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Abstract—Music recommendation methods predict users’ mu-
sic preference primarily based on historical ratings. Meanwhile,
manifold personal factors of users are also important for the
problem, and research efforts have been made to improve the rec-
ommendation performance with auxiliary user information. As
an important indicator of users’ personal traits and states, the nu-
merous social media content (e.g., texts, images and short videos),
however, is still hardly exploited. In this work, we systematically
study the utilization of multimodal social media content for music
recommendation. We define groups of both targeted handcrafted
features and generic deep features for each modality, and further
propose an Attentive Multimodal Autoencoder approach (AMAE)
to learn cross-modal latent representations from the extracted
features. Attention mechanism is also employed to integrate
users’ global and contextual music preference with alterable
weights. Experiments demonstrate remarkable improvement of
recommendation performance (+2.40% in Hit Ratio and +3.30%
in NDCG), manifesting the effectiveness of our AMAE approach,
as well as the significance of incorporating social media content
data in music recommendation.

I. INTRODUCTION

In the era of information explosion, huge amounts of
digital music are accessible online, and it can be increasingly
laborious for users to pick music tracks of interest from the
vast music library. Hence, music recommendation has gained
lots of attention, which may model users’ preference, and
efficiently provide the music that satisfies users’ tastes. For
recommendation systems, collaborative filtering (CF) is widely
used, which utilizes users’ historical interactions [1]. And as
the most popular CF approach, matrix factorization (MF) [2],
which learns a latent space to represent users and items, has
become a standard model for recommendation. However, such
methods may suffer from the data sparsity problem, leading
to unsatisfactory performance.

Music has always been closely related to people’s daily
lives. Social and psychological studies show that music lis-
tening is related to manifold long and short-term factors of
people, including interpersonal relationship, social identity,
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mood, personality, etc. [3], [4]. Research efforts have been
made to enhance music recommendation with incorporation
of users’ auxiliary information, involving demographics, geo-
locations, daily activities, social relationships, etc. [5]–[8].
While improvement has been achieved, these works only
consider partial information, lacking comprehensive modeling
of users’ states.

Nowadays, social media is extremely prevalent. According
to Global Web Index, digital consumers spend an average
of 2.4 hours on social networks everyday [9]. Users often
share their daily activities and thoughts through social media
platforms, covering almost every topic and domain. The mul-
timodal user-generated content (UGC, e.g., texts, images, and
short videos) may imply their personal traits and states, based
on which analysis of social media users’ personality, emotion
and mental health states has achieved success [10]–[12].
Furthermore, the UGC can hopefully reflect music preference,
even if it is not directly related to music. However, so far, the
utilization of social media content for music recommendation
is still in its infancy, which is limited to only one-sided features
extracted from the textual modality [13]–[15].

This work focuses on the utilization of multimodal social
media content for music recommendation. It is nontrivial
owing to the following challenges: 1) Since the social media
content may convey intricate connotations regarding music
preference, what features should be extracted for each modal-
ity? 2) For the extracted multimodal low-level features, how
to associate them with music tracks while capturing the cross-
modal correlations? 3) Since music preference can be impacted
by both global and contextual factors, how to combine them
while distinguishing the dominating ones?

In this paper, we systematically study the problem, and
deal with the challenges respectively: 1) For the content of
each modality, we refer to relevant psychological researches,
and define groups of handcrafted features targeted on music
recommendation. Generic deep features are also analyzed to
capture the implicit patterns and off-topic information. 2)
We propose an Attentive Multimodal Autoencoder approach
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(AMAE), which processes the extracted content features with
autoencoders, and employs cross-modal loss to guarantee both
the consistence and complementarity among representations of
multi-modalities. 3) We devise an attention module to adap-
tively estimate the weights of global and contextual factors
with consideration of the user and the music embedding. We
combine our AMAE approach with MF model for the final
prediction.

