,
where WQ ∈ Rd×d, WK ∈ Rd×d, and WV ∈ Rd×d
represent three learnable projection matrices. We also compute
a query representation QT and a key representation KT, from
Tpost and Tpre, respectively:

QT = Tpost ·WQ
T (7)

KT = Tpre ·WK
T (8)

where WQ
T ∈ R4df×dt and WK

T ∈ R4df×dt are two linear
projection matrices. Then the time-modulated self-attention
SA(E) of the input sequence is computed as:

SA(E) = softmax
(mod(Q ·K>,QT ·K>T )√

d

)
·V (9)

The choice of the modulate function mod(·, ·) depends on the
characteristics of datasets. We use element-wise multiplication
wrapped with a softsign activation function, since it yields best
results in our empirical experiments:

mod(X1,X2) = softsign(X1 �X2) (10)

Here, � represents element-wise multiplication of matrices,
X1 and X2 represent the input matrices of the function.
We compare the proposed time-modulated self-attention with
the self-attention in [16] in Fig. 3. The intuition behind the
time-modulation mechanism is that we not only consider the
positional attention (Q·K>), but also the attention between the
target and history temporal context (QT and KT ). For exam-
ple, if the target temporal context is Saturday, the modulation
mechanism allows increasing (or decreasing) the contribution
of a Friday (or Wednesday) check-in to the output, since the
temporal context Friday (or Wednesday) is close (or far) from
Saturday.

In real applications, the check-ins (si+1, . . . , sN ) in the
input should not be known when predicting si+1. Note that
si+1 is the i-th element in the target sequence since the target
sequence is the input sequence left-shifted by one. Thus, we
disable the attention links between the i-th output and the
(i+1)- to N -th input check-ins by applying a positional mask
Λ. The mask value Λij for the attention between the i-th
output and the j-th input is set as 0 if j > i and 1 otherwise.
Note that since the query temporal sequence Tpost is the
key temporal sequence Tpre left-shifted by one, the temporal
context at the recommendation time is still incorporated after
applying Λ to achieve time-aware recommendation.

C. Point-Wise feed forward layer

Let SAi be the output on i-th position of the time-aware
attention layer, the output on i-th position after the point-wise
feed forward (PFF) layer is computed as:

Fi = ReLU(SAi ·W1 + b1)W2 + b2 (11)

where W1 ∈ Rd×d, W2 ∈ Rd×d represent two learnable
projection matrices, and b1 ∈ Rd×1, and b2 ∈ Rd×1 represent
the biases of the first and second feed forward layer. The self-
attention layer and PFF layer together form a self-attentive
block. We allow stacking multiple blocks to capture deeper
semantics in the input sequence. We use SAm

i and Fmi to
represent the output of the attention layer, and PFF layer of
the m-th block in Fig. 2.

D. Incorporating Long-Term Interest

Although self-attention mechanisms can effectively capture
the semantic dependencies among input check-ins, the calcula-
tion of similarity between query and key is merely controlled
by the trained parameter matrices WQ and WK . Thus, it
is difficult for self-attentive networks to capture the global
features [17]. Thus, we propose a soft fusion mechanism to
incorporate users’ global (long-term) interest into the proposed
model. Specifically, given a user check-in sequence Su, we
utilize a user embedding u. Intuitively, this user embedding
can be seen as a global bias of the sequence. We fuse this
global features with the sequence representation after the M -
th PFF layer to generate the output O of the model. Following
Shaw et al. [14], we capture the global context via addition:

O = λ� FM + (1− λ)� u (12)

where FM is the output of the PFF layer of the M -th block.
The weight matrix λ controls the importance of each element
in the final output. To ensure a soft and smooth fusion, we
learn the values in λ as follows:

λ = sigmoid(W(λ1)FM + W(λ2)u + bλ) (13)

Here, W(λ1) ∈ Rd×d and W(λ2) ∈ Rd×d are two learnable
projection matrices, and bλ ∈ Rd represents the bias vector.



