
RAD: Reinforced Attention Decoder Model On
Question Generation

Xin Li, Zhen Huang, Feng Liu∗, Changjian Wang, Minghao Hu, Shiyi Xu, Yuxing Peng
Science and Technology on Parallel and Distributed Laboratory, National University of Defense Technology

Changsha, China
{lx, huangzhen, richardlf, wangchangjian, xushiyi18}@nudt.edu.cn; huminghao16@gmail.com; pengyuxing@aliyun.com

Abstract—Question Generation (QG) aims to construct ques-
tions from given text automatically. Recently, QG has received
widely concerned. The mainstream method is still based on the
fixed sequence generation model of Seq2Seq model, and few
people consider the influence of generation order in the result.
In this paper, we present a novel Reinforced Attention Decoder
Neural Network for the QA-SRL task. First, our model draws on
the idea of the reinforcement learning algorithm with baseline,
which is using the accuracy of each slot and sentence as the
reward, updating the Policy Network to predict the optimal
generation order. Second, we apply the Attention mechanism
on the baseline to get more relevant information about the
entire sentence. Addition experiments explore that distilling
knowledge from RAD (the teacher) model to guide RAD-Reborn
model (the student) training can achieve better performance.
Extensive experiments on QA-SRL Bank 2.0 show that our model
outperforms previous systems of all of the evaluation metrics. In
particular, the metric EM (Exact Match) increased significantly
by over 3%.

Index Terms—question generation, reinforcement learning,
semantic role labeling, reborn network, encoder-decoder

I. INTRODUCTION

Question generation aims to construct natural questions
from a given sentence or paragraph automatically. With the
evolution of large-scale QA datasets in recent years, current
QA models can even outperform humans [1]. For example
on SQuAD [2], a common QA benchmark dataset, BERT-
based models [3] even beat human’s performance; TriviaQA
[4], a large-scale QA dataset, on which human’s performance
has been reached. In all these cases, very large amounts of
training data are available. However, a basic task to construct
such large-scale dataset is to generate natural questions.

Generally, there are following ways to generate questions
in datasets:

• Crowdsource annotation: To construct SQuAD [2], the
annotators need to read the context and then annotate the
question corresponding to the entity in the text individu-
ally. However, they suffer from some problems, such as
low generation speed, high cost and great difference in
the process.

• Rule-based generator: The success of these approaches
depends on the existence of well-designed rules for

∗Corresponding author.

declarative-to-interrogative sentence transformation, typi-
cally based on deep linguistic knowledge. However, such
methods have been proven empirically weak for QA [5].

• Neural-based generator: The neural-based approaches
are typically end-to-end models which generate question
automatically by Seq2Seq [6] mode. The attention mech-
anism [7] is applied to help decoder pay attention to the
most relevant parts of the input sentence while generating
a question. The neural model then uses the attention
mechanism as a default [8] [9] [10]. Besides, almost all
neural generation models’ decoder commonly assumes
a left-to-right generation order. Therefore, in the gener-
ation process, the first few tokens are definitely more
accurate than the latter [11]. To alleviate the problem,
several researchers [11] [12] [13] use the synchronous
and asynchronous bidirectional decoding Seq2Seq model
in machine translation to improve performance. In fact,
because of the imbalanced distribution of data, some slots
are difficult to predict. If we put such slots in the back
of prediction sequence, it will further worsen the result.
Gu et al. (2019) [14] shows that changing the order of
training has an effective on the generation.

TABLE I
AN EXAMPLE OF QA-SRL

Lee went home happily in the afternoon
answer question

Lee Who went somewhere?
home Where did someone go?

happily How did someone go somewhere?
in the afternoon When did someone go somewhere?

In this paper, we focus on two important issues for question
generation: (1) How to find a relatively good order to generate
questions to reduce the impact of error accumulation? (2) How
to make full use of the information of the whole sentence in
the generation process?