To verify our scheme, we construct a WeChat1 dataset of
163,329 users, containing their 17,826,932 music interactions,
and 45,276,160 tweets of multi-modalities. The dataset is
anonymized and desensitized by Tencent, and specific users
cannot be located. Extensive experiments are conducted, where
our approach significantly improves the MF models (+2.40%
in HR and +3.31% in NDCG), and outperforms the existing
methods that utilize the social media content (+2.52% in HR
and +3.30% in NDCG). We further investigate the contribu-
tions of different feature groups and the impacts of the model
components in AMAE, which further validates our AMAE
approach, and manifests the effectiveness of enhancing music
recommendation with multimodal social media content.

We summarize the main contributions as follows:
• We systematically study the utilization of multimodal

social media content for music recommendation, which
is unique to the best of our knowledge. Specifically,
we define groups of both handcrafted and deep content
features, and analyze the problem from both global and
contextual perspectives.

• We propose an AMAE approach which employs autoen-
coder structure and attention mechanism to learn cross-
modal latent representations from content features, and
to model users’ global and contextual music preference.

• We conduct extensive experiments on a large real-world
dataset, where encouraging results verify the effectiveness
of both the content data and our AMAE approach.

The remainder of paper is organized as follows. Section 2
introduces related work. Section 3 elucidates data and features.
Section 4 expounds the proposed model. Section 5 presents the
experiments. Section 6 is the conclusion.

II. RELATED WORK

A. Recommendation System

For recommendation systems, matrix factorization (MF)
is a standard method [2]. Given the user-item rating ma-
trix, it projects users and items into a shared latent space,
and the user-item interaction can be modelled by the inner
product of their latent vectors. Lots of variations of MF
have been proposed [16], [17], while in recent years, deep
learning has been employed in MF methods. For example,
generalized matrix factorization (GMF) is proposed under the
neural collaborative filtering framework [18], and deep matrix
factorization (DMF) employs neural network architecture to
learn latent embeddings of users and items [19]. Besides, MF
models have also been extended to utilize extra information,

1http://weixin.qq.com/.

such as review texts, item metadata and user neighborhood
[20], [21].

On the other hand, attention mechanism has also been
explored in recommendation models. Researches show that,
when faced with multiple feature interactions, historical be-
haviors, and item components, etc., attentive modules can
effectively estimate the contributions of different components
and integrate them into a single representation with variable
weights [15], [22], [23].

Inspired by these works, our AMAE approach is combined
with a MF framework for the final prediction, and we devise an
attentive module in AMAE to adaptively integrate the global
and contextual factors.

B. User-Centric Music Recommendation

As revealed by psychological researches, people’s music
preference is related to diverse global and contextual factors,
such as interpersonal relationship, social identity, mood and
personality [3], [4]. For user-centric music recommendation,
different types of auxiliary user information has been ex-
ploited: [5] utilized users’ social relationships, [6] explored
the data collected from sensors of users’ mobile devices, [7]
presented a venue-aware music recommender system, and [8]
tried to capture the influence of user demographics on music
preference. While advance has been achieved, the information
utilized in these works is still not enough to comprehensively
model the users.

On the other hand, with the prevalence of social media,
the multimodal social media content becomes an important
reflection of users’ personal traits and states, which may
hopefully benefit music recommendation. Accordingly, the
million musical tweets dataset (MMTD) [24] was constructed,
whereas only music-related content is included in MMTD,
which is too sparse to perform in-depth user analysis. More
recently, [13] analyzed user emotion in microblogs for music
recommendation, [14] mined the embeddings of microblog
texts, and [15] tried to model users’ personality and emotion
via their tweets and social behavior. However, so far, only one-
sided features extracted from the textual modality have ever
been considered for music recommendation, and the utilization
of multimodal social media content remains to be further
investigated.