E. Model training

The final output O ∈ RN×d is a latent representation of
the predicted sequence. Let Oi (i ∈ [1, N ]) be the i-th vector
in O and lj be a POI in L, we compute the ranking score
r(lj |u, Su1:i, ti) of lj being recommended given user u, the
user’s previous check-ins Su1:i, and the recommendation time
ti, as follows:

r(lj |u, Su1:i, ti) = Oi · L(lj) (14)

To train the model, we first take the most recent N +1 check-
ins of each user to form a training sequence S̃. If a user
has less than N + 1 check-ins, we pad a dummy check-in
to the sequence until it reaches N + 1. For each constructed
sequence, we generate a training instance, where the input
sequence S̃in = S̃1:N , and the target sequence S̃pos = S̃2:N+1.
We adopt negative sampling to accelerate the training process.
Specifically, for each POI in the target sequence, we generate
a negative POI. These sampled POIs form a negative sequence
S̃neg . We adopt the binary cross-entropy loss as the objective
function of the training process:

−
∑
S̃∈S

∑
i∈[1,N ]

δ(S̃, i)
(
log
(
σ(rpos,i)

)
+ log(1− σ

(
rneg,i)

))
(15)

Here, rpos,i represents the ranking score of the i-th POI in
S̃pos, and rneg,i represents the ranking score of the i-th POI
in S̃neg , and δ(S̃, i) is an indicator which equals to 0 if s̃i
is a dummy check-in. The model is trained using Stochastic
Gradient Descend (SGD).

V. EVALUATION USING SYNTHETIC DATA

In this section, we use synthetic data to study the capability
of capturing temporal dynamics of TimeSAN. Consider a
simple sequential prediction task. Given a sequence S =
{〈y1, x1〉, . . . , 〈yN , xN 〉} where yi represents the observation
value and xi represents the context value of the i-th element,
we aim to predict the target yN+1 given its context xN+1.
We require that x1 < x2 < ... < xN+1 to keep the
context sequence ordered. We use a simple periodic function
to generate the observation data:

yi = sin(2π · xi/100) + ε (16)

Here, ε represents random noise which conforms Gaussian
distribution: ε ∼ N (0, 0.01). We generate 1,280 random
sequences, where we first generate context values by draw-
ing random samples from [0, 103] and then compute the
corresponding observation values using Eq. 16. We set the
number of elements in each sequence as 250. We treat the
last element in each sequence as testing data, the second last
element as validation data, and use the rest of the elements
as training data. We use the mean square error (MSE) as the
loss function, and record the MSE of all tested models. In
this experiment, we consider three methods: (1) the proposed
TimeSAN model; (2) the proposed TimeSAN model without
using the proposed multi-scale time encoding; and (3) vanilla
self-attention in [16]. We set the attention dimensionality d as

Fig. 4: Predicting accuracy vs. number of training epochs.

10 for all methods, the feature dimensionality df as 10, the
time dimensionality dt as 1 for method (1).

For all methods, we present their MSEs vs. number of
training epochs in Fig. 4. The results confirm that TimeSAN is
able to capture the temporal contexts effectively. Specifically,
its MSE is much lower than that of vanilla self-attention. It also
converges most quickly. Method (2) can reach almost the same
accuracy as TimeSAN, but it converges much slower than
TimeSAN: it reaches similar accuracy with that of TimeSAN
after 500 epochs of training. This confirms that the proposed
time encoding method can help the networks to capture the
features of temporal contexts more effectively.

VI. EXPERIMENTS

We evaluate the effectiveness and the efficiency of the
proposed algorithms empirically in this section.

A. Datasets and Evaluation Protocols

1) Datasets: We conduct experiments using two publicly
available large-scale LBSN checkin datasets, Foursquare and
Gowalla, to show the general applicability of the proposed
algorithms across different LBSN platforms. The Foursquare
dataset [18] contains checkins in Tokyo from April 2012 to
February 2013. The Gowalla dataset [3] contains checkins
from March 2009 to October 2010. We follow previous
studies [22] and remove users who have less than 20 check-ins.
Table I summarizes the statistics of the two datasets. We split
the check-in sequence Su for each user u into three parts: (1)
the most recent check-in Su|Su| for testing, (2) the second most
recent check-in Su|Su|−1 for validation, and (3) all remaining
check-ins for training.