To overcome the challenges, we proposed a Reinforced
Attention Decoder Model On Question Generation, which is
referred to as RAD. Then we carry out several experiments on
two subsets of QA-SRL, which is a large-scale QA [15] dataset
constructed by model. The QG baseline model utilized the
detected argument span for a predicate to generate questions

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

to label the semantic relationship in QA-SRL [15]. As shown
in TABLE I, the question starts with wh-words (Who, What,
Where, What, How, etc.). Each sentence contains at least one
verb predicate, and the answers are phrases in the sentence.
Evaluations show that our model achieves 52.0%, 68.2% and
85.1% on Exact Match (EM), Partial Match (PM) and Slot-
level accuracy (SA), all of which are better than the strong
baseline in [15].

Our main contributions are listed as follows:
• We propose a reinforced reordering policy to learn the op-

timum sequence generation order. We sample the action
with the highest score as the output and use the distributed
sampling order as the baseline, take the difference be-
tween the two as the total reward, and update the Policy
Network to predict the optimal generation order.

• Moreover, we utilize Born Again neural network [16]
(RAD-Reborn) that distill knowledge from teacher net-
work to retrain the student network for further improve
the performance.

• We integrate attention mechanism in the decoding stage,
make the model focus on finding useful information more
significantly related to the current output in the input
context, combine the information of the sentence, the
answer and the generated word, to improve the quality
of question generation.

This paper is organized as follows. We discuss related work
in section II, describe the details of our models in Section III,
especially on the Attention and Reinforced Reordering Policy
Mechanism. Then, we present the evaluation results as well
as a detailed analysis in Section IV. Finally, we conclude the
paper in Section V.

II. RELATED WORK

A. Question Generation Method

Recently, driven by advances in deep learning, “neural”
techniques have become the mainstream. Du et al. (2017) [5]
pioneered the first NQG model using an attention Seq2Seq
model [7], which fed a sentence into a RNN-based encoder,
and generated a question about the sentence through a decoder.
Some researchers treated the answer’s position as an extra
input feature [17] [18] or encoded the answer with a separate
RNN [9] [19]. A few works [9] [20] considered question word
generation separately in model design. Zhao et al. (2018) [18]
proposed a gated self-attention encoder to refine the encoded
context by fusing important information with the context’s
self-representation properly, which has achieved state-of-the-
art result on SQuAD. Relevant QG work [21] [22] have
adopted policy gradient methods to add task specific rewards
(such as BLEU or ROUGE) to the original objective. This
helped to diversify the questions generated, as the model
learned to distribute probability mass among equivalent ex-
pressions rather than the single ground truth question.

B. Sequence Order

Seq2Seq models suffer from a weakness, which is the prob-
lem of unbalanced outputs (the prefixes are better predicted

0 1 Zhou 0

1

Attention

� �! �" �# �$�%�&

Policy

Net

Decoder

Encoder

sentenceanswer

2 3 4 5 6 7

loves 1 diving 0

Fig. 1. Overall model

than the suffixes). It is mainly caused by the accumulation
of errors [11]. Recently, several researchers have proposed
to adjusting the order of prediction to alleviate the problem
of error accumulation. Zhang et al. (2018) [23] presented
an asynchronous bidirectional decoding algorithm for NMT,
which extended the conventional encoder-decoder framework
by utilizing a backward decoder. Zhou et al. (2019) [13]
proposed a novel framework (SB-NMT) that utilized a single
decoder to generate target sentences bidirectionally, simultane-
ously and interactively. Gu et al. (2019) [14] proposed to train
the generated sequence according to the self-adaptive sequence
of the model.

Differently, our method aims to find an optimal order for
prediction using reinforcement learning.

