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Abstract—Coronary Artery Disease (CAD) causes significant
global mortality. The recent development in artificial intelligence
shows the feasibility of early non-invasive screening of several life-
threatening cardiovascular diseases. However, such approaches
have been less prolific in diagnosis of CAD due to lack of
clinically known definite bio-marker. In this paper, we propose
a novel neural network architecture that effectively combines
two non-specific CAD markers, 1) anomalous morphology of
Electrocardiogram (ECG) waveform and 2) abnormal Heart
Rate Variability (HRV). A Convolutional Neural Network (CNN)
structure is defined for extraction of morphological ECG features.
Another composite structure is defined based on Long Short-
Term Memory (LSTM) and a set of hand crafted statistical
features for measuring the extent of HRV. The two independent
bio-markers are subsequently combined in a hybrid CNN-LSTM
architecture for classification of CAD. The proposed approach is
evaluated on two datasets, a corpus, selected from the MIMIC
II waveform dataset and a partially noisy in-house dataset,
recorded using a low-cost ECG sensor. Results show that overall
classification accuracy of 93% and 88% are achieved on the two
datasets, which outperform the existing approaches.

Index Terms—Coronary Artery Disease (CAD), ECG, CNN,
LSTM, Hybrid Architecture

I. INTRODUCTION

Cardiovascular diseases (CVDs) continue to be a major
cause of death, representing 31% of all global deaths in the
year 2016. Coronary Artery Disease (CAD) is a type of CVD
that affects millions of people every year. CAD forms due
to deposition of cholesterol and other fatty materials on the
inner walls of coronary arteries over time. This restricts the
normal blood flow in coronary arteries, which may lead to
a stroke or severe cardiac arrest. Coronary angiography, the
gold standard diagnosis for CAD is an invasive medical test,
requiring an admission to hospital. An early detection can
often prevent the fatal consequences of many life-threatening
CVDs. Hence, attention for Artificial Intelligence (AI) based
screening systems is rapidly growing in the developing nations
where the ratio between doctors and patients is less than
desired as well as the developed nations for looking after the
elderly population. Such screening systems are required to be
low-cost, non-invasive and should be operated with minimum
involvement of a clinician. However, non-invasive diagnosis of
CAD is an unsolved research problem. Although CAD is often
asymptomatic at early stages, available research works pointed
out several non-specific bio-markers. Heart Rate Variability
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Fig. 2: Morphology changes in ECG cycles due to CAD [1]

(HRV) is widely considered as an important surrogate marker.
A number of articles reported that CAD patients exhibit lower
and irregular HRV than non-cardiac subjects [2], [3], [4], [5].
HRYV can be accurately measured from the Electrocardiogram
(ECG) waveform. As shown in Fig. 1, a normal ECG cycle
contains three major components. The P wave represents the
depolarization of the atria, the QRS complex represents the
depolarization of the ventricles and the T wave represents the
repolarization of the ventricles. The PR interval measures the
time, taken by an electrical impulse to travel from the sinus
node through the AV node. The ST segment measures the
duration when the ventricles depolarize and repolarize. The
distance between the R peaks indicates the heart rate. Dua
et al. [5] proposed novel HRV features based on recurrence
plot, Poincaré plot, de-trended fluctuation analysis of the RR
intervals for classification of CAD. Non-linear dynamics of
ECG were analysed in [6]. The work in [2] showed significant
difference in the standard deviation of the RR intervals and
average heart rate between CAD and non-cardiac subjects.
In another approach [7], discrete cosine transform, discrete
wavelet transform and empirical mode decomposition methods
were applied on ECG beats for HRV. However, abnormal
HRV can be associated with a number of pathological con-
ditions which are not cardiac in nature (e.g. mental stress).



r T T ConviT T TmemrmrTrTrTmrTmTITT Conv2 Conv3 i
Convolution Convolution Convolution i
Rol matrix ! filters = 20, Maxpool filters = 40, Maxpool filters = 40, Manxpool ;
! kernel size = size = kernel size = size = ize = size =
created from N 72,56, 1 ernel size kernel size
ECG for (None, 72,56, 1)} axa, 2x2 | (None, 36, 28, 20) axa, 2x2  |(None, 18, 14, 40) 4xa, 2x2 | (None,9,7,40) i
morphological s> | ctivation = | BN P | activation = | BN P activation = | BN !
feature i RelU, RelU, RelU, i
extraction i padding = padding = padding = i
i same same same 1
; CNN Module i
(None,15000,1) RRintervals c ) Morphological
e Composite features
eatures
Input ECG at 2Hz) cnn
signal C hrv (None, 2520)
2 mi (None,15000,1) 1 1 (None, 140)
( minutes ayer Fully connected layer 1
long, sampled (FC1)
at 125 Hz) (Concat1) neurons = 1024
activation = RelU
Fhia
(None, 1024)
CAD Combined
(None, 64) Fully connected layer 3 (None, 256) Fully connected layer 2 hyb"d features v v
(Fc3) o (Fc2) Feom
Non- neurons =64 D N neurons =256 (None, 1164) Concatenation layer 2
CAD activation = ReLU activation = ReLU (Concat2)

Fig. 3: Proposed hybrid CNN-LSTM neural network architecture for classification of CAD

