
Laplacian-based Semi-supervised Multi-Label
Regression

Vivien Kraus
Université Lyon 1

43, Bd du 11 Novembre 1918
Villeurbanne, Cedex 69622, France

vivien.kraus@lizeo-group.com

Khalid Benabdeslem
Université Lyon 1

43, Bd du 11 Novembre 1918
Villeurbanne, Cedex 69622, France

kbenabde@univ-lyon1.fr

Bruno Canitia
Lizeo Group

42 Quai Rambaud, 69002 Lyon
Lyon, 69002, France

bruno.canitia@lizeo-group.com

Abstract—In multi-label learning, one has to find a model
suitable for predicting multiple values for the same individual,
based on the same features. The effectiveness of most multi-
label algorithms lies in the fact that it is able to consider the
correlations between the related labels. On the other hand, in
many applications, a multi-label learning task incurs a high
cost for the annotation of a single data point. This leads to
a dataset consisting of a few labeled data points, and many
more unlabeled data points. In this scenario, semi-supervised
methods can take advantage of the unlabeled data points. In
this article, we propose a new algorithm for multi-label semi-
supervised regression, LSMR, as a multi-label extension of a
semi-supervised regression algorithm. We provide experimental
results on some publicly-available regression datasets showing
the effectiveness of our approach.

I. INTRODUCTION

One of the key challenges of modern machine learning
approaches is to learn from both hand-annotated label data
as well as unlabeled data, which is generally considered easy
to obtain. Weakly labeled learning [1], and more importantly
semi-supervised learning [2], [3] addresses this challenge
as it may either use label propagation to assist supervised
methods [3], [4], or use the label information as constraints in
unsupervised methods [5], [6]. Many types of semi-supervised
methods based on supervised methods have been proposed.
For instance, adaptations such as self-training [2] or co-
training [7], [8] have been studied, transductive learning which
aims at using the information of the input distribution of the
test dataset has notably been implemented for the Support
vector machine [9], [10], and generative methods have also
been adapted [11]. For regression problems, with a numeric
prediction, specific applications have been proposed [12],
[13], however many applications rely either on input space
representation learning [14], or on a graph between data points
constructed with an input-based similarity measure [15], with
an emphasis on the Laplacian regularization [16], [17].

Moreover, multi-label learning aims at exploiting the rela-
tions between labels in order to use more information for the
learning task. Some theoretical works have been proposed. In
[18], the authors decompose the set of classification labels
as independent groups in the context of bayesian networks.
Many multi-label methods have been proposed [19], [20]. It
is not surprising that many multi-label algorithms are built

upon existing methods. Some strategies transform a multi-label
problem to one or many single-label problems. The Classifier
Chain approach is a simple algorithm that can take advantage
of the relations between labels in order to provide a stronger
learner [21]. Given the initial dataset, a first weak learner is
trained to predict one of the multiple labels. Then, a new
dataset is constructed, by integrating the predicted label as
a new feature, and training a slightly stronger learner over the
new dataset to predict one of the other labels. By repeating
this procedure until the last label, a multi-label classifier
is constructed. With some modifications, this gives a good
multi-label learning algorithm [22]. Some of the traditional
approaches extend to the multi-label case, such as the Gaussian
processes [23].

However, many algorithms that are suitable for multi-label
learning are defined as the minimization of a regularized
objective function. Among these regularizations, we can set
apart two groups: some of these regularizations are designed
to be convex, while others, more recent approaches, focus on
non-convex formulations. Non-convex functions, such as the
capped l1 norm [24], or more recently the l2,1−2 regularization
[25], are found to have good performance, although the conver-
gence of the algorithm only guarantees that the loss converges,
or that the model converges (which is very desirable).

In other cases, the non-convex formulation may lead to
a convex relaxation. By using a l0 regularization in mono-
label learning, one can regularize the number of features that
are needed to perform the prediction, even if this regular-
ization is nonconvex. The LASSO algorithm [26] is sim-
ply a convex relaxation of this term, and the same can be
applied to multi-label feature selection [27], [28]. Likewise,
the Clustered Multi-Task Learning framework benefits from
a convex relaxation [29]. Other regularizations are naturally
convex, such as those used for other label space representation
learning [30], [31]. In an effort to bring these regularization
frameworks under a same optimization strategy, the MALSAR
implementation has been proposed [32].

Simultaneous semi-supervised learning and label-space rep-
resentation learning with two different graphs for label sim-
ilarity and data point similarity has already received some
attention [33].

In the regression settings, few methods exist. The usual

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

approach is to change the loss function in order to accept
real-valued labels [32], [34]. In this paper, we derive a new
semi-supervised algorithm for multi-label regression.

II. RELATED WORKS

The SSSL algorithm (a Simple algorithm for Semi-
Supervised Learning, [14]) is a two-step procedure to train
a semi-supervised regressor. In the first step, an unsupervised
change of space is performed on the data. Then, a simple
linear supervised regressor is trained. While this approach is
commonly adopted to real-world applications, the authors in
[14] showed that it should be part of the whole data pro-
cessing operation. More specifically, under some hypothesis
about the dataset and the number of taken labeled points,
the generalization will be better than any of the models
for any supervised learning algorithms. Unfortunately, these
hypothesis are impossible or very difficult to check in practice.