III. MODEL

Formally, we define the task as follows. Given a sentence
X = {x1, x2, · · · , xn} and the answers sij ∈ {(i, j)|i, j ∈
[0, n], j > i}, where S is the set of sij , the Question
Generation model aims to generate a set of questions Q =
{q1, q2, . . . , qm} for each span in S, where m is the size
of S. Specifically, the qi has a fixed syntactic structure of
seven slots, each with a separate vocabulary. Then the model
can be designed to predict the joint distribution p(y|X, sij)
over words y = (y1, . . . , y7) for question slots, which can be

trained by minimizing the negative log-likelihood of golden
slot values. As shown in Fig.1, a RNN encoder-decoder
architecture [7] is utilized, where we introduce the details
of encoder in section III-A and decoder in section III-B.
Specifically, we detailed illustrate (1) the global attention
mechanism [24] to make the model focus on certain elements
of the input in subsection III-B1, (2) the reinforced reordering
policy to find an optimal order for prediction in subsection
III-B2 and (3) reborn training mechanism to train a better
model in subsection III-C.

A. Encoder

The encoding method is implemented as [25] proposed.
We start with an input X = {x1, . . . , xn}, where the rep-
resentation xi at each time step is a concatenation of the
token embedding wi and an embedded binary feature, which
indicates whether xi is the predicate or not. We then compute
the output representation H = BILSTM(X) using a stacked
alternating LSTM [26] with highway connections [27] and
recurrent dropout [28]. And the answer is the concatenation of
the hidden states of BILSTM at each endpoint. For example,
the answer representation Ansij of sij is

Ansij = [H[i], H[j]] (1)

B. Decoder

1) Attention: In order to take full advantage of the encoded
information of the sentence when generating tokens at each
step, we use the global attention mechanism [7] to focus on
the overall information of the sentence, not only the answer
[15]. As shown in Fig.2, we at first use the match function to
calculate the matching score eit of the encoding vector of each
token hi and decoder’s hidden state at the previous step ht−1,
and then use the softmax function to normalize the score eit
to an attention value αit. Taking αit as the weight, we sum
the weighted output of encoder H and calculate the attention
vector attt at step t. Next, the decoder uses the output of the
previous RNN unit ht−1, the answer representation Ansij ,
and the attention vector attt to get the output at step t ht as
follows.

At each slot t, we apply L layers of LSTM cells to obtain
ht:

ht, ct = LSTML(ht−1, ct−1) (2)

where the ct is the cell state that holds the long term state.
Specifically, we use the span representation Ansij , the

output of the previous LSTM ht−1 and the attention vector
attt−1 to update LSTM unit:

hiddent−1 = Linear(ht−1) (3)

ht−1 = [hiddent−1 : Ansij : attt−1] (4)

where hiddent−1 is the vector obtained by dimensional trans-
fer function Linear(). [:] is concatenation operation.

Here the global attention mechanism is calculated by the
Eq.5 at step t:

attt =
∑|X|
i=1 αitHi (5)

αit =
exp(eit)∑|X|
j=1 exp(ejt)

(6)

eit = match(Hi, ht−1) (7)

where Hi is the i-th output of encoder, αit is the attention
weight of step t with Hi; eit is the match value using the
match() function, here we use the dot product to calculate
match value. The initial state of Decoder h0 is the average
sum of all H .

2) Reinforced Reordering Policy: Many current NQG mod-
els follow the Seq2Seq architecture. The usual decoding
process is to generate tokens one by one according to the
order of sentences. Decoding step can be defined as finding
the question y that maximizes the conditional likelihood given
the passage X and the answer S:

y = argmax
y

P (y|X,S) (8)

= argmax
y

m∑
t=1

P (yt|X,S, y < t) (9)

where m is the length of generated questions.
Because of error propagation, the prediction of suffixes are

worse than the prefixes. If we put the slots of poor prediction
results behind the prediction sequence, it will further lead
to the deterioration of the prediction results. Here, in order
to alleviate the problem above, we propose Reinforced Re-
ordering Policy (RRP in short) mechanism to find an optimal
order for prediction. As shown in Fig.3, we model the Policy
Network using a fully connected network. And the sentence
accuracy EM and each slot accuracy SA are taken as reward
to update the Policy Network. Through multiple sampling,
the order’s distribution p(A|θ) converges to obtain an optimal
generation order to generate questions, to reduce the influence
of explosion bias during training. So, the model aims to find
the order A = [a1, a2, . . . , am] to generate questions:

y = argmax
y

∑m
t=1 P (yAt |X,S, y < t) (10)