TABLE I: Summarization of dataset statistics.

Dataset # user # POI # check-in avg. # check-in/user

Foursquare 2,293 61,858 573,703 250.2
Gowalla 21,809 34,140 1,757,997 80.6

2) Evaluation protocols: We report the performances of
all models in two popular top-N metrics, namely HR (Hit
Ratio) and NDCG (Normalized Discounted Cumulative Gain).
Specifically, HR@K equals the percentage of the “hitted”
cases in which the ground-truth POI is included in the top
K recommendations. NDCG@K is a position-aware metric
that penalizes if the ground-truth POI is hitted but ranks low
in the top K recommendations.



B. Baselines
We compare our proposed TimeSAN model with three

groups of baseline models: (1) factorization based models; (2)
RNN based models; and (3) self-attention based models. We
summarize the baseline models as follows:

1) Factorization based models: The first group contains
models based on factorization:
Bayesian Pairwise Ranking (BPR). BPR is a classical model
for learning personalized rankings from implicit feedback [12].
Factorized Personalized Markov Chain (FPMC). FPMC
is a ranking-based pairwise tensor factorization framework,
which jointly considers the first-order Markov Chain transition
probabilities between POIs, and users’ long-term interest [13].
Spatial-Temporal Latent Ranking (STELLAR). STELLAR
is also based on tensor factorization. In addition to users’ long-
term interests and POI-to-POI transition probabilities, it also
considers the influence of temporal contexts [22]. The model
proposes a binary encoding for timestamps, and then learns
the latent representations of the encoded timestamps to make
recommendations.

2) RNN based models: The second group contains models
based on RNN.
Vanilla RNN (RNN). RNN is a traditional recurrent model,
which only considers the chronological order of user check-
ins, but ignores temporal information associated with the
check-ins [20].
Time-LSTM (TLSTM).3 Time-LSTM is based on Long-Short
Term Memory (LSTM). The model uses time gates to control
the influences of the historical check-ins on users’ future
check-ins [23].
Attention-Based Spatiotemporal LSTM (ASLSTM).4
ASLSTM extends LSTM models with the attention mecha-
nism, making LSTM to focus on relevant historical check-in
records selectively. The model also incorporates spatial and
temporal contextual information [6].

3) Self-Attention based models: The final group contains
models based on self-attention.
Self-Attentive Sequential Recommender (SASRec). SAS-
Rec5 is a sequential recommender that captures the se-
quential patterns in user preferences using multi-head self-
attention [16].

C. Implementation Details

We set the maximum sequence length N as 250 and
150 in Foursquare and Gowalla, respectively. We use Adam
optimizer [8] for training. We optimize the performance of
TimeSAN and SASRec by varying the number of blocks
from {1, 2, 3}, the number of attention heads from {1, 2, 3},
dropout rate from {0, 0.1, 0.2, 0.5}. For all models, we op-
timize their performances, varying the latent dimensionality
d from {10, 20, 50, 80, 100}, learning rate from {10−1, 10−2,
10−3, 10−4}. We fix the batch size as 128 for all models to

3https://github.com/ZJULearning/time lstm
4https://github.com/drhuangliwei/An-Attention-based-Spatiotemporal-

LSTM-Network-for-Next-POI-Recommendation
5https://github.com/kang205/SASRec

ensure fair comparison. We run each set of experiments for
10 times, and record the average performance of each model.

D. Experimental Results

1) Overall recommendation accuracy: We summarize the
overall recommendation accuracy of all models in Table II.
For each metric, we highlight the best result in bold, and
underline the second best result. The experimental results
show that the proposed TimeSAN model outperforms all
baselines consistently and significantly. Specifically, TimeSAN
achieves up to 17.9% and 12.2% improvement over SASRec,
on Foursquare and Gowalla respectively. In addition, we find
that models which incorporate temporal dynamics (e.g., Stella,
TLSTM, ASLSTM) have higher recommendation accuracy,
compared with the other models within the same group. This
confirms the importance of learning the influence of temporal
contexts. Finally, we observe that factorization based methods
tend to perform better compared with RNN based methods.
This is consistent with the findings in previous studies [7, 15].
A main reason is that real-world check-in datasets are usually
very sparse, which make RNN based methods ineffective due
to overfitting.