Morphological changes in normal ECG pattern is reported as
another CAD marker. As shown in Fig. 2, the changes happen
in terms of ST elevation myocardial infarction (STEMI), ST
depression or T wave inversion [1], [8], [9]. However, being
intermittent markers, they are not guaranteed at all stages
of CAD. Moreover, computing such features is challenging
on noisy ECG signals. Hence, majority of the existing Al
approaches analyse HRV for CAD. Recently, applications of
deep learning have become popular in biomedical engineering,
where the raw signal is directly fed to a deep architecture
for automatic extraction of relevant features. Such approaches
have been successful in detection of arrhythmias or atrial fibril-
lation, where the bio-markers are well-known and prominent
in the input. However, there is no clinically proven definite
bio-marker for CAD till date. In this paper, we propose a deep
learning approach to combine two non-specific surrogate CAD
markers, 1) anomalous ECG morphology and 2) irregular HRV
using medical domain knowledge. The markers complement
each other in terms of sensitivity and specificity of detecting
CAD and their combined effect improves the overall accuracy
of a screening system. Major contributions of the paper are:

e« A Convolutional Neural Network (CNN) structure for
efficient morphological feature extraction from ECG.

e A composite HRV vector based on Long Short-Term
Memory (LSTM) network and hand crafted features.

e A hybrid CNN-LSTM structure, together with the hand
crafted features to combine the two independent CAD
markers in a single architecture for disease classification.

o An algorithm for the selection of relevant hand crafted
features, related to HRV.

e A pre-processing algorithm for extraction of time se-
ries from clinically interpretable digital ECG images,
recorded by commercially available low-cost ECG sensor.

We evaluate the proposed network on an open access hospital
dataset and a second in-house dataset, recorded by a non-
medical grade sensor, typically deployed in a low-cost real-

world screening system. The proposed network architecture is
detailed in Section II. Section III describes our experimental
datasets. Section IV summarizes different network hyper-
parameters and experimental results followed by a conclusion.

II. PROPOSED HYBRID NETWORK ARCHITECTURE

A hybrid neural network is proposed by combining two
non-specific surrogate CAD markers, i.e anomalous ECG
morphology and abnormal HRV in a single CNN-LSTM
architecture. Block diagram of the proposed architecture is
shown in Fig. 3. The output tensor dimensions are duly
mentioned in brackets. The structure has three modules, 1)
CNN module for extraction of morphological ECG features,
2) LSTM module for modeling of temporal dependencies
among the RR intervals and 3) hand crafted statistical features,
derived from the RR intervals. The output state of the LSTM
is merged with the hand crafted features to create a composite
HRYV vector, which is further combined with the morphological
feature map by the CNN. The hybrid network is trained end to
end to optimize a single objective function for classification.

A. CNN Module for Morphological Feature Extraction

Acute myocardial ischemia affects the electrical activation
of the heart, causing morphological changes in the normal
ECG pattern. The changes mostly reflect in terms of elevation
or depression of the ST segment, inversion of the T wave or
fragmentation of the QRS complex [1], [8], [9]. An automatic
segmentation of different ECG components is challenging.
Although the existing algorithms can accurately locate the
R peaks even from a noisy ECG, the performance is poor
in segregating the ST region, QRS complex or the T wave.
Hence, the hand crafted morphological features, computed
from a segmented recording become unreliable, affecting the
performance of a classical machine learning based classifier.
In this paper, we define a 2D CNN structure for extraction of
discriminating morphological features from an ECG dataset of
labelled CAD and non-CAD subjects, without segmenting the



fundamental components. A CNN can successfully capture the
spatial and temporal dependencies in an input via convolution
operation through a set of filters (kernel) to create a feature
map that summarizes the detected features in the input. In
a multi-layer CNN, the first convolutional layer is typically
responsible for capturing the low-level features. With added
layers, the architecture adapts to the high-level features.

A CNN is not guaranteed to learn the desired pattern from a
time series, containing multiple independent patterns. Anoma-
lous ECG morphology is a non-specific CAD marker and its
effects are often inconsistent across multiple cardiac cycles.
Applying ECG data directly to 1D CNN may not result in
an optimum spatio-temporal analysis and may cause over-
fit. We propose a novel pre-processing step to create a 2D
representation of 1D ECG data by cropping a fixed region from
successive cardiac cycles, where the relevant morphological
markers are likely to be present and merge them vertically.
An ECG time series (ecg,) is represented as a vector of n real
numbers in eqn. 1:

ecg: = [ecgi, ecga, ...eCYR; , .-.€CYRy,, ...€CYR,,, ...€CGn] (1)
ecg; is the i*" sample. In the time series, each cardiac cycle is
landmarked by the corresponding R peak, whose locations are
known. For example, R, is the landmark point for pt* cycle
and the corresponding amplitude is ecgr,. The open source R
peak detection algorithm by Behar [10] is used in this paper.
From every cardiac cycle, a window of length w is cropped
around the R peak, which is called the Rol vector. The Rol

vector (ST),) for pth cycle is denoted as:

STy = [ecg(Ry—w1)» -+ €CY(Rp—1)> ECIR,, ECI(Ry+1) 5 -+ ECI(Rp 43 )]
Here, w = w1 + wo + 1. It is known from domain knowled(gzg
that the duration of the QRS complex and the T wave are
around 200 ms. Duration of the Rol vector is selected 450
ms, 80 ms before and 370 ms after the reference R peak. This
contains the relevant portions in an ECG cycle, where the
morphology is typically affected due to CAD and removes
other portions without segmenting the recording. A total of
N Rol vectors from consecutive cardiac cycles are vertically
arranged to construct the Rol matrix ST, ST € RN*% which
is applied to a 2D CNN. Fig. 4 shows an ECG signal with 3
cycles and the corresponding Rol vectors. The Rol matrix is an
efficient 2D representation of an ECG recording for effective
spatio-temporal feature extraction by a CNN. The input matrix
is normalized between 0 and 1 using minmax normalization.
The signals in our experimental datasets are sampled at 125
Hz. Every Rol vector contains 56 data points (125 Hz x 450
ms/1000 = 56). Duration of an ECG recording is selected as 2
minutes, i.e 15,000 data points. Irrespective of the underlying
cardiac condition of a person, a minimum of 72 cardiac cycles
are expected in every such recording. Hence, the dimension of
Rol matrix is fixed as 72 x 56. As shown in Fig. 3, the CNN
contains 3 convolutional blocks (Convi, Conv2, Conv3), each
of them comprising a convolutional, a batch normalization
(BN) and a maxpool layer. The kernel size is selected as 4x4
for all the convolutional layers. Zero padding is applied to the
inputs for retaining the original dimension after convolution
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Fig. 4: A sample ECG signal, indicating the Rol vectors. 72
Rol vectors are vertically arranged to create the Rol matrix

operation. Rectified Linear Unit (ReLU) is used for non-linear
activation, ReLU (x) = max{0,z}. The number of filters is
increased to 40 in the second and third convolutional layers for
extraction of more detailed features, but the overall dimension
is reduced by the associated maxpool layers of size 2 x 2. The
feature map, created by Conv3 is flattened and merged with
the HRV parameters.

B. LSTM Module for Analysis of RR Intervals

Lower and inherently aperiodic HRV is clinically known as
another important CAD marker. HRV is measured from the RR
intervals time series, extracted from ECG and is denoted by
RR: = [RR1, RRy,...RR,,]. Here, RR, = Ry11 — Ry, R,
denotes the time location of p** R peak and nl is the number
of RR intervals in the ECG recording. The time series does not
have a uniform sampling rate owning to instantaneous varia-
tion in successive RR interval distances and hence it is fixed to
2 Hz using cubic spline interpolation technique. The resampled
time series contains 240 data points corresponding to a 2
minutes long ECG. This is further scaled between 0 and 1 via
minmax normalization and is applied to a bidirectional LSTM
network for measuring of temporal dependencies among the
RR intervals. A Recurrent Neural Network (RNN) has its
internal memory for sequential modeling of a time series via
extraction of temporal patterns. An LSTM is an improved class
of RNN that can effectively learn a longer pattern of unknown
length because of its unique cell structure (the forget gate),
that enables deletion of less important information from the
memory. It can also deal with the exploding and the vanishing
gradient problems, typically faced by RNNs during training.
For an input vector z; = [x1, ®2, ...x| of length T', an LSTM
cell with one forget gate computes a hidden vector sequence
hi = [h1, ha, ...hr] by iterating the following set of equations
over time t.

fo = o(Wapay + Whphe 1 + by) 3
ir = o(Wayxe + Whihe1 + b;) 4
ce = fexcion +ig x tanh(Weeay + Wiehi—1 + be)(5)
or = o(Waowt + Whohs—1 4 bo) (6)
he = o *xtanh(c) @)



Here, W,, W}, represent the trainable weight matrices for
the input vector and the recurrent connections; b are the bias
terms; o is the logistic sigmoid function; * denotes element-
wise product operation. The input gate, the forget gate, the
output gate and the cell activation vectors are represented by
i, f, o and c. Hyperbolic tangent (tanh) is used for non-linear
activation of the cell. A bidirectional LSTM (Bi-LSTM) is an
improved version of a traditional LSTM. It trains two LSTMs
on a single input sequence, one on the input sequence as the
same order and the second on the reversed order, enabling to
preserve the information from both past and future. In our case,
64 hidden units are used in the bidirectional LSTM structure
for the analysis of RR intervals time series. Hence, the output
hidden vector returns 128 parameters.

C. Hand Crafted HRV Features

Although the Bi-LSTM can model the temporal depen-
dencies among the RR interval distances for predicting the
overall aperiodicity in HRYV, it is not guaranteed to quantify
the complex chaotic HRV pattern manifested by many CAD
patients. A number of higher order statistical parameters exist
in various applications for measuring the inherent randomness
of a time series. We propose a set of 12 hand crafted features,
derived from the time series, RR; and merge them with the
output state of the Bi-LSTM to create a composite HRV vector.
The hand crafted features are selected from a larger feature
set using an empirical feature selection algorithm, detailed in
Section IV-A. The optimum feature set contains two novel
features, 1) self similarity and 2) average Maharaj’s distance
and few features adapted from literature.