Specifically, we use the policy gradient REINFORCE with
baseline algorithm [29] to update the Policy Network. Here,
we define the reward R(A) when the order is A:

R(A) = EMA +
∑m
i=1 γ

m−iSAAi (11)

Here γ is the loss hyper-parameter. EMA denotes the sentence
accuracy in order A, SAAi is the accuracy of i − th slot in
order A. The function is designed to encourage low accuracy
slots to be placed in the initial prediction to reduce the impact
of explosion bias on them. The training objective J(θ) is to
minimize the negative expected reward by

J(θ) = −EAavpθ(A)[R(A
a)−R(As)] (12)

Aa = argmax(p(A|θ)) (13)

As = Sample(p(A|θ)) (14)

where we abbreviate the policy distribution p(A|θ) as pθ(A).
Aa is the order sampled using argmax function, and As is

�� � �! �"

Wh Aux Subj Verb Obj Prep Miscℎ

what does somebody love

Encoder Output :

��� ℎ "#$

Fig. 2. Attention Mechanism

Policy Net

Wh Aux Subj Verb Obj Prep Misc

�� ��! ��" ��# ��$ ��% ��& EM

Reward

Verb Subj Aux Prep Misc Obj Obj2

Fig. 3. Reinforced Reordering Policy

obtained by sampling according to the distribution p(A|θ).
We use Eq.11 to calculate their reward R(Aa) and R(As).
Such approach is known as the self-critical sequence training
(SCST) [30], which is first used in image caption. It can be
used to normalize the reward and reduce variances [31].

According to the REINFORCE algorithm [29], the gradient
∇J(θ) can be computed as:

∇θJ(θ) = −EAavpθ(A)[(R(A
a)− b)∇θlogpθ(Aa)]

≈ −(R(Aa)−R(As))∇θlogpθ(Aa) (15)

where b is baseline to reduce variances. Here, we take the
sampled As as b. In this case, this action is encouraged if Aa

is superior to the As.
The output distribution at slot t is computed via the final

output vector ht:

p(yt|X, sij) ∝ exp(wTkMLP (ht) + dt) (16)

where the dt is bias at step t.

C. Reborn Training

Reinforcement learning is to obtain a good strategy by
constantly exploring and updating the strategy network with
feedback information. During the experiment, we found that
the convergence curve of the model would jitter under the
influence of multiple samples, thus affecting the performance
of the model, the detail in subsection IV-G. Combined with
knowledge distillation [32], Furlanello et al. (2018) [16] pro-
posed Born-Again neural networks: transferring “knowledge”
from one machine learning model (the teacher) to another (the
student), we train students parameterized identically to their
teachers. Experiments show that the performance of the Born-
Again network (student) exceeds that of the teacher network.

Inspired by [16], we propose the Reborn Training Mecha-
nism: after the teacher network convergence, we re-initialize a
new student network (a student network with the same number
of parameters as the teacher network), retrain the student
model by using the convergence results of teacher model. As
shown in Fig.4, we use the order which is converged by teacher

Order =[Verb , Subj , Aux , Prep , Misc , Wh , Obj]

Decoder

Y

X

Decoder

RRP

Wh Aux Subj Verb Obj Prep Misc

WhAuxSubjVerb ObjPrep Misc

Encoder

Encoder

Teacher

Student

Fig. 4. Reborn Training Mechanism.

model (RAD) to train the student network (without RRP), so
as to reduce the performance loss due to sampling.

IV. EXPERIMENT

In this section, we illustrate the dataset in subsection IV-A,
the implementation detail in subsection IV-B, the evaluation
metrics in subsection IV-C, the overall results in subsection
IV-D, the ablation studies in subsection IV-E. In addition, we
analysis the effectiveness of Reinforced Reordering Policy and
the Reborn Training Mechanism in subsection IV-F and IV-G.
Finally, we make the error analysis in subsection IV-H.