The algorithm is composed of two steps: an unsupervised
step and a fully supervised step. The former exctract features
independently of the label data. The latter only occurs in the
space of the extracted features, by considering the labeled
data. So this approach clearly transforms the semi-supervised
problem into a succession of an unsupervised problem and a
supervised one.

This approach could however fail to generalize for some
applications in practice. To solve this problem, a regularized
adaptation of this algorithm has been developed in [35]. This
approach, called LapS3L consists of a generalization of the
SSSL algorithm. Thus, proper tuning of the hyperparameters
is necessary to handle the cases for which the SSSL performs
poorly, and sufficient to increase or keep the same perfor-
mance. In this approach, the expectation for both learning
steps is slightly different: while the original SSSL algorithm
separated an unsupervised step and a supervised learning step,
LapS3L was designed to regularize the linear regression with
a semi-supervised regularization.

The used regularization is Laplacian-based. For semi-
supervised problems, it aims to enforce the following as-
sumption: if two data points are connected in a similarity
graph, then the distance between their predictions should be
minimized. Given a data matrix X ∈ Rn×d, a graph of
instances is constructed, with instances as nodes and feature-
based similarity between instances as edges, with a similarity
value normalized between 0 and 1. The graph is encoded
as an adjacency matrix M ∈ Rn×n, and the degree matrix
is the diagonal D ∈ Rn×n. With such a symmetric graph,
L = D −M is a semidefinite positive matrix. For a single-
label model w ∈ Rd, the convex regularization term is
twXLXw =

∑
i,j Mij [(Xw)i − (Xw)j]

2.
The introduction of a graph over the data with the similarity

between instances forming the edges, is thus a new semi-
supervised step after the unsupervised one. The unsupervised
step uses a decomposition of a kernel function which is applied
between all input instances, like the Laplacian regularization.
The difference lies in the fact that both steps do not use the
same data features. Thus, this additional regularization helps

taking into account both similarity graphs: the one based on
the raw data, and the one based on the transformed data.

This Laplacian regularization can also be employed to
cope with multi-label learning [36]. In this case, the idea is
that two related labels should give two similar models. The
regularization leverages a similarity graph between labels, and
penalizes a model W ∈ Rd×m by tr(WLtW), where m is
the number of regression labels. This penalization is designed
to have similar models for similar labels.

In this paper, we propose to keep extending the SSSL, so
as to keep at least the same performance with proper tuning,
but dealing with multi-label tasks.

III. PROPOSED APPROACH

In this section, we present the details of our approach,
LSMR (for Laplacian-based Semi-supervised Multi-label Re-
gression) as a regularization of the SSSL algorithm. We use
a regularized convex objective function in a different feature
space, with a similar approach to the LapS3L. We thus propose
a strict generalization of the SSSL.

As with SSSL, the objective function uses the features from
the eigenvector decomposition of the input kernel. So, given
the input data as a matrix V of dimensions n× d, the kernel
matrix K is formed, such that for all i, j ∈ {1, . . . , n},

Ki,j = φ(Vi,.,Vj,.) (1)

In this formulation, φ is a kernel function. It takes two
individuals and return a scalar.

As K is a real symmetric matrix, it has an eigenvector
decomposition with real eigenvalues. Let σ ∈ Rs the s largest
eigenvalues and U ∈ Rn×s the associated eigenvectors. The
features of interest, X ∈ Rn×s, are simply computed as KU.
The learning problem becomes to find a model W ∈ Rs×m
minimizing the proposed objective function, (2). It is important
to note that each row of X corresponds to exactly one input
point; so in the context of semi-supervised learning where
some instances are not labeled, then the corresponding rows
in X do not have a label. This lets us keep the same labels Y
in the new space.

The prediction code for a new batch of nt instances Vb ∈
Rnt×d is slightly more complex. Let Kb ∈ Rn×nt the kernel
as computed between the training data and the test batch: for
all i ∈ {1, . . . , n}, j ∈ {1, . . . , nt}, Kbi,j = φ(Vi,.,Vbj,.).
Then, the prediction is generated as: Ŷb = tΦW with Φ =
Σ−

1
2 tUKb and Σ = diag(σ).

A. Objective function

The objective function that we use is composed of three
weighted terms: the least squares term, which is minimized
for a perfect prediction on the training set, the semi-supervised
regularization term which penalizes the differences in predic-
tions on related instances, and the multi-label regularization
extension.

L(W) = ‖XlW −Yl‖2F + λsΩs(W) + λmΩm(W) (2)

with Xl ∈ Rnl×s containing only the labeled rows of X,
and Yl ∈ Rnl×m containing the corresponding rows in Y.

The regularization term for semi-supervised learning
Ωs(W) is controlled by an hyperparameter λs, and the regu-
larization term for multi-label learning Ωm(W) is controlled
by another hyperparameter λm.