1) Self similarity: In theory, self similarity of a time series
measures the rate of decrease in the autocorrelation with the
increase in lag between a pair of observations and is measured
from the Hurst exponent (H) [11]. The parameter, H is com-
puted using Fractional Autoregressive Integrated Moving Av-
erage (FARIMA) processes. Autoregressive Integrated Moving
Average (ARIMA) models are used in statistics for analysing
and forecasting of time series. In an ARIM A(p, q, r) process,
p denotes the order of AR, r is the order of MA and q is the
degree of differencing which is measured by the number of
times the time series have had past values subtracted. The
parameter ¢ is an integer for a stationary time series. If long-
range dependence is suspected, ¢ can be a non-integer, hence
results in a FARIM A model. The time series RR; is fitted
toa FARIM A(0,d,0) by an approximation of the maximum
likelihood method [12]. The Hurst parameter is calculated, as
H=d+0.5.

2) Average Maharaj’s distance: In a time series, Maharaj’s
distance [13] is indicative of a moving average factor along
with the number of changes in direction. Maharaj’s distance
can capture a desired similarity metric across spatial entities.
In Autoregressive Moving Average (ARMA) model, a time
series Y; is defined in terms of autoregressive term p and
moving average term r, as:

p r
Vi=A+> WY+ bieite ®)

i=1 i=1

Here, \ is a constant, ¢; is white noise, ¥;-s are the AR
parameters and 6;-s are the M A parameters. For an ARM A
model, discrepancy measurement based on hypotheses testing
determines whether two time series have significantly different
generating processes. The output metric of this mechanism is
called the Maharaj’s distance and can be used to find whether
two time series are similar to each other. The measured p-
value, close to 1 indicates they are similar. In this paper,
average Maharaj’s distance (AM D;) for the i** RR interval
time series is calculated with respect to the known CAD
population in the training dataset as:

nu

AMD; =) "MD;;/(nu — 1) )

7
where MD;; is the Mah;r;:lj’s distance of the RR intervals
time series of ' training or test subject from j'* CAD
subject in the training dataset and nu is the total number of
CAD subjects in the training set. This feature measures the
average dissimilarity of an unknown test instance from the
CAD population in the training set.

3) Entropy features: Approximate entropy (ApFEn) and
sample entropy (SampEn) are used in statistics to mea-
sure the irregularities in a time series. ApEn(RRy,q,r) is
computed in terms of two predefined parameters, a pattern
length (¢) and another parameter (r), related to similarity
measurement. A sequence of vectors [x4(1), 24(2), ...x4(nl —
g + 1)] in real g-dimensional space is defined from RR;,
such that xq(z) = [RRZ',RRZ'JF17RRZ'+27...RRH,q,l]. Two
vectors x4(7) and z4(j) are similar if |RR; 1, — RRjyix| <
r, for 0 < k < g. A new parameter Cj,(r) is defined as:
Ciq(1) = (number of x4(j) similar to x4(3))/(nl —q+1),
nl be the length of RR;. If Cy(r) indicates the mean of all
Cig(r) for i € 1..n1 — ¢+ 1, ApEn is defined as:

ApEn(RRy,q,7) = ln[icq(r) ] (10
Co1(r)
Sample Entropy (SampEn(RRy,q,r)) 1s defined as:
A
SampEn(RR;, q,r) = —In[=] (1)

Here, A = number of vector pairs where |z441(:) —2¢4+1(j)| <
r, B = number of vector pairs where |z4(i) — z4(j)| < 7.
Shannon entropy (Es) of RR; is another important parameter
for measuring of unpredictability .

N
By == prylogpry

A normalized histogram of ]b\f %ins is created from the distri-
bution of RR,. Empirical probability of b*" bin is denoted by
pry. Here, b € 1...N and Zé\le pry = 1.

4) Other features: The other features include mean, vari-
ance, kurtosis, skewness and root mean square of successive
difference (RM SSD) of RR;. The number of successive RR
interval pairs, differ by more than 20 ms (p/NN20) and 50 ms
(pNN50), divided by the total number of RR intervals in an
ECG recording are the remaining two features. The 12 hand
crafted features are normalized to zero mean and unit variance
for merging with the output state of the Bi-LSTM.

(12)



D. The Hybrid CNN-LSTM Network Structure

As shown in Fig. 3, the output state vector of the Bi-LSTM
(Flstm) 1s concatenated with the hand crafted feature vector
(Fy.) at the first concatenation layer (concatl) to construct
the composite HRV vector (F},,). On the other hand, the
morphological feature map at the output of the third convo-
lutional block (conv3) is flattened as F.,, and applied to a
fully connected layer (F'C'1) of 1024 neurons to form a hidden
vector (F};q) of reduced dimension. F},;4 is concatenated with
Fp, at the second concatenation layer (concat2) to create
the hybrid feature vector (F..,,), combining two independent
CAD markers which is then applied to a pair of fully connected
layers (F'C2, F'C3), having 256 and 64 neurons followed by
a softmax function for binary classification. ReLU activation
function is used in the fully connected layers. The class labels
are converted to one-hot encoding to minimize the categorical
cross-entropy loss function, shown in eqn. 13:

J = —% Z(yL “log (i) + (L —yi) - log(1 —4;))  (13)