III. DATA AND FEATURES

In this section, we expatiate the multimodal music recom-
mendation dataset and the extracted groups of features in our
work. Specifically, for the content of each modality, we not
only define handcrafted features targeted on music recommen-
dation, but also consider generic deep features for comprehen-
sive descriptions of the content data. All the extracted features
are further aggregated in two different ways to describe the
users from both global and contextual perspectives.

A. Data collection

In this work, we explore the utilization of multimodal social
media content with WeChat as a specific platform. WeChat



is one of the most popular acquaintance social network plat-
forms in China [25], where numerous content data, including
texts, images, music and short videos, are posted, shared and
browsed everyday. We construct a multimodal WeChat dataset
based on the one in [15], where 171,254 active users were
included, together with their music interactions, tweet texts,
etc., during the period of 2017.10 to 2018.4. Specifically,
users’ music behavior, e.g., liking and sharing, was recorded
in the form of (uid,mid, timestamp). We further implement
the dataset by collecting the images and short videos posted in
the tweets. The anonymization and desensitization of data is
performed by Tencent for privacy concerns, and specific users
cannot be located. We further filter the data so that: 1) each
user posts at least 10 tweets with images or short videos; 2)
whether a user, or a music track, is involved in at least 10
interaction records. This leads to our multimodal music rec-
ommendation dataset of 163,329 users, 34,140 music tracks,
and 17,826,932 user-music interactions, whose statistics are
summarized in Table I.

TABLE I
STATISTICS OF THE DATASET.

Object Count
Users 163,329

Music Tracks 34,140
User-Music Interactions 17,826,932

Tweets 45,276,160
Tweet Texts 41,136,288

Images 40,112,483
Short Videos 7,489,903

B. Textual Feature Extraction

Text is the most direct and explicit way of expression.
Targeted on music recommendation, we focus on the emotion
features, which may greatly impacts users’ music preference
[26]. We adopt a hierarchical emotion classification system of
three granularities, where 2, 7 and 21 categories are included
respectively in these levels [13]. Specifically, emotions are
categorized into positive and negative ones, while positive
emotions further include happiness, like and surprise, and
negative emotions further include sadness, anger, fear and
hate, and so on. A Chinese emotion lexicon from DUTIR2 is
adopted, and targeted on our dataset, the lexicon is extended
with 259 emojis and 1831 common words on WeChat. Be-
sides, we also analyze the topics and language styles of the
textual content, which is closely related to users’ personal traits
and states [12], [27]. The Simplified Chinese Microblog Word
Count (SCMBWC) [28] dictionary is employed to extract
the commonly used linguistic features in sentiment analysis
research, including part of speech statistics, punctuation count,
topic-related word measure, cognitive process estimation, etc.
After processing with Jieba Chinese text segmentation3, we
calculate the word frequency of all the above-mentioned

2http://ir.dlut.edu.cn/
3http://github.com/fxsjy/jieba

categories to comprehensively estimate users’ textual content.
Macro statistics, e.g., text length and sentence count are also
considered.

Despite the elaborate work in defining handcrafted features,
high-level representations are also significant, which may
capture the latent factors and off-topic information in an
implicit way. To extract the deep features of tweet texts,
we first train 200-dimensional Word2Vec embeddings [29] on
the crawled corpus. As for the tweet-level representations, in
stead of simply averaging the vectors of words, we employ
the smooth inverse frequency (SIF) weighting scheme, and
subsequently remove the common components in the weighted
average representations, which was shown to achieve remark-
able performance in sentence embedding, especially for the
social network corpus (i.e., the Twitter dataset) [30].

C. Visual Feature Extraction

Visual content, e.g., image and short video, is a more
flexible and intricate way of expression, delivering rich con-
notations. Visual features have been revealed to effectively
convey personal emotions and states [11]. In this work, for
simplicity, we convert short videos into three screenshots, i.e.,
the frames at the beginning, in the middle, and at the end of
the video. Thus, the visual content can be processed uniformly.