2) Ablation study: Table III summarizes the results of ab-
lation study on TimeSAN. In the default setting of TimeSAN,
we set the number of blocks as 2 (M = 2). We do not use
positional encoding (PE) in the default setting of TimeSAN,
because the time-modulated attention module already consid-
ers the chronological information of the check-in sequences.
We see that adding positional encoding to TimeSAN degrades
the overall performance slightly. This is because TimeSAN
utilizes a time-modulation attention module and does not
rely on the positional encoding to capture the chronological
information about the inputs. This also confirms that the
proposed time-modulation attention module is effective in
capturing time dynamics in the input check-in sequences. The
components of user embedding (cf. Section IV-D) and time-
modulation (cf. Section IV-B) both contribute positively to the
overall performance. The contribution of user embedding on
Foursquare is more significant compared with that on Gowalla.
This is because Foursquare is denser than Gowalla, where each
user has a longer check-in sequence. Therefore, it is more
important to use a user embedding to capture the long-term
context in the input sequence. When varying the number of
time-modulated self-attention blocks of TimeSAN, we observe
a significant degradation in performance if no self-attention
block is used (M = 0). This is because when M = 0,
TimeSAN will make prediction solely based on users’ most
recent check-in and the user’s embedding which represents
user’s long-term interest, ignoring the contextual information
carried by non-neighboring check-ins. When we set M > 0,
we find that the performance on both datasets degrades when
M = 3 due to overfitting. On Foursquare dataset, the optimum
value of M is 2 (as in default M = 2), while the optimum
value of M is 1 in Gowalla. This is because if the dataset is
dense, deep neural structure is needed to capture the complex
interaction.



TABLE II: Overall recommendation accuracy of all baseline models and TimeSAN (proposed).

Dataset Metric
(1) Factorization-based (2) RNN-based (3) Self-attention-based Improv. Improv. Improv.

BPR FPMC Stellar RNN TLSTM ASLSTM SASRec TimeSAN over (1) over (2) over (3)

Foursquare

HR@5 0.1801 0.2268 0.2700 0.2157 0.2396 0.2166 0.2686 0.3144 16.4% 31.2% 17.1%

NDCG@5 0.1245 0.1788 0.2006 0.1543 0.1631 0.1471 0.1837 0.2165 7.9% 32.7% 17.9%

HR@10 0.2673 0.2787 0.3341 0.2934 0.3281 0.3238 0.3689 0.4091 22.4% 26.3% 10.9%

NDCG@10 0.1526 0.1804 0.2214 0.1794 0.1918 0.1819 0.2160 0.2465 11.3% 28.5% 14.1%

HR@20 0.3567 0.3450 0.4091 0.3602 0.4145 0.4288 0.4387 0.4784 16.9% 11.6% 9.0%

NDCG@20 0.1751 0.1971 0.2404 0.1963 0.2129 0.2085 0.2337 0.2641 9.9% 24.0% 13.0%

Gowalla

HR@5 0.4121 0.4323 0.4345 0.3607 0.3737 0.3997 0.4242 0.4629 6.5% 15.8% 9.1%

NDCG@5 0.3136 0.3324 0.3362 0.2784 0.2913 0.3003 0.3267 0.3664 9.0% 22.0% 12.2%

HR@10 0.4837 0.5070 0.5101 0.4373 0.4630 0.5115 0.5040 0.5382 5.5% 5.2% 6.8%

NDCG@10 0.3367 0.3566 0.3607 0.3032 0.3347 0.3499 0.3522 0.3908 8.3% 11.7% 11.0%

HR@20 0.5497 0.5751 0.5832 0.5159 0.5395 0.5684 0.5833 0.6061 3.9% 6.6% 3.9%

NDCG@20 0.3534 0.3739 0.3792 0.3230 0.3477 0.3601 0.3722 0.4079 7.6% 13.3% 9.6%

TABLE III: Ablation study of TimeSAN. With PE: add posi-
tional encoding; w/o user: remove user embedding; w/o time:
remove time-modulation. Performance improvement is high-
lighted in bold. Significant performance degradation (more
than 10%) is marked with ↓.