Both regularization terms are shaped with the help of a
graph Laplacian matrix. The graph Laplacian matrices are
Ls < 0 for the semi-supervised regularization and Lm < 0
for the multi-label regularization.{

Ωs(W) = trace(tWtXLsXW)

Ωm(W) = trace(WLm
tW)

(3)

The Laplacian matrix encodes a graph. In the case of
the semi-supervised regularization, this graph involves in-
stances as nodes and similarities between them as edges. Let
Ms ∈ Rn×n the adjacency matrix of this graph. For any two
instances i and j, if an edge exists between i and j, then Msi,j

is the weight of this edge. Then,

Ωs(W) =

m∑
k=1

 n∑
i1=1,i2=1

Msi1,i2 [(XW)i1,k − (XW)i2,k]
2


(4)

This regularization term is intuitive: it means that for a
label, we penalize the solution according to how much related
instances differ in their predictions.

In the case of the multi-label regularization, the graph
involves labels as nodes and similarities between these points
as edges.

Ωm(W) =

s∑
j=1

 m∑
k1=1,k2=1

Mmk1,k2 (Wj,k1 −Wj,k2)
2


(5)

The solution is thus penalized such that the solution assigns
the same weights to related labels.

B. Optimization algorithm

While an analytical solution to this problem is possible [37],
it requires solving m2 mono-label problems. However, more
recent works (MALSAR, [32]) have explored similar problems
with gradient descent, and especially the Accelerated Gradient
Descent as published by Nesterov.

Indeed, the objective function (2) is convex, as a sum of
three convex functions. The gradient is given by eq (6).

∇WL(W) = 2
[
tXlXl + λs

tXLsX
]
W

−2tXlYl + 2λmWLm

(6)

The gradient descent algorithm iteratively updates a model
W in the opposite direction of the gradient at W, by a
factor η called the learning rate. While η is considered as
a hyperparameter in the general case, eq (6) is Lipschitz-
continuous: for all couples of models P,Q ∈ Rs×m,

‖∇WL(P)−∇WL(Q)‖2F ≤ C ‖P−Q‖2F (7)

with

C = 2
(
ρ
(
tXlXl + λs

tXLsX
)

+ λmρ (Lm)
)

(8)

where for all real symmetric matrix M, ρ(M) is the spectral
radius of M. By setting η = 1

C , we get a suitable learning
rate to ensure convergence of the gradient descent [38].
Thus, the whole mathematical development is summarized in
Algorithm 1.

Algorithm 1 LSMR
Input: data: V ∈ Rn×d, Y ∈ Rn×m; hyperparameters:
φ : Rd × Rd → R, λs ≥ 0, λm ≥ 0, s ∈ {1, . . . , n}

Output: Prediction function
Construct K < 0 as eq (1)
Compute the s largest eigenvalues σ ∈ Rs and associated
eigenvectors U ∈ Rn×s
X← KU, Xl ∈ Rnl×s and Yl ∈ Rnl×m the labeled data
points
Estimate C from eq (8)
Initialize W ∈ Rs×m with random values
Apply the Accelerated Gradient Descent on W with fixed
step 1

C , and with the gradient from eq (6)
function BATCH PREDICTION(Vb ∈ Rnt×d)
∀i ∈ {1, . . . , n}, j ∈ {1, . . . , nt},Kbi,j ←

φ(Vi,.,Vbj,.)

return Ŷb = KbUW
end function

The algorithm respects the two-step procedure, by per-
forming a change of space, then optimizing the regularized
objective function. Since the objective function gives a model
operating in the changed space, the prediction function cannot
be a simple matrix product.

IV. EXPERIMENTS

In order to show the effectiveness of our proposed approach,
we conducted two parts experiments. First, as our porposed
method is an extension of existing works, we show experi-
mental data validating the need for that extension. Second, we
do some comparisons with different regularizations for multi-
label regression.

A. Datasets

We used a subset of the multi-label regression data from the
MULAN project 1, and added a sample of 1000 individuals
from the SARCOS dataset [39]. In order to save time for the
extensive tuning, we did not include the datasets that had more
than a thousand individuals. The characteristics of the datasets
are summarized in table I.

The datasets are randomly split into a train and test parts.
To simulate a semi-supervised setting, we randomly keep the

1http://mulan.sourceforge.net/datasets-mtr.html

http://mulan.sourceforge.net/datasets-mtr.html

labels for 30% of the individuals, and consider these as the
labeled data. This is more labeled individuals than what is
usual, but since some of the datasets only have a few data
points, we cannot discard too many labels.

Every feature and every label from the dataset is centered
and scale so that its mean is set to 0 and its variance to 1.
Feature normalization is needed because each feature needs
to be taken into account in the kernel function. We need
to normalize the labels for a meaningful computation of the
averaged metric over all labels.

B. Experimental setting

For each dataset, the hyperparameters are selected via a
random search [40], instead of the more traditional grid search.
In order to prioritize the most important hyperparameters,
random search samples all hyperparameters. The set of hyper-
parameters that gives the lowest average RMSE between the
expected labels Yt ∈ Rnt×m and the predictions Ŷ ∈ Rnt×m
averaged over a 10-fold cross-validation on the training set.
The average RMSE is defined as:

aRMSE =
1

m

m∑
k=1

√√√√∑nt
i=1

(
Yti,k − Ŷi,k

)2
nt

(9)

This metric indicates a perfect fit if aRMSE = 0, and in the
case where all labels are centered and scaled, a naive predictor
returning a constant 0 has aRMSE = 1.

Only the labeled dataset is split in cross-validation folds.
The unlabeled data are used untouched for all folds.