Inspired by the previous works on affective color psychol-
ogy theories and image classification [31], we consider the
following groups of handcrafted features: 1) Color: we extract
the mean and contrast of hue, saturation and brightness, to-
gether with area statistics, i.e., area of warm/cold color, area of
5 brightness levels, and area of 3 saturation levels, as defined
in [32]. 2) Texture and composition: we evaluate the image
clarity via Tenengrad gradient, and calculate the dynamic-
static description based on line slopes [33]. 3) Content: we
focus on the human faces in images, which may strongly draw
attention of observers. Number of faces and relative size of the
biggest face are extracted via libfacedetection4.

Besides the handcrafted visual features, deep features ex-
tracted by convolutional neural network are also considered.
We scale the images to 224*224 size, and adopt ResNet50 [34]
to extract 2048-dimensional representations. While the weights
of ResNet50 were pretrained on ImageNet, a dataset for visual
recognition task, we believe the features can embody valuable
information, and be helpful for music recommendation.

D. Feature Aggregation: Global and Contextual Descriptions

Music preferences are related to both global and contextual
factors. Therefore, based on the extracted attributes of single
tweets, we further integrate them into features of two granu-
larities: 1) Global (user-level) features: for a certain user, the
extracted features of all his/her tweets in the sampling period
are averaged as a global description; 2) Contextual (interaction
record-level) features: we focus on each user-music interaction
record, collect the users’ tweets posted within 24 hours before
the interaction behavior, and average the features of these

4http://github.com/ShiqiYu/libfacedetection.



filtered tweets to estimate users’ contextual state regarding the
interaction record. Global features are padded when no tweets
were posted in the window of filtering.

In this way, we obtain both global and contextual multi-
modal content features for each user-music interaction record,
and can therefore analyze their correlations in a systematic
manner.

IV. METHODOLOGY

In this section, we present our AMAE approach, which
learns cross-modal latent representations from the extracted
content features, and employs attention mechanism to integrate
global and contextual factors.

A. Preliminaries

Suppose U ,M are the set of users and modalities in
the dataset, respectively. Given a certain user-music record
(uid,mid, timestamp), or (u,m, t) for short, let xAg

ut ,x
Ac
ut

denote the global and contextual features for modality A∈M.
Let xut ={xA∗

ut |A∈M, ∗∈{g, c}} be the set of all the content
features. We aim to learn a function ŷumt = f(u,m,xut) to
predict the user’s preference yumt with a score output. In this
work, we follow the implicit feedback setting and the value
of yumt is binary.

The problem can be intuitively solved with matrix factor-
ization (MF) methods, which make predictions by

ŷumt = pT
uqm, (1)

where pu,qm ∈ Rd denote the latent representations of
user u and music track m. Still, we intend to improve the
performance with the content features.

B. Autoencoder for Multi-Modalities

Autoencoder is a powerful unsupervised deep model for
feature learning. For each modality A ∈ M, we train an
autoencoder HA to encode the extracted content features into
d-dimensional representions. We employ a deep structure of K
encoding layers and K decoding layers to increase the non-
linearity of the model, as shown in Fig. 1. Let h0(xA∗

ut ) =
xA∗
ut ∈{x

Ag
ut ,x

Ac
ut } denote the input, and the encoding process

can be formulated as

hi+1(xA∗
ut ) = σ(WA

eihi(x
A∗
ut ) + bA

ei), (2)

where i=0, 1, . . . ,K−1, and WA
ei ,b

A
ei are the parameters for

encoding. Similarly, let r
K

(xA∗
ut ) = h

K
(xA∗

ut ), and the decoding
process is

rj−1(xA∗
ut ) = σ(WA

dj
rj(x

A∗
ut ) + bA

dj
), (3)

where j = 1, 2, . . . ,K, and WA
dj
,bA

dj
are the parameters for

decoding. Thus, we get the desired encoded representation
zA∗ut = h

K
(xA∗

ut ), and the reconstructed input x̂A∗
ut = r0(xA∗

ut ).
Typically, autoencoder HA is optimized by minimizing the
reconstruction loss between the raw input and decoded output

LA
r =

1

2

∑
∗∈{g,c}

∑
u∈U

∑
t∈Tu

‖x̂A∗
ut −xA∗

ut ‖2, (4)

Fig. 1. Autoencoder for multi-modalities.

where Tu is the set of timestamps at which user u had music
interactions. Thus, the model may smoothly capture the data
manifold and preserve the similarity among samples [35].