setting
Foursquare Gowalla

HR@10 NDCG@10 HR@10 NDCG@10

default
0.4091 0.2465 0.5382 0.3908

(M = 2)

with PE 0.3977 0.2414 0.5314 0.3854

w/o user 0.3947 0.2393 0.5322 0.3816

w/o time 0.3803 0.2317 0.5183 0.3726

M = 0 0.3650↓ 0.2187↓ 0.4778↓ 0.3373↓
M = 1 0.3951 0.2374 0.5427 0.3913
M = 3 0.3929 0.2408 0.5216 0.3673

3) Impact of time dimensionality dt: We vary the value
of dt for TimeSAN from [1, 10, 20, 50, 100] and show the
corresponding HR@10 and NDCG@10 in Fig. 5. In this
set of experiments, we fix the latent dimensionality d at
100, and the number of self-attentive blocks M at 2. The
other settings are as described in Section VI-C. As shown
in the figure, TimeSAN reaches the highest recommendation
accuracy when dt = 20. The recommendation accuracy of
the model becomes lower when the value of dt decreases
from 20 to 1, because the time-modulation module is not
able to capture the complex temporal dynamics with limited
dimensions. When dt increases beyond 20, there is also a
slight fluctuation in recommendation accuracy, but overall, the
recommenation accuracy remains stable and does not increase
with dt anymore.

TABLE IV: Training speed of all models (sec/epoch).

TimeSAN TimeSAN
SASRec TLSTM ASLSTM RNN

(M=1) (M=2)
0.57 0.91 0.44 5.9 5.8 3.6

(a) Foursquare (b) Gowalla

Fig. 5: Varying the latent dimensionality dt.

Fig. 6: Performances (HR@10) of all deep neural network
based models on Foursquare dataset.

4) Training efficiency: We evaluate the training efficiency
of the proposed model and all baseline models that are
based on deep neural networks, i.e., Groups (2) and (3). We
illustrate the HR@10 on Foursquare dataset of these models
as a function of training time in Fig. 6. For TimeSAN,
we present the results where the number of blocks are set
as 1 and 2, namely TimeSAN (M = 1) and TimeSAN
(M = 2), respectively. For SASRec, we fix the number of
blocks as 1 (M = 1), since the performance of SASRec
decreases on Foursquare dataset if we increase M beyond



1. The results confirm that the proposed model retains high
training efficiency compared with the baseline models that
are also based on deep neural networks. Specifically, the
training speeds (sec/epoch) of TimeSAN (M = 1), TimeSAN
(M = 2), SASRec, TLSTM, ASLSTM, and RNN are 0.57,
0.91, 0.44, 5.9, 5.8, and 3.6, respectively. TimeSAN (M = 1)
has a very close training speed to SASRec, and is only
slightly slower due to additional parameters introduced by
the time-modulation module. TimeSAN (M = 2) is slightly
more slower since it has two blocks, and is doubled in the
model size. Compared with RNN based methods, TimeSAN
has much higher training speed. In particular, compared with
the two models TLSTM and ASLSTM, which also capture
temporal contexts, TimeSAN (M = 1) is faster by an order
of magnitude. In addition to training speed, TimeSAN also
converges much faster compared with RNN based models.

VII. CONCLUSIONS

We proposed a time-modulated self-attention network,
TimeSAN, for time-aware next POI recommendation. Time-
SAN uses a time-modulated self-attention module to effec-
tively learn the temporal dynamics in users’ interests. Specif-
ically, TimeSAN learns the relevance between users’ history
records and next POI visits via the self-attention mechanism,
and modulates the relevance with the temporal contexts. Fur-
ther, we propose a fusion mechanism to enable more effective
learning of users’ long-term interests. We demonstrate that the
proposed time-modulated self-attention module can effectively
capture the influence of temporal contexts using synthetic
data. We also conduct extensive experiments on real-world
check-in datasets. The experimental results show that the
proposed TimeSAN model outperforms the state-of-the-art
recommendation models consistently and significantly in rec-
ommendation accuracy, while retains high training efficiency.
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