Our proposed approach has 4 hyperparameters:
• the kernel function φ;
• the number of components s;
• the Laplacian regularizer λs;
• the multi-label regularizer λm.
We explored three different kinds of kernel functions:
• the linear kernel;
• the cosine kernel (10);
• the Radial Basis Function kernel (11), with a new hyper-

parameter γ (the hyperparameter γ is sometimes written
as 1

2σ2 , where σ > 0).

φ (v, v′) =
〈v, v′〉
‖v‖ ‖v′‖

(10)

φ (v, v′) = e−γ‖v−v
′‖2 = e−

‖v−v′‖2
2σ2 (11)

C. Results with local tuning

Since our proposed approach is an extension combining two
regularizations, we first check that the combination gives a
better aRMSE value when sharing the values for the hyperpa-
rameters of the tuned SSSL.

In order to check this, we first tune the SSSL algorithm for
all datasets, and store the hyperparameter values in table II.
Depending on the dataset, we may use different kernels for the
first unsupervised step, or select a number of components from

the decomposition of the kernel matrix. These values have
been obtained by sampling the search space for the kernel type,
the kernel bandwidth (only applicable for the RBF kernel),
and the number of components. The hyperparameter values
are those that lead to the best aRMSE value calculated within
a 10-fold cross-validation mean.

Given this set of hyperparameters, we then tune our pro-
posed approach by re-using the applicable hyperparameters,
i.e. the kernel type, kernel bandwidth and number of compo-
nents, but simply introduce our two regularization terms and
tune the associated values. These new hyperparameters are
sampled on a logarithmic scale, for small values. For each test,
we record the aRMSE value for the SSSL alone, i.e. with both
regularizers set to exactly 0, and for our proposed approach,
i.e. with both regularizers having a non-zero value. Since SSSL
is run as many times as the tuning for our instances, the
aRMSE for the SSSL over each dataset is averaged, just as if
we tested the SSSL on these hyperparameters several times.

For each dataset, we thus get a heat map of the performance
of our combined approach relative to the performance of
the SSSL. Subsequent graphs are heat maps of the relative
performance with respect to the value of both regularizers.
Areas with a red color indicate hyperparameter values for
which our approach gives better results than SSSL, and blue
zones indicate that the performance is degraded.

For the sake of argument, we present a few of these tuning
maps in order to show the different cases we might get.

Figure 1 represents this gain for the scpf dataset. This
is a difficult dataset, as the multi-label regularizer quickly
degrades performance, while the optimal tuning region is very
restricted. On the other hand, the osales dataset 3 seems to
perform better with a very low value of the semi-supervised
regularizer λs. However, other datasets such as sf2 (figure
2) generally show that with an appropriate tuning of both
regularizers, the performance can be improved. Finally, figure
4 on the oes97 dataset shows a limit of the approach of
starting from the tuned SSSL: if a regularizer is too large,
then the predictions from our approach are so different from
the baseline that it becomes impossible to compare them with
the same kernel and transformed space. This is why we need
to tune our hyperparameters all at the same time.

In summary, table III shows the distribution of the relative
gain for our approach over all datasets, with the mean im-
provement, the first and third quartiles, and the best and worst
value.

D. Comparative study

In a second time of experiments, we compared our proposed
approach with state-of-the-art multi-label regression methods
on the same datasets. All these methods solve a convex
regularized regression function with an accelerated gradient
descent. Some of the objective functions use a matrix norm.
Unfortunately, the definitions are different for [27] and [41].
We adopt these definitions: for W ∈ Rs×m,

TABLE I: Used data sets

Dataset #Train (#labeled, #unlabeled) #Test #Features #Labels
atp1d 262 (76 + 186) 165 411 6
atp7d 234 (67 + 167) 147 411 6
edm 121 (35 + 86) 73 16 2
enb 601 (173 + 428) 366 8 2
jura 281 (81 + 200) 173 15 3
oes10 314 (91 + 223) 198 298 16
oes97 257 (75 + 182) 163 263 16
osales 495 (144 + 351) 309 401 12
sarcossub 779 (225 + 554) 467 21 7
scpf 889 (256 + 633) 521 23 3
sf1 250 (73 + 177) 158 31 3
sf2 832 (240 + 592) 501 31 3
wq 827 (238 + 589) 487 16 14