Since the problem involves multi-modalities, different fea-
tures are expected to be complementary, delivering information
of different aspects. However, when features of different
modalities are related to the same user, describing either global
traits, or contextual states at the same timestamp, they should
be respectively consistent. To guarantee both the consistence
and the complementarity of the encoded multimodal represen-
tations, we do not simply concatenate the encoded results of
the autoencoders. For modality A and B, given user u and v,
we consider the joint distribution of the two modalities as

pAB∗
utvs =

1

1 + exp(−(zA∗ut )T zB∗vs )
. (5)

Inspired by [36], we employ the most negative sampling
strategy, select the most distinctive sample against user u at
timestamp t:

ṽ, s̃ = arg min
v,s

pAB∗
utvs

, (6)

and we aim to maximize the cross-modal likelihood

LAB∗
m =

∏
u∈U

∏
t∈Tu

pAB∗
utut

(1− pAB∗
utṽs̃

), (7)

or equivalently, to minimize the cross-modal loss

LAB∗
m =

∑
u∈U

∑
t∈Tu

(− log pAB∗
utut
− log(1− pAB∗

utṽs̃)), (8)

where the first term induces consistent, but non-identical
encoding of multimodal features for the same user at the same
timestamp, and the second term pushes them away when the
features are from distinctive samples. Thus, consistent and
complementary multimodal features can be learned.

Thereby, we get the final loss function for autoencoders of
all modalities:

L=
1

2

∑
A∈M

∑
∗∈{g,c}

∑
u∈U

∑
t∈Tu

‖x̂A∗
ut −xA∗

ut ‖2+λ
∑
A∈M

Ω(ΘHA
)

−
∑

A,B∈M
A6=B

∑
∗∈{g,c}

∑
u∈U

∑
t∈Tu

(log pAB∗
utut

+ log(1− pAB∗
utṽs̃)),

(9)

where Ω(ΘHA
) is the regularizer.



Fig. 2. Attentive Multimodal Autoencoder approach (AMAE) with MF framework. Annotations are illustrated in Section IV.

C. Attentive Module under MF Framework

For certain modality A, global and contextual features
xAg
ut ,x

Ac
ut are processed by the same autoencoder HA, and

there are no more constraints between zAg
ut and zAc

ut . However,
users’ music preference can be volatile, and the contribution
proportions of global and contextual features can also vary
greatly [15]. In AMAE, we propose to employ an attentive
module to integrate these two levels of features with alterable
weights. While it is common for attentive networks to process
only the content features (the features to be integrated) [15],
[22], for music preference, the attention weights of global and
contextual factors might be greatly impacted by the user and
the music track. Therefore, we utilize the latent presentation
of the user and the music track pu and qm, and devise a
two-layer network. Formally,

βA∗
ut = (wA

att)
Tσ(WA

att[z
A∗
ut ,pu,qm]+bA

att) + bAatt, (10)

where {WA
att,b

A
att} and {wA

att, b
A
att}, are the parameters for

the first and the second layer, respectively. We calculate the
attention weights via softmax function and obtain the weighted
sum for modality A by

αAg
ut =

exp(βAg
ut )∑

∗∈{g,c}exp(βA∗
ut )

, αAc
ut =

exp(βAc
ut )∑

∗∈{g,c} exp(βA∗
ut )

, (11)

zAut = αAg
ut z

Ag
ut + αAc

ut z
Ac
ut . (12)

With integrated representations zAut for each modality A, we
concatenate them with the user latent vector pu, and make
predictions via dot product with the music latent factor qm:

ŷumt = [pu, z
A
ut, z

B
ut, . . .]