A. Dataset

We focus on the QA-SRL dataset [15] to train and evaluate
our model. The corpus we experimented, QA-SRL Bank 2.0,
consists of over 250,000 question-answer pairs for over 64,000
sentences across 3 domains and is gathered with a new crowd-
sourcing scheme that we show has high precision and good
recall at modest cost. In addition, we also test our model on
the higher-density version dataset. As shown in table II, we
list the details of the train, dev and test sets. There are 2 QA
pairs on average annotated for each sentence in Orig set, and
4.8 QA pairs in Dense set.

TABLE II
STATISTICS FOR DATASETS.

Train Dev Test
Orig Dense Orig Dense

Instances 90,265 16,601 5,837 19,445 5,768
Verbs 95,285 17,581 5,886 20,613 5,844

QA pairs 189,554 34,053 28,161 39,887 26,043

B. Implementation Detail

We evaluate the RAD model by running the following
setting. We use the Adam optimizer for training [33]. The
initial learning rate is 0.01, and halved whenever meeting a
bad iteration. The batch size is 80, and a dropout rate of 0.3
is used to prevent overfitting. The model uses ELMo deep
contextualized word representations. The encoder hidden size

is 300, the decoder hidden size is 200, and the loss hyper-
parameter γ is 0.7.

C. Evaluation Metrics

Three evaluation metrics [15] are used: (1) Exact Match
accuracy (EM). EM denotes the accuracy at which the pre-
dicted question exactly matches the golden question; (2) Partial
Match accuracy (PM). PM is a relaxed match that considers
only question word (WH), subject (SBJ), object (OBJ) and
Miscellaneous (Misc) slots; (3) Slot-level accuracy (SA). SA
is the average accuracy of all question slots. Among them,
EM is the main metric. Since EM is the probability that all
slots match, approximately the multiplications of the accuracy
of all slots, it is difficult to improve.

D. Overall Result

All models are trained on the origin training set of QA-SRL,
and evaluated on the origin and dense development set. Here,
we use the model in [15] as the baseline for comparing results.
Baseline uses a 4-layer LSTM to encode a sentence, and a 4-
layer LSTM to generate questions. As shown in Table III, all
evaluation metrics of RAD are superior to baseline and RAD-
Reborn achieves the best performance. As we can see, the EM
value is significantly improved by more than 3% in both two
development sets, indicating that the order RAD learned can
improve the decoding performance. In particular, our model
can improve Sentence Accuracy (EM) effectively. The RAD-
Reborn model, which is retrained on the order that learned
from RAD, achieves the best performance. It demonstrates
that Reborn Training is effective.

TABLE III
PERFORMANCE COMPARISON OF BASELINE, RAD AND RAD-REBORN ON

THE DEVELOPMENT SETS.

Model Orig Dense
EM PM SA EM PM SA

Baseline [15] 48.1% 66.7% 83.9% 41.6% 59.1% 81.9%
RAD 51.3% 67.4% 84.8% 42.9% 59.0% 82.0%

RAD-Reborn 52.0% 68.2% 85.1% 44.1% 59.7% 82.5%

E. Ablation Studies

The contributions of each component of our model are
shown in Table IV.

1) Attention Mechanism: As can be seen from Ablation
(1), all the metrics get worse without Attention Mechanism.
In comparison with (2), (3), removing Attention also lead to
the performance degradation in the same case. It indicates that
the Attention Mechanism is effective in this task.

In addition, we explored the effect of decoding layer L
on model performance. As shown in Fig.5, we notice that as
the number of layers increases, the performance of the model
decreases. We argue that increasing the number of layers in
the decoding process will cause the attenuation of the decoded
information. One layer is the best choice.

TABLE IV
ABLATION STUDY ON ORIG DEV SET.

Test on Orig EM PM SA ∆EM ∆PM ∆SA
(0) RAD(ours) 51.3 67.8 84.8 - - -
(1) - Attention 51.0 67.6 84.8 -0.3 -0.2 -
(2) - RRP 49.9 67.7 84.7 -1.4 -0.1 -0.1
(3) - RRP - Attention 49.1 66.5 83.9 -2.2 -0.9 -0.9

Fig. 5. Effect of number of decoding layers on performance.