1e-06

1e-03

1e+00

1e-10 1e-07 1e-04
Semi-supervised regularizer λs

M
ul

ti-
la

be
l

re
gu

la
ri

ze
r
λ
m

1.0

1.2

1.4

Relative
aRMSE

Fig. 1: Relative gain on the scpf dataset

1e-06

1e-03

1e+00

1e-10 1e-07 1e-04
Semi-supervised regularizer λs

M
ul

ti-
la

be
l

re
gu

la
ri

ze
r
λ
m

0.90

0.95

1.00

1.05

Relative
aRMSE

Fig. 2: Relative gain on the sf2 dataset

1e-06

1e-03

1e+00

1e-10 1e-07 1e-04
Semi-supervised regularizer λs

M
ul

ti-
la

be
l

re
gu

la
ri

ze
r
λ
m

0.90

0.95

1.00

1.05

Relative
aRMSE

Fig. 3: Relative gain on the osales dataset

1e-06

1e-03

1e+00

1e-10 1e-07 1e-04
Semi-supervised regularizer λs

M
ul

ti-
la

be
l

re
gu

la
ri

ze
r
λ
m

1.00

1.25

1.50

1.75

Relative
aRMSE

Fig. 4: Relative gain on the oes97 dataset

TABLE II: Tuning of the SSSL algorithm

Dataset Kernel Components
atp1d rbf (γ = 3.140 · 10−05) 202
atp7d linear 5
edm rbf (γ = 1.703 · 10+01) 107
enb cosine 10
jura rbf (γ = 4.272 · 10−03) 87
oes10 linear 31
oes97 rbf (γ = 3.785 · 10−05) 55
osales rbf (γ = 1.254 · 10−02) 475
scpf cosine 2
sf1 linear 5
sf2 cosine 3
wq rbf (γ = 1.545 · 10+01) 774

TABLE III: Relative local improvements on the datasets

Dataset Mean Q1 Q3 Best Worst
sf2 0.983 0.898 1.086 0.553 1.245
scpf 1.191 0.862 1.554 0.564 1.684
osales 0.989 0.938 1.046 0.635 1.191
oes97 1.078 0.872 1.170 0.662 2.344
sf1 0.994 0.922 1.062 0.682 1.206
oes10 1.015 0.908 1.110 0.715 1.448
jura 1.014 0.954 1.065 0.799 1.485
atp1d 1.048 0.958 1.070 0.812 1.922
edm 0.998 0.964 1.037 0.821 1.190
atp7d 1.006 0.961 1.053 0.833 1.242
enb 0.998 0.964 1.027 0.864 1.124
wq 0.999 0.992 1.007 0.960 1.032


‖W‖1,∞ =

∑s
j=1 ‖Wj,.‖∞

‖W‖1,2 =
∑s
j=1 ‖Wj,.‖2

‖W‖∗ =
∑
σ singular value of W σ

(12)

The other methods tested are the baseline unregularized
least squares LSQ, the Lasso regularization, MTL [26], the
multi-label Laplacian regularization, SGR [36], the group
Lasso regularization, JFS [27], the Dirty model, DM [41], the
low-rank regularization, TNR [42] and the Clustered Multi-
Task Learning CMTL [43]. The methods introduce new regu-
larizers.

The results shown in table IV are multiple fold:
• our proposed approach, if tuned globally, performs better

than the SSSL. The local tuning is however impaired, as
the search space for the regularizers is too far away from
zero, as discussed previously;

• our proposed approach performs better than the Laplacian
multi-label regularization alone (SGR) on many datasets;

• the global tuning of our algorithm gives almost always
better results than if it is tuned from the best SSSL run;

• unlike the original SSSL algorithm, our proposed exten-
sion gives competitive results to the state of the art for
the class of objective functions we considered.

The significance of these results needs to be questioned.
According to [44], there are several points to check in order to
choose the methodology to compare these multiple algorithms
over multiple datasets.

The first question to address is whether paired t-tests can
apply. According to this methodology, we could compare
algorithms by pairs, by considering the difference between

their performance across all datasets as a normal distribution,
and test whether we can conclude over the sign of the mean
of the difference using a t-test. While this approach is quite
simple to set up, the hypothesis are quite strong.

The most obvious problem is that under such analysis, for
two algorithms, the difference is supposed to be a Gaussian
sample. We have no means to verify this, and the number of
datasets is clearly not enough to accomodate for this : we need
at least 30 datasets, and we have only 13.

On the other hand, due to the fact that the selected datasets
have a very small number of individuals, there are situations
in which the test data may differ from the learning data. To
tackle this issue, we run the tests 20 times, each time selecting
a different subset for the training set and thus for the test set.
However, the final results are averaged. The resulting poor
choices of training sets may thus still appear in the averaged
results. Since this phenomenon depends on the dataset, the
variance of the performance between the algorithms varies
according to the dataset. Reasoning about the mean of the
difference of the results between two algorithms on each
dataset may therefore not be adequate.

We could apply the Wilcoxon signed-ranks test. In this test,
for each pair of algorithms, the difference of performance for
each dataset is taken and ranked according to their absolute
value. Then, the ranks corresponding to the datasets in favor
of the first algorithm (respectively the second algorithm) are
summed, and this sum is compared. Thus, we do not consider
the average of the performance on a dataset, but a ranking. This
lets us remove the first problem, but the second still holds: the
test gives too much importance on the small datasets. In such
situation, the pairwise comparison is not very informative;
using a value of α = 0.1 (as in figure 5) gives some more
instances, from which we can still infer that our generalization
gives better results than the SSSL, but it does not say much
more.

For a multi-classifier analysis, we are interested in the non-
parametric Friedman test. Under such a test, all classifiers
are ranked for each dataset. The problems that we noticed in
our comparison are accounted for under this test, because we
do not compare any difference in performance to any other
difference, be it for a difference between algorithms given
dataset or for a difference between datasets given algorithm.
In this way, the datasets that have a high variance in the
performance of the algorithms are treated the same as the more
dense datasets, so we do not risk favoriting them too much.

The Friedman test tries to reject the hypothesis that the mean
ranks of all datasets are equal. Under a risk of α = 0.05, this
hypothesis is rejected, and we can proceed to compare the
ranks of the classifiers.

