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Abstract—Mesoscale eddies play an important role in the
transportation and distribution of energy, material and heat in
the global ocean. Therefore, mesoscale eddy detection has been
researched for a long time. At present, several deep learning mod-
els have been proposed for mesoscale eddy detection. However,
most of these methods only use single-modal data, while ignoring
data of other modals closely related to mesoscale eddy detection.
In this paper, we introduce a multi-modal mesoscale eddy
dataset, consisting of the satellite data in three modals, i.e., sea
surface height (SSH), sea surface temperature (SST) and velocity
of flow. Furthermore, we propose an EDNet (Eddy Detection
Network), which contains four modules, i.e., multi-modal data
fusion module, deep fusion module, region proposal module and
head module. We use multi-modal data fusion module to fuse
multi-modal data, use deep fusion module to learn the feature
representations of the fused multi-modal data and use the region
proposal module to generate region proposals containing the
mesoscale eddies. There are two branches in the head module, one
for classifying and locating the mesoscale eddies, while the other
for providing pixel-level instance segmentation of the mesoscale
eddies. The experimental results show that EDNet based on
multi-modal data fusion significantly improves the accuracy of
mesoscale eddy detection over previous approaches.

Index Terms—Deep leaning, Mesoscale eddy detection, Multi-
modal data fusion

I. INTRODUCTION

In recent years, deep neural networks [1] have been widely
applied in many fields, such as image classification [2],
object recognition [3], semantic segmentation [4] and in-
stance segmentation [5]. Techniques such as dropout [6],
Bayessian regularization [7] and batch normalization [8] have
significantly improved the performance of deep models (e.g.,
AlexNet [9], VGGNet [10], GoogLeNet [11], ResNet [12] and
DenseNet [13]). Particularly, in the field of object detection
and instance segmentation, lots of deep models (e.g., Fast
R-CNN [14], Faster R-CNN [15], Mask R-CNN [16]) have
achieved excellent performances.

In the ocean, mesoscale eddies refer to eddies with a radius
of 100 to 300 kilometers and a life span of 2 to 10 months. The
mesoscale eddies are usually divided into two types: cyclonic
eddies (counterclockwise rotation in the northern hemisphere)
and anti-cyclonic eddies (counterclockwise rotation in the
southern hemisphere). Because the flow velocity of seawater
in mesoscale eddies is several times faster than the average
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flow velocity of the ocean, mesoscale eddies carry great
kinetic energy. Besides, mesoscale eddies can not only bring
the nutrients and cold water from the deep ocean to the
surface of the ocean, but also press warm water from the
sea surface to the deep ocean, playing an important role in
the transportation and distribution of energy, material and
heat in the global ocean. Therefore, the study of mesoscale
eddy detection has very important scientific significance. At
present, many mesoscale eddy detection approaches have been
proposed [17]-[19].

The early methods for mesoscale eddy detection mainly
use satellite remote sensing data [20], [21]. However, they
heavily rely on expert analysis, which is laborious and difficult
to meet the need of fast and accurate detection. In addition,
many traditional mesoscale eddy detection algorithms based
on edge detection and flow field geometry are relatively
rough, resulting in low detection accuracy for mesoscale eddy
detection. In recent years, some methods based on deep neural
networks have been proposed. Nevertheless, the architecture
of these deep learning models are simple and only single-
modal data are used for mesoscale eddy detection. Hence, the
detection results are generally not precise.

In order to solve the above problems, we propose a novel
deep learning model based on multi-modal data fusion for
mesoscale eddy detection. Firstly, we build a dataset consisting
of the sea surface height (SSH), the sea surface temperature
(SST) and the velocity of flow, which are closely related to
mesoscale eddy detection. Considering that the current deep
learning methods mainly use SSH to detect mesoscale eddies,
SSH images are labeled by experts to ease comparison. In
the ground truth image, a mesoscale eddy is annotated with a
bounding box and a mask for pixel-level segmentation, where
the class of the corresponding eddy is also shown. There
are two classes, cyclonic eddies and anti-cyclonic eddies.
More importantly, the pixel-level segmentation via masks is
instance segmentation, which detects each mesoscale eddy as
different instances. An example of the ground truth is shown
in Fig. 1. Furthermore, we propose an end-to-end mesoscale
eddy detection network named EDNet, which contains four
modules, i.e., multi-modal data fusion module, deep fusion
module, region proposal module and head module. For con-
creteness, the multi-modal data fusion module fuses multi-
modal mesoscale eddy data, the deep fusion module learns the



Fig. 1. An example of the ground truth for mesoscale eddy detection.

effective representations of the mesoscale eddies, the region
proposal module generates the region proposals containing
the mesoscale eddies, and the head module is responsible
for classifying, locating and segmenting mesoscale eddies. To
our best, our method is the first to use multi-modal dataset
for mesoscale eddy detection, and is also the first to detect
mesoscale eddies with bounding boxes and masks.
To sum up, the main contributions of our work are:

e We build the first multi-modal mesoscale eddy detection
dataset, which is labeled with bounding boxes and masks
by experts.