N denotes thg;lumber of training instances in a batch; the
true label and the predicted label of i*" training instance are
indicated by y; and y;. An amount of 20% drop-out is applied
to the Bi-LSTM and the cell weights are constrained using L2
regularization. This protects the Bi-LSTM from over-fitting
and restricts its overall output activation, ensuring the lower
dimensional F},. is not suppressed after merging with Fjg,
at concatl. On the other hand, the hidden vector of morpho-
logical features (F},;q) is of much higher dimension than the
composite HRV vector (F},..,,). Hence, the effect of F},;.,, might
get suppressed after merging with the morphological features
at concat?2. In order to avoid that, we regularize the activation
of F'C1 (where F,,, is applied) to limit the number of active
neurons by imposing a sparsity constraint. For i*" input, x;, if
a;(z;) denotes the activation of j*" hidden unit at FC1, then
p; measures the average activation of 5P unit, as:

N
hi= ; a(z:)
During training, p; is forced to be similar to a sparsity
parameter, p of small value (0.05, in our case), so that the
overall activation, a; is regularized. This is done by using the
Kullback-Leibler (KL) divergence between them as a penalty
term, which is added to the loss function.

(14)

. P
KL(pIIPj):p-log;ﬂl—p)-logl_ : (15)
In addition, an amount of 20% drop-out is applied]to the con-
volutional layers. The hybrid CNN-LSTM network is trained
end to end to minimize a single cumulative loss function,

which is derived by combining eqn. 13 and eqn. 15, as:

A ) - R
Ji=T 47 ;(Wk) +- ZlKL(pllpj) (16)
=
Wi, summarizes the weights of kt" Bi-LSTM cell; ) is the
weight decay parameter; (3 is the sparsity penalty term and s
is the number of hidden units at F'C'1 layer.

III. EXPERIMENTAL DATASETS

The proposed methodology is evaluated on two datasets

of different patient demography, sensor device and overall
signal quality. The first dataset is a corpus of CAD and non-
cardiac subjects, selected from MIMIC II waveform dataset,
matched subset [14]. MIMIC II is a large open access dataset,
containing physiological signals (ECG, pleth, blood pressure
waveform etc.) from patients during their stay at different
hospitals in the USA and Europe. The recordings were made
using medical-grade equipments at a sampling rate of 125 Hz.
The dataset comes with the disease information for patients,
which follows the International Classification of Disease,
Ninth Revision, Clinical Modification (ICD-9, CM) codes.
Depending upon the disease information and the availability
of ECG recordings, a total of 100 CAD and an equal number
of non-cardiac patients were selected. One of our co-authors,
a practising cardiologist helped us in selection of the patients
based on the ICD-9 codes. The data, corresponding to ECG
lead II was considered for analysis. We split the selected
corpus into two portions based on random selection, 80% of
all subjects were kept for training and 20% for test purpose.
Duration of a recording is taken as 2 minutes for analysis,
which is long enough to capture the HRV. A total of 100 such
non-overlapping instances were selected from every subject.
This data augmentation step enhances the number of instances
for training a deep learning system. The final corpus contains
16000 training and 4000 test instances from 200 subjects, with
no common subject in the training and test set.
Being recorded by medical-grade equipments at hospital ICU,
the signals in MIMIC II are moistly free from noise and abrupt
motion artifacts. However, a real-world screening system typ-
ically deploys low-cost, non-medical grade devices. Hence,
we created a second dataset in a more challenging scenario
using AliveCor Kardia, a commercially available single-lead
portable ECG device. The dataset was recorded at the out-
patient department of a hospital in Kolkata, India under the
supervision of a practising cardiologist and it was used only
for testing. The data collection protocol was approved by the
hospital ethics committee. A total of 80 CAD and 70 non-CAD
subjects participated in the process. The disease annotation
were done by the hospital clinicians based on angiography
reports. The CAD population covered both borderline and
severe patients, whereas the non-CAD population had no prior
cardiac history at the time of data collection. The recordings
in this dataset are in general noisier than MIMIC II.

A. Extraction of Time Series from an ECG Image

Similar to most of the commercially available single-lead
devices, AliveCor Kardia provides the recorded ECG in a
clinically interpretable digital image format, printed on a
standard grid based graphical layout for easy visualization and
does not provide access to the time series data. As shown in
Fig. 5:(a), the layout is partitioned into small grids of 5 mm X
5 mm boxes, representing 200 ms in horizontal axis and 0.5
mV in vertical axis. The large grids represent 25 mm X 50
mm boxes. There is a reference pulse of 1 mV in amplitude,



providing the reference for zero voltage. The ECG time series
is required to be extracted from the image as a pre-processing
step. The following algorithm is proposed for that purpose.
1) Histogram analysis: The image is converted to gray
scale. A histogram analysis reveals that the pixel values
between 40 and 180 constitute the ECG signal, the large grids
and the reference pulse. Zeroing the pixels, outside that range
removes the small grids from the image. A sample ECG image
and the quantized output are shown in Fig. 5:(a) and 5:(b).

(<)

Fig. 5: (a) Sample ECG image by AliveCor Kardia, (b) Output
of quantization based on histogram analysis, (c) Output of
morphological operation and removal of large grid lines

2) Morphological operation: A standard thinning opera-
tion is performed on the quantized image with kernel size 5x5
till there is no update in successive thinning operations.

3) Extraction of large grid lines: The horizontal and
vertical lines for the large grids are detected using Hough
transform and removed. The output after the removal of large
grids is shown in Fig. 5:(c).