If the mean ranks are separated from at least a certain critical
distance depending on the number of classifiers and datasets,
then we can run the Nemenyi test, which tries to reject
the post-hoc hypothesis that these classifiers are equivalent.
The diagram in figure 6 displays the average ranks for all
classifiers on the datasets, with the critical distance. This
diagrams shows that even if our proposed approach is not

TABLE IV: aRMSE Results for the global tuning

Dataset LSMR Local LSMR SSSL CMTL DM JFS LSQ MTL SGR TNR
atp1d 0.472 1.006 0.481 0.533 0.522 0.543 0.549 0.534 0.548 0.548
atp7d 0.888 0.713 0.779 0.727 0.782 0.764 0.787 0.787 0.787 0.787
edm 0.841 1.005 0.895 0.849 0.857 0.856 1.198 0.855 1.207 0.852
enb 0.320 0.541 0.339 0.332 0.333 0.332 0.332 0.332 0.332 0.332
jura 0.661 0.847 0.727 0.597 0.593 0.591 0.609 0.593 0.611 0.598
oes10 0.390 0.488 0.395 0.398 0.402 0.402 0.402 0.402 0.402 0.402
oes97 0.445 0.918 0.494 0.515 0.510 0.534 0.534 0.534 0.534 0.534
osales 1.012 0.957 0.938 0.882 0.839 0.861 0.921 0.873 0.873 0.906
sarcossub 0.363 0.816 0.428 0.357 0.357 0.354 0.357 0.354 0.357 0.357
scpf 1.111 0.926 1.253 0.621 0.636 0.635 0.635 0.635 0.635 0.635
sf1 1.070 0.998 1.092 0.999 0.999 0.999 1.292 0.999 1.285 0.999
sf2 0.973 1.041 1.114 1.022 1.161 1.024 1.262 1.024 1.249 1.024
wq 0.999 0.999 1.003 0.946 1.006 0.982 1.079 0.947 1.079 1.023

LSMR

SSSL

LSMR
local

CMTL

DM

JFS

LSQ

MTL

SGR

TNR

LSM
R

SSSL

LSM
R

(l)

CM
TL

DM JF
S

LSQ
M

TL
SGR

TNR

Fig. 5: Comparison of all pairs of algorithms, using the
Wilcoxon signed-ranks test. For each algorithm row, blue
demonstrate that algorithm in the row outperforms the algo-
rithm in the column, under a risk α = 0.1; red shows that the
algorithm in the column outperforms the algorithm in the row.
Gray cells are inconclusive.

ranked best on average, it is still within the critical distance
of the best, contrary to the other methods from which we draw
our ideas: the special case SSSL, and the multi-label Laplacian
regularization SGR.

V. CONCLUSION & FUTURE WORKS

In this paper, we proposed to extend a semi-supervised re-
gression algorithm to a multi-label framework. We experimen-
tally showed that our approach, as a strict generalization of the
SSSL, gives better results than the SSSL, even if not tuning the
common hyperparameters. By tuning all hyperparameters, our
method is competitive with other state-of-the-art algorithms.

The future works will be investigating whether we can
adapt our approach to perform multi-label feature selection.
Since the proposed approach works on extracted features, this
will be a challenge. We will also investigate learning from

Critical distance: 3.757

Mean ranks

CMTL - 3.23
MTL - 3.54

JFS - 3.73
LSMR - 4.77

DM - 4.77
TNR - 5.88

SSSL - 6.38
SGR - 6.85

LSMR local - 7.54
LSQ - 8.31

2 4 6 8 10

Fig. 6: Plot of the ranks of the algorithm with the Critical
Distance

another label space. Finally, we will also consider non-convex
regularizations for our approach.

REFERENCES

[1] Y.-F. Li, I. W. Tsang, J. T. Kwok, and Z.-H. Zhou, “Convex
and scalable weakly labeled svms,” Journal of Machine Learning
Research, vol. 14, pp. 2151–2188, 2013. [Online]. Available:
http://jmlr.org/papers/v14/li13a.html

[2] O. Chapelle, B. Schölkopf, and A. Zien, Semi-Supervised Learning.
MIT Press, 2006.

[3] X. Zhu, “Semi-supervised learning literature survey,” Computer Science,
University of Wisconsin-Madison, vol. 2, no. 3, p. 4, 2006.

[4] M. Zhao, T. W. Chow, Z. Wu, Z. Zhang, and B. Li, “Learning
from normalized local and global discriminative information for
semi-supervised regression and dimensionality reduction,” Information
Sciences, vol. 324, pp. 286–309, Dec. 2015. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S0020025515004533

[5] S. Basu, I. Davidson, and K. Wagstaff, Constrained clustering: Advances
in algorithms, theory, and applications. CRC Press, 2008.

[6] Z. Zhang, T. W. S. Chow, and M. Zhao, “Trace ratio optimization-
based semi-supervised nonlinear dimensionality reduction for marginal
manifold visualization,” IEEE Transactions on Knowledge and Data
Engineering, vol. 25, no. 5, pp. 1148–1161, May 2013.

http://jmlr.org/papers/v14/li13a.html
http://linkinghub.elsevier.com/retrieve/pii/S0020025515004533

[7] A. Blum and T. Mitchell, “Combining labeled and unlabeled data
with co-training,” in Proceedings of the eleventh annual conference on
Computational learning theory. ACM, 1998, pp. 92–100.