Tqm. (13)

Here, we assume pu, z
A
ut, z

B
ut, . . .∈Rd and qm∈Rd×(|M|+1),

i.e., the dimensionality of qm is increased to pair with the
multimodal content factors, which can be easily implemented
by modifying the embedding layer size in the MF model.

Fig. 2 presents our framework, where |M|=2, and for MF,
a DMF model [19] with two hidden layers is illustrated.

We devise a two-stage process for model training. In the
first stage, we train the autoencoders via Eqn 9 to deal with
the raw content features. In the second stage, the weights of
autoencoders are fine-tuned and the entire model is optimized
based on the point-wise binary cross-entropy loss for predic-
tion results:

L=− 1

N

∑
(u,m,t)

yumtlog ŷumt+(1−yumt)log(1−ŷumt)+λΩ(Θ), (14)

where N is the number of samples in the training set, and
Ω(Θ) is the regularizer.

V. EXPERIMENTS

In this section, we estimate our scheme of enhancing music
recommendation with social media content and evaluate our
AMAE approach with extensive experiments. Specifically, we
aim to answer:
RQ1 Is it helpful to incorporate multimodal social media

content in music recommendation, and how do different
groups of features contribute to the problem?

RQ2 Can the hybrid structure of AMAE effectively utilize
the content features to enhance recommendation perfor-
mance?

RQ3 How do users’ social media content correlate to their
music preference?

A. Experimental Settings

1) Dataset: Experiments are conducted on the constructed
multimodal WeChat dataset (Section III), including 163,329
users, 34,140 music tracks and 17,826,932 user-music inter-
action records. Two modalities (textual and visual modality)
are involved in this dataset.

2) Evaluation Metrics: We take 80% of the user-music
interaction records for model training, and the remaining for
testing. As the timestamp is considered for the user-music
interactions, each test case has only one positive instance.
Following [15], [37], we pair each positive test instance with
99 randomly sampled negative instances. Each method predicts



the preference score for the 100 instances, and a recommen-
dation list is therefore generated according to the rank of the
score. To assess the ranked list, we employ Hit Ratio (HR) and
Normalized Discounted Cumulative Gain (NDCG) [38] at the
position 10. Specifically, HR indicates whether the positive
instance is ranked in the top 10, and NDCG evaluates the
predicted position of the positive instance.

3) Baselines: We compare the following recommendation
methods:
• ItemPop. A naive approach which conducts recommen-

dation simply based on the item popularity measured by
the number of interactions in the training set.

• MF. A standard recommendation model. We implement
it via degraded GMF, as illustrated in [18].

• DMF [19]. An advanced MF model which adopts a deep
structure to learn latent factors of users and items. The
cross-entropy loss is used due to our implicit feedback
setting.

• MF+AMAE. It combines our AMAE approach with MF.
• DMF+AMAE. It combines our AMAE approach with

DMF.
We also consider the following music recommendation

methods with utilization of social media content:
• UCFE [13]. The optimal method in [13], named user-

based collaborative filtering with emotion. User emotion
is estimated via contextual tweet texts.

• MF S, PMF S [14]. The two optimal methods in [14].
Global textual features are extracted by stacked denoising
autoencoder (SDAE) over bag of words (BoW), and thus
combined with MF or PMF.

4) Parameter Settings: We set the latent factor size d as
16. The autoencoders in AMAE consist of two layers, and
the intermediate layer of the encoding and decoding part has
32 neurons. ReLU activation is used for the autoencoders and
the attention module, while the prediction layer uses sigmoid
function. For DMF, two hidden layers are adopted. The model
parameters are randomly initialized with Gaussian distribution
and optimized by Adam [39] with a mini-batch size of 512.
According to [15], [19], for each positive instance (u,m+, t),
three negative instances (u,m−, t) are randomly sampled in
each training epoch. To reduce the time complexity, ṽ and s̃
(Eqn. 6) are selected within the mini-batch.