4) Extraction of reference pulse: The reference pulse is
extracted by matching with a template of the pulse and the
zero reference line is identified. Template matching is done in
pixel level using two-dimensional autocorrelation analysis.

5) Extraction of ECG signal: A pixel value quantization of
the image, after removal of large grid lines gives the time series
signal. The interpretation of the time scale and the amplitude
in voltage is derived from the reference pulse.

6) Interpolation of missing data: There are some missing
points in the extracted ECG time series due to various image
processing operations. A cubic-spline filtering is performed lo-
cally in the regions of missing data to generate the interpolated
signal. The extracted signal is resampled at 125 Hz.

IV. DATA ANALYSIS

In this section, we discuss our proposed algorithm for
selection of the relevant hand crafted HRV features, different
hyper-parameters used for performance optimization of the
proposed network and the experimental results.

A. Selection of Hand Crafted HRV Features

Feature selection is an important part in any machine
learning approach. This is a process of selecting the relevant
and discriminating feature subset from a larger superset for an
optimum classification performance. A heuristic approach for
feature selection is proposed in this paper, which is performed
on the training portion of the dataset, selected from MIMIC
II, described in Section III. We start with 20 features as a
superset, compute them on all the recordings in the dataset
and rank the features with respect to the subject disease labels
in a descending order based on relevance using Maximal
Information Coefficient (MIC) scores. MIC is a statistical
tool that measures the strength of association between two
variables by forming grids with various sizes to find the largest
normalized mutual information between them [15]. For each
pair of data (z,y), if I is the mutual information for a grid
G, then MIC of a set D of pairwise data with sample size n
and grid size (zy), less than B(n) is given by [15], as:

MIC(D) = max gy« pn)y{M (D)} 17
where B(n) is a function of sample size (usually B(n) = n°).
For different distributions of G, M (D) is given by

maxz{I(D|G)}

logmin(x,y)
A high MIC value indicates a relevant feature. The optimum
feature set is selected from the ranked feature list in an iterative
manner based on average classification performance on the
same training dataset, applying subject level 5-fold cross
validation. We consider the highest ranking feature as the most
important feature and measure the sensitivity and specificity
of detecting CAD using that. In each subsequent iteration, the
next most relevant feature is added from the list and the impact
in classification performance is noted. The features are applied
to a neural network having a single hidden layer with 10
neurons followed by softmax function for classification. Our
aim is to simultaneously achieve the optimum sensitivity and
specificity. Hence, we want to maximize the arithmetic mean
of the two metrics at a minimum feature dimension. Fig. 6
plots the average values of sensitivity, specificity and their
numeric mean, achieved by increasing the number of relevant
features. It can be observed that both sensitivity and specificity
improve with the addition of more features. Their numeric
mean becomes maximum at a minimum feature dimension
when top 12 features are selected. Addition of more features
eventually reduces the sensitivity. Hence, these 12 features are
selected as the optimum hand crafted HRV parameters.

M(D)g, = (18)

B. Selection of Network Hyper-parameters

Similar to feature selection, different hyper-parameters for
the neural network are also tuned on the training dataset from
MIMIC II based on trial and error. The combination of hyper-
parameters producing the highest median accuracy in 5-fold
cross validation is selected as optimum. The final learning
model is created on the entire training set and the evaluation is
done on the test data from MIMIC II and the in-house dataset,
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Fig. 6: Average subject level 5 fold cross validation perfor-
mance on MIMIC II training data by iteratively adding features
from the ranked feature list. The optimum performance is
achived with 12 features. These are detailed in Section II-C

recorded using AliveCor Kardia. In order to avoid over-fit, an
mount of 20% drop-out is applied to the convolutional and the
LSTM layers. The weight decay parameter (\) of the LSTM
cells in eqn. 16 is selected as 0.02 and the sparsity penalty
term () of the CNN is selected as 0.8. Initial weights of the
neurons in the convolutional layers, the LSTM cells and the
fully connected layers are set using Xavier initialization [16].
In this process, the weights in a layer are randomly initialized
from a Gaussian distribution of zero mean and a finite variance
m, where, n;, and n,,; represent the number of input
and output neurons. The bias terms are initially set to zero.
During training, the cumulative loss function is minimized
using Adam optimizer with learning rate of 0.003, mini-batch
size of 128 and 200 epochs. The network is trained on a
platform of Intel® Xeon(R) 16-core processor having 64 GB
of RAM and a graphics processing unit. The implementation
is done in python using Keras API with TensorFlow.

C. Experimental Results

1) Accuracy of time series extraction algorithm: In the
in-house dataset, the ECG time series, extracted from images
can be corrupted due to various image processing operations
like histogram based quantization, morphological operation or
interpolation of missing data. The extracted time series are
compared with the actual images to evaluate the quality of
reconstruction. A set of 50 recordings are randomly selected
from the dataset and the cardiac cycles are manually annotated
from the ECG images and the extracted time series with the
help of a cardiologist for comparison between them. Table I
shows that the mean squared error in the QRS intervals
between them remains close to an acceptable range of 2%. The
errors are even lower for the QT intervals and RR intervals.