[8] Z.-H. Zhou and M. Li, “Semi-supervised regression with co-training,”
in Proceedings of the 19th International Joint Conference on Artificial
Intelligence, ser. IJCAI’05. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2005, pp. 908–913. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1642293.1642439

[9] T. Joachims, “Transductive inference for text classification using support
vector machines,” in ICML, vol. 99, 1999, pp. 200–209.

[10] K. P. Bennett and A. Demiriz, “Semi-supervised support vector ma-
chines,” in Advances in Neural Information processing systems, 1999,
pp. 368–374.

[11] K. Nigam, A. K. McCallum, S. Thrun, and T. Mitchell, “Text clas-
sification from labeled and unlabeled documents using em,” Machine
learning, vol. 39, no. 2, pp. 103–134, 2000.

[12] D. Azriel, L. D. Brown, M. Sklar, R. Berk, A. Buja, and L. Zhao,
“Semi-supervised linear regression,” arXiv preprint arXiv:1612.02391,
2016.

[13] K. J. Ryan and M. V. Culp, “On semi-supervised linear regression
in covariate shift problems.” Journal of Machine Learning Research,
vol. 16, pp. 3183–3217, 2015.

[14] M. Ji, T. Yang, B. Lin, R. Jin, and J. Han, “A Simple Algorithm for
Semi-supervised Learning with Improved Generalization Error Bound,”
arXiv:1206.6412 [cs, stat], Jun. 2012, arXiv: 1206.6412. [Online].
Available: http://arxiv.org/abs/1206.6412

[15] A. Moscovich, A. Jaffe, and B. Nadler, “Minimax-optimal semi-
supervised regression on unknown manifolds,” arXiv preprint
arXiv:1611.02221, 2016.

[16] D. Cai, X. He, and J. Han, “Semi-supervised regression using spectral
techniques,” 07 2006.

[17] M. Belkin, P. Niyogi, and V. Sindhwani, “Manifold regularization: A
geometric framework for learning from labeled and unlabeled examples,”
Journal of Machine Learning Research, vol. 7, pp. 2399–2434, 2006.

[18] M. Gasse, A. Aussem, and H. Elghazel, “On the Optimality
of Multi-Label Classification under Subset Zero-One Loss for
Distributions Satisfying the Composition Property,” in International
Conference on Machine Learning, ser. Journal of Machine Learning
Reasearch Proceedings, F. R. Bach and D. M. Blei, Eds., vol. 37,
Lille, France, 2015, pp. 2531–2539. [Online]. Available: https:
//hal.archives-ouvertes.fr/hal-01234346

[19] H. Borchani, G. Varando, C. Bielza, and P. Larrañaga, “A survey on
multi-output regression,” Wiley Interdisciplinary Reviews: Data Mining
and Knowledge Discovery, vol. 5, no. 5, pp. 216–233, 2015. [Online].
Available: http://onlinelibrary.wiley.com/doi/10.1002/widm.1157/full

[20] E. Spyromitros-Xioufis, G. Tsoumakas, W. Groves, and I. Vlahavas,
“Multi-Target Regression via Input Space Expansion: Treating Targets
as Inputs,” Machine Learning, vol. 104, no. 1, pp. 55–98, Jul. 2016,
arXiv: 1211.6581. [Online]. Available: http://arxiv.org/abs/1211.6581

[21] J. Read, B. Pfahringer, G. Holmes, and E. Frank, “Classifier chains for
multi-label classification,” in Joint European Conference on Machine
Learning and Knowledge Discovery in Databases. Springer, 2009, pp.
254–269.

[22] W. Liu, I. W. Tsang, and K.-R. Müller, “An easy-to-hard learning
paradigm for multiple classes and multiple labels,” The Journal of
Machine Learning Research, vol. 18, no. 1, pp. 3300–3337, 2017.

[23] K. Yu, V. Tresp, and A. Schwaighofer, “Learning Gaussian processes
from multiple tasks,” in Proceedings of the 22nd international confer-
ence on Machine learning. ACM, 2005, pp. 1012–1019.

[24] P. Gong, J. Ye, and C.-s. Zhang, “Multi-stage multi-task feature learn-
ing,” in Advances in neural information processing systems, 2012, pp.
1988–1996.

[25] Y. Shi, J. Miao, Z. Wang, P. Zhang, and L. Niu, “Feature selection
with l2, 1-2 regularization,” IEEE Trans. Neural Netw. Learning
Syst., vol. 29, no. 10, pp. 4967–4982, 2018. [Online]. Available:
https://doi.org/10.1109/TNNLS.2017.2785403

[26] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Jour-
nal of the Royal Statistical Society: Series B (Methodological), vol. 58,
no. 1, pp. 267–288, 1996.

[27] A. Argyriou, T. Evgeniou, and M. Pontil, “Multi-task feature learning,”
in Advances in neural information processing systems, 2007, pp. 41–48.

[28] L. Jian, J. Li, K. Shu, and H. Liu, “Multi-Label Informed Feature
Selection.” in IJCAI, 2016, pp. 1627–1633.