2) Reinforced Reordering Policy: Ablation (2) shows the
effectiveness of RRP. We notice that the EM value drops by
1.4% when we remove RRP, and the other metrics have not
changed much. It proves that adjusting the prediction order has
a greater impact on the EM value. It shows that training from
left to right is not the best option. Through dynamic learning
with our approach, a superior order can be obtained to train a
better model.

F. Effectiveness of RRP

We do further experiment to demonstrate the effectiveness
of RAD. We list the order of the models’ final predictions
(Baseline and RAD), as shown in table V. Meanwhile, we
obtain the accuracy of each slot when it converges to the
optimal order, as shown in table VI.

TABLE V
THE ORDER MODELS LEARNED.

Model Order
Baseline [15] ‘wh’, ‘aux’, ‘subj’, ‘verb’, ‘obj’, ‘prep’, ‘obj2’

RAD ‘verb’, ‘wh’, ‘obj2’, ‘aux’, ‘subj’, ‘obj’, ‘prep’

As can be seen from table VI, except for “wh” and “obj”, the
accuracy of all other slots has been improved, among which
the accuracy of “verb” has been increased by 4.2%. Combining
table V and table VI and considering the characteristics of
Seq2Seq model, we wonder whether the model would get
better results by putting the less accurate slots in front. Is
it because the “wh” and “obj” positions moved back that the
performance did not improve? To verify the conjecture, we
design a Heuristic Algorithm: in the validation step after one

TABLE VI
THE SLOT ACCURACY OF EACH SLOT.

Baseline [15](%) RAD(%) 4(%)
wh 91.1 90.8 -0.3
aux 74.0 74.5 +0.5
subj 88.1 88.2 +0.1
verb 69.9 74.1 +4.2
obj 90.8 90.8 -
prep 86.8 87.2 +0.4
obj2 86.8 87.9 +1.1

epoch, we adjust the training order: put the slots with low
accuracy in front of them for training manually, and after
several adjustments, the model converges to the final order.
The order is: [′verb′,′ aux′,′ prep′,′ obj2′,′ subj′,′ obj′,′ wh′]
The experimental results are shown in table VII, the result of
Heuristic Algorithm is indeed better than the baseline model,
but not as good as the result obtained by RAD. We can see
that the order which RAD produced is not always from low
to high accuracy. By comparing the vocabulary of every slot,
we found that the vocabulary size of each slot was different,
which would make the prediction difficulty varies. So, we use
the accuracy of each slot and sentence accuracy to learn an
order dynamically is a better way.

TABLE VII
PERFORMANCE COMPARISON OF OUR MODELS ON THE ORIGIN DEV SET.

Test on Orig EM PM SA
Baseline [15] 48.1 66.7 83.9
Heuristic Algorithm(ours) 51.0 67.3 84.7
RAD(ours) 51.3 67.4 84.8
RAD+Reborn(ours) 52.0 68.2 85.1

G. The Reborn

As we can see from table VII, the RAD-Reborn achieves
the best performance. In order to explore the reasons, we
use the best order of learning from the teacher network
(RAD) to train the student network (RAD-Reborn). (a) in
Fig.6 shows the curve of EM value as one of the rewards
changing with sampling steps at the beginning of the training
of the two models. (b) is the comparison curve of the EM
validation result of the two models after each epoch. From
(a), we can see that the RAD convergence curve is jittering
during multiple sampling, and the model does not begin to
converge rapidly until the Policy Net samples 80-100 times.
This indicates that the sampling process causes the model to
fail to converge to the best performance, and adjusting the

training mode of the network model constantly is detrimental
to performance. RAD-Reborn achieves best performance so
far. It proves that Reborn Training Mechanism, which use the
knowledge distillation from teacher network (RAD) to train
student network (RAD-Reborn), is effective.

(a) Training

(b) Validating

Fig. 6. The EM curves during training and validating.