TABLE I: Comparison between ECG images and time series

in terms of sensitivity (Se) and specificity (Sp) of detecting
CAD, which are defined by true positive (1'P), true negative
(T'N), false positive (F'P) and false negative (F'N), as:

TP TN

Se=7py N P TN FP (19)
Table II summarizes the contribution of different components

of the proposed hybrid network by evaluating them individu-
ally for classifying CAD vis-a-vis the improvement achieved
by their combined effect in the proposed hybrid CNN-LSTM
architecture. For an exhaustive performance comparison, the
hybrid network is split into four components based on indi-
vidual output feature vectors, 1) the CNN for extraction of
morphological ECG features, 2) the Bi-LSTM for analysis of
RR intervals, 3) the hand crafted HRV features and 4) the
composite HRV vector via merging the output of the Bi-LSTM
with the hand crafted features. All of them are separately
applied to fully connected layers and softmax function for
creating individual neural networks and are compared with the
proposed hybrid structure. Different network hyper-parameters
are retuned in all cases and the best accuracy values are
reported in Table II which shows the subject level 5-fold cross
validation result in mean =+ std format on the training data
(Training) from MIMIC 1II and the accuracy on the MIMIC
II test set (D1) and the in-house data (D2). In all cases, the
learning model for evaluation on D1 and D2 are created on the
entire Training set. Anomalous ECG morphology can not be

TABLE II: Performance comparison among individual com-
ponents of the proposed hybrid CNN-LSTM network

Training set | Test set D1 | Test set D2
Network Structure | Se Sp Se Sp Se Sp
CNN (for ECG | 0.83 0.94 0.82 [ 094 | 0.78 | 0.89
morphology) + +

0.03 0.04
Bi-LSTM (for | 0.94 0.80 093 | 078 | 090 | 0.77
HRV) + +

0.04 0.06
Hand crafted fea- | 0.91 0.83 090 | 0.82 | 0.86 | 0.80
tures (for HRV) + +

0.05 0.02
Bi-LSTM + hand | 0.96 0.85 095 | 0.83 | 092 | 0.81
crafted features (for | + +
HRV) 0.05 0.03
CNN + Bi-LSTM | 0.94 0.93 094 | 092 | 090 | 0.85
+ hand crafted | + +
features (ECG | 0.04 0.03
morphology +
HRV) (proposed
hybrid CNN-
LSTM)

RR intervals | QRS intervals | QT intervals

Mean squared er- | 0.1 % 1.95 % 0.85 %

ror

2) Contribution of individual network components and
the benefit of the hybrid architecture in CAD classification:
Throughout this paper, classification performance is reported

considered as a definite CAD marker owing to its inconsistent
manifestation. This is often not present at the onset of the
disease. Thus, the morphological feature map, extracted by
the convolution filters are less reliable in detecting all the
CAD patients in the datasets. The borderline patients are often
misclassified by this approach. However, It can accurately
detect most of the non-cardiac subjects who have a consistent
and normal ECG morphology. Hence, the CNN achieves a high
specificity and a low sensitivity. On the other hand, irregular




HRYV is common to majority of the CAD population. However,
many non-CAD subjects also exhibit a similar HRV pattern
due to various non-cardiac pathological conditions. Although
the Bi-LSTM and the hand crafted features can individually
identify majority of the CAD patients in both the datasets, they
generate a large number of false positives. This results in high
sensitivity and low specificity. Results show that the composite
HRV vector, obtained by merging the Bi-LSTM and the hand
crafted features yields an improved performance, compared to
their individual efforts. Table II reveals that anomalous ECG
morphology and irregular HRV are two complementary CAD
markers in terms of sensitivity and specificity. An effective
combination of them can significantly boost up the overall
classification performance. The same is done in our proposed
hybrid network structure. Hence, it yields the optimum per-
formance for CAD classification.

3) Comparison with existing approaches: The proposed
CNN-LSTM network is compared with popular prior ap-
proaches in [5] and [7]. Both of them used classical ma-
chine learning approach to quantify HRV for CAD using
hand crafted statistical features. Due to unavailability of im-
plementable existing deep learning approach, we design a
baseline 1D CNN classifier. This takes the raw ECG directly as
input for relevant feature extraction without a pre-processing.
It has 5 convolutional layers, each of them contains 40 filters
with kernel size 7 and an associated maxpool layer of size
2. The feature map is flattened and applied to fully connected
layers and softmax function for classification. The comparative
study is shown in Table IIl. The baseline CNN often fails to
extract the relevant features for CAD due to their inconsistent
manifestation in a prolonged recording. Hence, it produces a
suboptimal sensitivity. Whereas, our proposed approach that
combines two independent CAD markers in a single neural
network is found to outperform the prior approaches and the
baseline 1D CNN on both our test datasets. Hence, it yields
the optimum accuracy for non-invasive screening of CAD.