[29] J. Zhou, J. Chen, and J. Ye, “Clustered multi-task learning via alternating
structure optimization,” in Advances in neural information processing
systems, 2011, pp. 702–710.

[30] Y.-n. Chen and H.-t. Lin, “Feature-aware Label Space Dimension Reduc-
tion for Multi-label Classification,” in Advances in Neural Information
Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q.
Weinberger, Eds. Curran Associates, Inc., 2012, pp. 1529–1537.

[31] M. Luo, L. Zhang, F. Nie, X. Chang, B. Qian, and Q. Zheng, “Adaptive
semi-supervised learning with discriminative least squares regression,”
in Proceedings of the Twenty-Sixth International Joint Conference
on Artificial Intelligence, IJCAI-17, 2017, pp. 2421–2427. [Online].
Available: https://doi.org/10.24963/ijcai.2017/337

[32] J. Zhou, J. Chen, and J. Ye, “Malsar: Multi-task learning via structural
regularization,” Arizona State University, 2011.

[33] G. Chen, Y. Song, F. Wang, and C. Zhang, “Semi-supervised multi-label
learning by solving a sylvester equation,” in Proceedings of the 2008
SIAM International Conference on Data Mining. SIAM, 2008, pp.
410–419.

[34] E. S. Xioufis, W. Groves, G. Tsoumakas, and I. P. Vlahavas, “Multi-
label classification methods for multi-target regression,” CoRR, vol.
abs/1211.6581, 2012. [Online]. Available: http://arxiv.org/abs/1211.6581

[35] V. Kraus, S.-E. Benkabou, K. Benabdeslem, and F. Cherqui, “An
improved laplacian semi-supervised regression,” in 2018 IEEE 30th
International Conference on Tools with Artificial Intelligence (ICTAI).
Volos, Greece: IEEE, Nov. 2018, pp. 564–570.

[36] H. Q. Minh and V. Sindhwani, “Vector-valued manifold regularization.”
in ICML. Citeseer, 2011, pp. 57–64.

[37] T. Evgeniou and M. Pontil, “Regularized multi–task learning,” in
Proceedings of the tenth ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2004, pp. 109–117.

[38] Y. NESTEROV, “Gradient methods for minimizing composite func-
tions,” Université catholique de Louvain, Center for Operations Re-
search and Econometrics (CORE), CORE Discussion Papers, vol. 140,
01 2007.

[39] S. Vijayakumar and S. Schaal, “Locally weighted projection regression:
An o (n) algorithm for incremental real time learning in high dimensional
space,” in Proceedings of the Seventeenth International Conference on
Machine Learning (ICML 2000), vol. 1, 2000, pp. 288–293.

[40] J. Bergstra and Y. Bengio, “Random search for hyper-parameter opti-
mization,” Journal of Machine Learning Research, vol. 13, no. Feb, pp.
281–305, 2012.

[41] A. Jalali, S. Sanghavi, C. Ruan, and P. K. Ravikumar, “A
dirty model for multi-task learning,” in Advances in Neural
Information Processing Systems 23, J. D. Lafferty, C. K. I.
Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta, Eds.
Curran Associates, Inc., 2010, pp. 964–972. [Online]. Available: http:
//papers.nips.cc/paper/4125-a-dirty-model-for-multi-task-learning.pdf

[42] S. Ji and J. Ye, “An accelerated gradient method for trace norm mini-
mization,” in Proceedings of the 26th annual international conference
on machine learning. ACM, 2009, pp. 457–464.

[43] J. Zhou, J. Chen, and J. Ye, “Clustered multi-task learning via
alternating structure optimization,” in Advances in Neural Information
Processing Systems 24, J. Shawe-Taylor, R. S. Zemel, P. L.
Bartlett, F. Pereira, and K. Q. Weinberger, Eds. Curran Associates,
Inc., 2011, pp. 702–710. [Online]. Available: http://papers.nips.cc/paper/
4292-clustered-multi-task-learning-via-alternating-structure-optimization.
pdf

[44] J. Demšar, “Statistical comparisons of classifiers over multiple data sets,”
Journal of Machine learning research, vol. 7, no. Jan, pp. 1–30, 2006.

http://dl.acm.org/citation.cfm?id=1642293.1642439
http://arxiv.org/abs/1206.6412
https://hal.archives-ouvertes.fr/hal-01234346
https://hal.archives-ouvertes.fr/hal-01234346
http://onlinelibrary.wiley.com/doi/10.1002/widm.1157/full
http://arxiv.org/abs/1211.6581
https://doi.org/10.1109/TNNLS.2017.2785403
https://doi.org/10.24963/ijcai.2017/337
http://arxiv.org/abs/1211.6581
http://papers.nips.cc/paper/4125-a-dirty-model-for-multi-task-learning.pdf
http://papers.nips.cc/paper/4125-a-dirty-model-for-multi-task-learning.pdf
http://papers.nips.cc/paper/4292-clustered-multi-task-learning-via-alternating-structure-optimization.pdf
http://papers.nips.cc/paper/4292-clustered-multi-task-learning-via-alternating-structure-optimization.pdf
http://papers.nips.cc/paper/4292-clustered-multi-task-learning-via-alternating-structure-optimization.pdf