+ We propose an end-to-end EDNet, which contains multi-
modal data fusion module, deep fusion module, region
proposal module and head module, achieving mesoscale
eddy detection with both bounding boxes and masks.

o Our work is the first to apply object detection and instance
segmentation to mesoscale eddy detection, attaining state-
of-the-art performance of mesoscale eddy detection on
the multi-modal dataset collected by us.

II. RELATED WORK

In this section, we review some related mesoscale eddy
detection algorithms, including the traditional approaches and
deep learning approaches.

A. Traditional Approaches

In the early days, mesoscale eddy detection methods mainly
relied on experts to manually annotate the remote sensing data.
However, this method is time consuming and laborious. Later,
mesoscale eddy detection methods using the powerful comput-
ing ability of computer began to emerge. Nichol proposed a
method which takes advantage of gray scale values of images
to extract an eddy-like structure [17]. Ji et al. used ellipse edge
detection to detect mesoscale eddies based on oceanic remote
sensing images [18].

Additionally, there are some mesoscale eddy detection
methods based on satellite remote sensing data of different
types. These methods are mainly divided into two categories,
methods using Euler data and that using Lagrangian data. The
Euler data are used to monitor the instantaneous characteristics
of the ocean at a certain moment, while the Lagrangian
data can record the movement track information of material
particles or water masses in a certain period of time. The main
methods using Euler data are that based on physical param-
eters [22] and that based on flow field geometry [23]. The
main methods using Lagrangian data belong to the Lagrangian
stochastic model [24]. However, these methods are relatively
rough, in that the mesoscale eddies may be merged together
incorrectly.

In order to solve this problem, Faghmous et al. proposed
a method named EddyScan, which detects mesoscale eddies
by determining the largest possible closed contour of the
eddies [25]. However, this method only use single-modal data
(SSH) to detect mesoscale eddies.

Although traditional approaches have made great progress
so far, they need to be improved with respect to the accuracy
of mesoscale eddy detection.

B. Deep Learning Approaches

With the wide application of deep learning, mesoscale
eddy detection methods based on deep learning emerge. At
present, there are not many deep learning algorithms applied to
mesoscale eddy detection. Lguensat et al. proposed a network
named EddyNet [26], which classified each pixel based on a
U-Net structure, completing the semantic segmentation of the
mesoscale eddies. Recently, Xu et al. used pyramid scene pars-
ing network (PSPNet) [27] to detect mesoscale eddies [28],
performing pixel-level classification to locate mesoscale eddies
same as EddyNet. However, the EddyNet and PSPNet detect
mesoscale eddies using the idea of semantic segmentation,
which only divide all pixels into three categories, i.e., cyclonic
eddies, anticyclonic eddies and background. They cannot de-
tect different mesoscale eddy as different instances, resulting
in that overlapping mesoscale eddies belonging to the same
class cannot be separated. Besides, only single-modal data
(SSH) are used for mesoscale eddy detection in these two
methods, while the data of other modals that are helpful
for detection are ignored. Additionally, Du et al. proposed
a method named DeepEddy [19], which used synthetic aper-
ture radar (SAR) images with a high spatial resolution for
mesoscale eddy detection. This work mainly applies the prin-
cipal component analysis network (PCANet) [29]. However, it
only classify a mesoscale eddy in a SAR image, not detecting
the eddies in a region simultaneously. To summarize, the
EddyNet and PSPNet can only achieve semantic segmentation
of mesoscale eddies, while the DeepEddy can only classify
a single SAR image to be mesoscale eddy or not. In com-
parison, our proposed EDNet is capable of achieving instance
segmentation and location with masks and bounding boxes,
respectively, for mesoscale eddies.
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Fig. 2. The structure of EDNet. There are mainly the multi-modal data fusion module, deep fusion module, region proposal module and head module, except

the input and output layers in EDNet.

To our best, there is no method to use multi-modal data
for mesoscale eddy detection, and also no method to use both
bounding boxes and masks to detect mesoscale eddies so far.
Therefore, our method is not only the first to use multi-modal
data for mesoscale eddy detection, but also the first to apply
object detection and instance segmentation to mesoscale eddy
detection.

III. METHOD

In this section, we introduce the structure of the proposed
EDNet in detail. As shown in Fig. 2, there are mainly four
parts except the input and output layers in EDNet. The first
part is a multi-modal data fusion module, which is responsible
for fusing the multi-modal mesoscale eddy data. The second
part is a deep fusion module, which is used to further learn
the effective representations of the mesoscale eddies. The
third part is the region proposal module, which finds region
proposals containing mesoscale eddies. The last part is the
head module that consists of two branches: one can regress
bounding boxes to locate and classify mesoscale eddies, and
the other can segment the mesoscale eddies in pixel level.

A. The Architecture of EDNet

In the following, we introduce the four parts of EDNet in
detail.