B. Performance Comparison

We report the performance of the compared methods in
Table II, from which we have the following observations:
1) DMF+AMAE achieves the best performance, with 0.7726
in HR and 0.5167 in NDCG. 2) While there can be a large
disparity between different MF models, with the utilization of
social media content via AMAE, the performance of both MF
and DMF improves significantly, by at least 2.40% in HR and
3.31% in NDCG. 3) Although social media content is utilized
in UCFE, MF S and PMF S, they do not achieve remarkable
performance as compared to other methods. This is because
they only exploit one-sided textual features for user-modeling.

TABLE II
PERFORMANCE OF COMPARED METHODS.

Method HR NDCG
ItemPop 0.6304 0.3978

MF 0.7428 0.4889
DMF 0.7545 0.5001
UCFE 0.7439 0.4890
MF S 0.7479 0.4936

PMF S 0.7536 0.5002
MF+AMAE 0.7621 0.5085

DMF+AMAE 0.7726 0.5167

Beyond the remarkable performance of AMAE, we further
conduct in-depth analysis in the following subsections to give
insights into RQ1-RQ3.

C. Feature Contribution Analysis (RQ1)

We comprehensively evaluate the contributions of the de-
fined handcrafted and deep features. Based on the original
MF framework, different groups of features are utilized with
our AMAE approach, and Table III shows the results, where
H, D denote the handcrafted and the deep features, and G, C
denote the global and the contextual features, respectively.

TABLE III
FEATURE CONTRIBUTION ANALYSIS.

Utilized MF+AMAE DMF+AMAE
Features HR NDCG HR NDCG

None 0.7428 0.4889 0.7545 0.5001
Textual-H 0.7503 0.4966 0.7613 0.5073
Textual-D 0.7519 0.4986 0.7628 0.5077

Textual-All 0.7562 0.5033 0.7663 0.5112
Visual-H 0.7455 0.4919 0.7570 0.5018
Visual-D 0.7498 0.4960 0.7616 0.5066

Visual-All 0.7513 0.4972 0.7619 0.5078
Textual+Visual-G 0.7538 0.5006 0.7662 0.5105
Textual+Visual-C 0.7565 0.5024 0.7669 0.5114
Textual+Visual 0.7621 0.5085 0.7726 0.5167

As can be seen from Table III: 1) All the extracted features
positively contribute to music recommendation, which verifies
our work on feature extraction. 2) For both textual and visual
modality, models with deep features outperform those with
handcrafted features. While a lot of work has been devoted to
defining useful handcrafted features, the experimental result
shows that, the social media content may convey much implicit
information regarding music behavior, which remains to be
further explored. 3) Still, for both modalities, the incorpora-
tion of handcrafted features and deep features result in even
better performance, indicating that these two categories of
features are complementary, capturing valuable information
from different aspects. 4) Both textual and visual content
can significantly improve the performance, which proves the
deficiency of previous work where only tweet texts were
exploited. 5) Both global and contextual features are beneficial
for recommendation, and the contextual features seem to be
slightly more effective, perhaps partially due to the padding



strategy when the contextual content is missing. Moreover,
the integration of them leads to the optimal performance,
manifesting that users’ music preference can be impacted by
both global and contextual factors, and more insights regarding
the issue will be given later.

D. Model Component Analysis (RQ2)

To further investigate the effectiveness of our AMAE ap-
proach, we conduct experiments with the following compo-
nents removed, respectively: 1) Reconstruction loss Lr (Eqn.
4) for the autoencoders, i.e., the decoders are removed and the
features are encoded with two dense layers. 2) Cross-modal
loss Lm for the multimodal latent factors, as illustrated in Eqn.
8. 3) Weights fine-tuning for the autoencoders, i.e., the au-
toencoders and the MF framework are trained separately, and
the input of MF is replaced by fixed encoded representations
{zAg

ut , z
Ac
ut |A ∈M}. 4) The attentive module, i.e., the global

and contextual factors are directly concatenated with the user
embedding for final prediction, and the dimensionality of qm

is changed to d×(2|M|+1) accordingly.