TABLE III: Performance comparison with existing approaches

Test set D1 Test set D2
Prior art Se Sp Se Sp
Dua et al. [5] (classical ma- | 0.80 0.75 0.77 | 0.71
chine learning)
Acharya et al. [7] (classical | 0.88 0.83 0.82 | 0.78
machine learning)
Baseline 1D CNN (deep learn- | 0.73 090 | 0.71 | 0.85
ing)
Proposed approach (hybrid | 0.94 0.92 0.90 | 0.85
CNN-LSTM)

V. CONCLUSION

Low-cost, non-invasive screening of CAD is an important
research area in medicine. Lack of definite non-invasive bio-
marker makes the diagnosis of CAD difficult. In this paper we
propose a CNN-LSTM approach that combines two indepen-
dent non-specific CAD markers in a single hybrid architecture
for an improved screening system. The proposed approach has
been successfully evaluated on two hospital datasets, one of

them was recorded in a more practical scenario using low-
cost sensor. However, both the bio-markers, considered in
this paper are often not guaranteed at the onset of CAD.
Hence, our approach fails to detect few of the borderline
patients. The proposed architecture can be logically upgraded
by incorporating other potential non-invasive CAD markers
(e.g. heart sounds signals) along with categorical parameters
like patient demography, life-style and family disease history
which indirectly determine the cardiac risk factor of a person.

REFERENCES

[11 R. Klabunde, Cardiovascular physiology concepts. Lippincott Williams
& Wilkins, 2011.

[2] R. Krittayaphong, W. E. Cascio, K. C. Light, D. Sheffield, R. N. Golden,
J. B. Finkel, G. Glekas, G. G. Koch, and D. S. Sheps, “Heart rate
variability in patients with coronary artery disease: differences in patients
with higher and lower depression scores,” Psychosomatic Medicine,
vol. 59, no. 3, pp. 231-235, 1997.

[3] T. Mironova, V. Mironov, V. Antufiev, E. Safronova, M. Mironov, and
E. Davydova, “Heart rate variability analysis at coronary artery disease
and angina pectoris,” Recent patents on cardiovascular drug discovery,
vol. 4, no. 1, pp. 45-54, 2009.

[4] T. C. Rodrigues, J. Ehrlich, C. M. Hunter, G. L. Kinney, M. Rewers, and
J. K. Snell-Bergeon, “Reduced heart rate variability predicts progression
of coronary artery calcification in adults with type 1 diabetes and
controls without diabetes,” Diabetes technology & therapeutics, vol. 12,
no. 12, pp. 963-969, 2010.

[5] S. Dua, X. Du, S. V. SREE, and T. A. VI, “Novel classification of
coronary artery disease using heart rate variability analysis,” Journal of
Mechanics in Medicine and Biology, vol. 12, no. 04, p. 1240017, 2012.

[6] K. Antanavicius, A. Bastys, J. Bluzas, L. Gargasas, S. Kaminskiene,
G. Urbonavicien¢, and A. Vainoras, “Nonlinear dynamics analysis of
electrocardiograms for detection of coronary artery disease,” Computer
Methods and Programs in Biomedicine, vol. 92, no. 2, pp. 198-204,
2008.

[7]1 U. R. Acharya, H. Fujita, M. Adam, O. S. Lih, V. K. Sudarshan, T. J.
Hong, J. E. Koh, Y. Hagiwara, C. K. Chua, C. K. Poo, and T. R.
San, “Automated characterization and classification of coronary artery
disease and myocardial infarction by decomposition of ecg signals: A
comparative study,” Information Sciences, vol. 377, pp. 17 — 29, 2017.

[8] Y. Birnbaum et al., “The role of the ecg in diagnosis, risk estimation,
and catheterization laboratory activation in patients with acute coronary
syndromes: a consensus document,” Annals of Noninvasive Electrocar-
diology, vol. 19, no. 5, pp. 412-425, 2014.

[9]1 A. Sanaani, S. Yandrapalli, G. Jolly, R. Paudel, H. A. Cooper, and
W. S. Aronow, “Correlation between electrocardiographic changes and
coronary findings in patients with acute myocardial infarction and single-
vessel disease,” Annals of translational medicine, vol. 5, no. 17, 2017.

[10] A. E. Johnson, J. Behar, F. Andreotti, G. D. Clifford, and J. Oster,
“R-peak estimation using multimodal lead switching,” in Computing in
Cardiology 2014, 2014, pp. 281-284.

[11] B. Qian and K. Rasheed, “Hurst exponent and financial market pre-
dictability,” in JASTED conference on Financial Engineering and Appli-
cations, 2004, pp. 203-209.

[12] J. Haslett and A. E. Raftery, “Space-time modelling with long-memory
dependence: Assessing Ireland’s wind power resource,” Applied Statis-
tics, vol. 38, no. 1, 1989.

[13] E. Maharaj, “Clusters of time series,” Journal of Classification, vol. 17,
pp. 297-314, 2000.

[14] M. Saeed, M. Villarroel, A. Reisner, G. Clifford, L. Lehman, G. Moody,
T. Heldt, T. Kyaw, B. Moody, and R. Mark, “Multiparameter intelligent
monitoring in intensive care ii (mimic-ii): A public-access intensive care
unit database,” Critical Care Medicine, vol. 39, no. 5, pp. 952-960, 2011.

[15] D. N. Reshef, Y. A. Reshef, H. K. Finucane, S. R. Grossman,
G. McVean, P. J. Turnbaugh, E. S. Lander, M. Mitzenmacher, and P. C.
Sabeti, “Detecting novel associations in large data sets,” Science, vol.
334, no. 6062, pp. 1518-1524, 2011.

[16] X. Glorot and Y. Bengio, “Understanding the difficulty of training
deep feedforward neural networks,” in Proceedings of the thirteenth
international conference on artificial intelligence and statistics, 2010,

pp. 249-256.