H. Error Analysis

In table VI, we notice that 5 slots (wh, subj, obj, prep,
obj2) for accuracy above 86%, but 2 slots (aux, verb) below
74%. When we use Heuristic Algorithm (putting ‘verb’ and
‘aux’ in front to train), the improvements of ‘verb’ and ‘aux’
are still not significant, the verb’s generation performance is
the worst. In addition to the model itself, we attribute this to
differences in the difficulty of generating each slot token due
to the characteristics of the datasets.

Fig.7 shows the distribution of ‘verb’ and ‘aux’ in train and
dev sets. The first seven types of ‘verb’ make up more than
98% of all kinds, and the first nine of ‘aux’ occupy more than
94%. We argue that the wide variety and unbalance distribution
of dataset result in their poor performance. In addition, since
the model does not consider the tense of slot ‘verb’ during
encoding, it is more difficult to predict ‘verb’ slot.

(a) ‘verb’

(b) ‘aux’

Fig. 7. The distribution of ‘verb’ and ‘aux’ in train and dev sets.

V. CONCLUSION

We propose the Reinforced Attention Decoder, a generation
model combining reinforcement learning algorithm and atten-
tion mechanism. We have three main contributions. First, we
improve the error accumulation problem of Seq2Seq model by
proposing a reinforced reordering policy to learn the optimum
sequence generation order. Second, we propose the Reborn
Training Mechanism that distill knowledge from teacher net-
work to retrain the student network for further improve the
performance. Third, we integrate attention mechanism in the
decoding stage, make the model focus on finding useful
information more significantly related to the current output in
the input context. Our model combines the information of the
sentence, the answer and the generated word to improve the
performance. Our model outperforms the existing approaches
by more than 3% on QA-SRL dataset. We make the error
analysis and find that the tense information was helpful for
verb prediction. We will work on this issue in the future.

REFERENCES

[1] Z. Huang, S. Xu, M. Hu, X. Wang, J. Qiu, Y. Fu, Y. Zhao, Y. Peng, and
C. Wang, “Recent trends in deep learning based open-domain textual
question answering systems,” IEEE Access, 2020.

[2] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “Squad: 100,000+
questions for machine comprehension of text,” arXiv preprint
arXiv:1606.05250, 2016.

[3] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[4] M. Joshi, E. Choi, D. S. Weld, and L. Zettlemoyer, “Triviaqa: A large
scale distantly supervised challenge dataset for reading comprehension,”
arXiv preprint arXiv:1705.03551, 2017.

[5] X. Du, J. Shao, and C. Cardie, “Learning to ask: Neural question gen-
eration for reading comprehension,” arXiv preprint arXiv:1705.00106,
2017.

[6] I. Sutskever, O. Vinyals, and Q. Le, “Sequence to sequence learning
with neural networks,” Advances in NIPS, 2014.

[7] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” arXiv preprint arXiv:1409.0473,
2014.

[8] Z. Lin, M. Feng, C. N. d. Santos, M. Yu, B. Xiang, B. Zhou, and
Y. Bengio, “A structured self-attentive sentence embedding,” arXiv
preprint arXiv:1703.03130, 2017.

[9] N. Duan, D. Tang, P. Chen, and M. Zhou, “Question generation
for question answering,” in Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing, 2017, pp. 866–
874.

[10] V. Harrison and M. Walker, “Neural generation of diverse questions
using answer focus, contextual and linguistic features,” arXiv preprint
arXiv:1809.02637, 2018.

[11] L. Liu, M. Utiyama, A. Finch, and E. Sumita, “Agreement on target-
bidirectional neural machine translation,” in Proceedings of the 2016
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, 2016, pp.
411–416.

[12] R. Sennrich, B. Haddow, and A. Birch, “Edinburgh neural machine
translation systems for wmt 16,” arXiv preprint arXiv:1606.02891, 2016.

[13] L. Zhou, J. Zhang, and C. Zong, “Synchronous bidirectional neural
machine translation,” Transactions of the Association for Computational
Linguistics, vol. 7, pp. 91–105, 2019.