TABLE IV
MODEL COMPONENT ANALYSIS.

Removed MF+AMAE DMF+AMAE
Component HR NDCG HR NDCG

None 0.7621 0.5085 0.7726 0.5167
Reconstruction Loss Lr 0.7574 0.5040 0.7683 0.5129
Cross-Modal Loss Lm 0.7601 0.5068 0.7708 0.5156
Weights Fine-tuning 0.7547 0.5015 0.7662 0.5112

Attentive Module 0.7603 0.5063 0.7714 0.5161

Table IV shows the performance of the altered models,
which is unsurprisingly worse than the original AMAE: 1)
Removal of reconstruction loss Lr and weights fine-tuning
both hurt the performance severely, which shows that, it is ef-
fective to learn low-dimensional embeddings via autoencoder,
while the autoencoder weights need to be further fine-tuned
according to the prediction task, in order that the encoded
representations can better adapt to music recommendation.
2) The omission of cross-modal loss Lm results in declining
performance, which justifies the significance of learning both
consistent and complementary latent factors for multimodal
data. 3) It is effective to introduce the attention mechanism into
AMAE. Since users’ music preference can be influenced by
miscellaneous factors, simply concatenating the global and the
contextual representations with equal weights is not a perfect
choice, while the attention module can solve the problem by
adaptively discriminating the important factors.

E. Case Study (RQ3)

In this subsection, we intend to explore the correlations
between social media content and music preference with
specific examples. We choose four popular songs, and for
each song, we calculate the average of the content features
regarding corresponding user-music interactions. Fig. 3(a)
and 3(b) illustrate several representative handcrafted features,
including happiness, first person pronoun count, home-related

word count, and text length from the textual modality, as well
as cold color ratio and face count from the visual modality.
Here, we do not include the deep features, since they do not
convey explicit comprehensible meanings.

(a) Global content features (b) Contextual content features

Fig. 3. Average of social media content features regarding four popular songs.

From Fig. 3(a) and 3(b), we can discover that: 1) What
Are Words is an affectionate song. While most corresponding
content features are of medium values, larger face count is
observed contextually. 2) Price Tag is a rousing and lively
song, and the listeners are more positive and talkative, with
consistent higher values in happiness and text length. 3) We
Don’t Talk Anymore is about breaking up, whose listeners
tend to be especially unhappy in the contextual point of view.
4) Yesterday Once More is a classic song about memory,
whose listeners might be senior and introverted. Globally, they
tweet more about home, but less about themselves, and post
fewer images with faces. However, the condition dramatically
changes in the contextual perspective, where the text length,
the first person pronoun count, and the warm color ratio
increase sharply, as they may be tweeting heaps of words about
their past experiences.

Based on these samples, it can be further summarized
that: 1) Users’ music preference is closely related to their
social media content, and can be reflected by a wide range
of features, including emotion, language style, topic of post,
image color, image content, etc. 2) Global and contextual
content factors impact users’ music preference differently, and
can be rather divergent for the same user-music interaction.

VI. CONCLUSION

In this paper, we aimed to enhance music recommendation
with utilization of multimodal social media content. We con-
structed a large-scale multimodal dataset, defined handcrafted
and deep features for each modality, and analyzed users’ music
preference from both global and contextual perspectives. We
further proposed an AMAE approach to learn cross-modal
latent representations from raw features, and to integrate global
and contextual factors via attentive mechanism. Experimental
results validated our approach and demonstrated the efficacy
of exploiting multimodal social media content in music rec-
ommendation.
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