[14] J. Gu, Q. Liu, and K. Cho, “Insertion-based decoding with automatically
inferred generation order,” arXiv preprint arXiv:1902.01370, 2019.

[15] N. FitzGerald, J. Michael, L. He, and L. Zettlemoyer, “Large-scale qa-srl
parsing,” arXiv preprint arXiv:1805.05377, 2018.

[16] T. Furlanello, Z. C. Lipton, M. Tschannen, L. Itti, and A. Anandkumar,
“Born again neural networks,” arXiv preprint arXiv:1805.04770, 2018.

[17] Q. Zhou, N. Yang, F. Wei, C. Tan, H. Bao, and M. Zhou, “Neural
question generation from text: A preliminary study,” in National CCF
Conference on Natural Language Processing and Chinese Computing.
Springer, 2017, pp. 662–671.

[18] Y. Zhao, X. Ni, Y. Ding, and Q. Ke, “Paragraph-level neural question
generation with maxout pointer and gated self-attention networks,” in
Proceedings of the 2018 Conference on Empirical Methods in Natural
Language Processing, 2018, pp. 3901–3910.

[19] Y. Kim, H. Lee, J. Shin, and K. Jung, “Improving neural question gener-
ation using answer separation,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 33, 2019, pp. 6602–6609.

[20] X. Sun, J. Liu, Y. Lyu, W. He, Y. Ma, and S. Wang, “Answer-focused and
position-aware neural question generation,” in Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing,
2018, pp. 3930–3939.

[21] X. Yuan, T. Wang, C. Gulcehre, A. Sordoni, P. Bachman, S. Subra-
manian, S. Zhang, and A. Trischler, “Machine comprehension by text-
to-text neural question generation,” arXiv preprint arXiv:1705.02012,
2017.

[22] V. Kumar, K. Boorla, Y. Meena, G. Ramakrishnan, and Y.-F. Li,
“Automating reading comprehension by generating question and answer
pairs,” in Pacific-Asia Conference on Knowledge Discovery and Data
Mining. Springer, 2018, pp. 335–348.

[23] X. Zhang, J. Su, Y. Qin, Y. Liu, R. Ji, and H. Wang, “Asynchronous
bidirectional decoding for neural machine translation,” in Thirty-Second
AAAI Conference on Artificial Intelligence, 2018.

[24] M.-T. Luong, H. Pham, and C. D. Manning, “Effective ap-
proaches to attention-based neural machine translation,” arXiv preprint
arXiv:1508.04025, 2015.

[25] L. He, K. Lee, M. Lewis, and L. Zettlemoyer, “Deep semantic role label-
ing: What works and what’s next,” in Proceedings of the 55th Annual

Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), 2017, pp. 473–483.

[26] J. Zhou and W. Xu, “End-to-end learning of semantic role labeling
using recurrent neural networks,” in Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing (Volume
1: Long Papers), 2015, pp. 1127–1137.

[27] R. K. Srivastava, K. Greff, and J. Schmidhuber, “Training very deep
networks,” in Advances in neural information processing systems, 2015,
pp. 2377–2385.

[28] Y. Gal and Z. Ghahramani, “A theoretically grounded application of
dropout in recurrent neural networks,” in Advances in neural information
processing systems, 2016, pp. 1019–1027.

[29] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[30] S. J. Rennie, E. Marcheret, Y. Mroueh, J. Ross, and V. Goel, “Self-
critical sequence training for image captioning,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2017,
pp. 7008–7024.

[31] M. Hu, Y. Peng, Z. Huang, X. Qiu, F. Wei, and M. Zhou, “Reinforced
mnemonic reader for machine reading comprehension,” arXiv preprint
arXiv:1705.02798, 2017.

[32] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” arXiv preprint arXiv:1503.02531, 2015.

[33] M. Tang, L. Qiao, Z. Huang, X. Liu, Y. Peng, and X. Liu, “Accelerating
sgd using flexible variance reduction on large-scale datasets,” Neural
Computing and Applications, pp. 1–12, 2019.