1) Multi-Modal Data Fusion Module: The multi-modal
data including the SSH, SST and the velocity of flow describe
different characteristics of mesoscale eddies. As they are close-
ly related to mesoscale eddy detection, using multi-modal data
for mesoscale eddy detection can effectively and accurately
detect mesoscale eddies. Hence, for EDNet, we design a multi-
modal data fusion module to fuse multi-modal data.

Firstly, we use different hyperparameters («, 3,) to scale
the data in different modals to explore the importance of
different modals in mesoscale eddy detection:
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Fig. 3. The structure of the multi-modal data fusion module. We use two
convolutional operations to fuse the multi-modal data.

where o + 8+ v = 1, h denotes the SSH, ¢ the SST, and
v the velocity of flow. H is the scaled SSH, T is the scaled
SST, and V is the scaled velocity of flow. Then we use the
multi-layer convolutional network to fuse the scaled data. The
architecture is shown in Fig. 3. Finally, we can obtain the fused
multi-modal data from the multi-modal data fusion module.

2) Deep Fusion Module: After going through the multi-
modal data fusion module, the fused multi-modal data are
input to the deep fusion module, which is used for feature
extraction of mesoscale eddies. We use ResNet-101 [12] as
the backbone of the deep fusion module. However, due to
lots of convolutional operations in ResNet-101, fine-grained
information may be lost as the resolution of feature maps
decreases. Thus, we fuse feature maps of high resolution with
rich contextual information and feature maps of low resolution
with rich semantic information, which is illustrated in Fig. 4.
In particular, there are 5 blocks in ResNet-101. We denote
outputs of conv2, conv3, conv4, and conv5 as C2, C3, C4
and C5, respectively. Firstly, C5 upsampled by a factor of 2
is fused with C4 undergoing a 1 x 1 convolutional layer by
element-wise addition. Then, we iterate this process until C3
is fused with C2. To the end, feature maps with rich contex-
tual information and semantic information are generated. The



output of convl is ignored considering that feature maps of
high resolution cause a large amount of computation.
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Fig. 4. The structure of the deep fusion module.

In summary, feature maps with rich contextual information
and semantic information can be obtained from the deep fusion
module, which is beneficial to the subsequent region proposal
module and head module.

3) Region Proposal Module: We design a region proposal
module, which can obtain multiple proposals that contain
mesoscale eddies with high probability. The region proposal
module can be regarded as a rough object detection network,
which takes advantage of anchor boxes with different scales
and aspect ratios to locate and classify mesoscale eddies.

Firstly, we take the feature maps from the deep fusion
module as input, and run a 3 x 3 sliding window on the
feature maps. As shown in Fig. 5, we generate 9 anchor boxes
with three scales and three aspect ratios (1:1, 1:2 and 2:1) for
every center pixel of the sliding window. Then we classify
and regress every anchor box with two 1 x 1 convolutional
operations. One 1 x 1 convolutional layer classify whether the
anchor box is the foreground or the background, which is just
a two-class classification task. The other 1 x 1 convolutional
layer regresses every anchor box to perform the first coordinate
correction, making anchor box close to the ground truth box.
Finally, region proposals containing mesoscale eddies with
high probability are obtained by this region proposal module.

4) Head Module: There are two branches in the head mod-
ule, which is shown in Fig. 6. We input region proposals from
the region proposal module into these two branches, achieving
mesoscale eddies classification, location with bounding boxes
and instance segmentation in pixel-level.

Before inputting region proposals into the head module, we
use bilinear interpolation to obtain feature maps with fixed
size. Then the feature maps are input into two branches in the
head module. In one branch, we use fully connected networks
to perform feature extraction of feature maps, then obtain
specific classes (cyclonic eddies or anti-cyclonic eddies) and
regress the bounding boxes of proposals for the second time
by two sibling fully connected layers. As shown in Fig. 7,
proposal is regressed to predicted bounding box by this branch,
which is closer to ground truth box than the original proposal.
In the other branch, fully convolutional networks [4] are added
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Fig. 5. We generate 9 anchor boxes with three scales and three aspect ratios
(1:1, 1:2 and 2:1) for a center pixel of the sliding window. (zq4,ya) is the
center pixel of the sliding window, wg, he are the width and height of the
anchor box based on different scales and different aspect ratios.

to generate masks prediction for mesoscale eddies in region
proposals.
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Fig. 6. The structure of the head module. We input region proposals from
the region proposal module into the head module, obtaining class, bounding
boxes and masks about mesoscale eddies.
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Fig. 7. The proposal, prediction and ground truth about a mesoscale eddy.
We use the head module to regress the bounding box of proposal, obtaining
bounding box of prediction which is close to the ground truth box.

To the end, we achieve mesoscale eddy detection with
bounding boxes and masks by the whole EDNet.
B. The Loss Function

Based on three outputs from the EDNet, the loss function
includes three parts, which can be written as follows:

L = Les + Lyox + Linask- (4)



Among them, L.;s; and Ly, refer to the loss of classification
and bounding boxes prediction, which are determined by
the region proposal module and head module, as there are
class prediction and bounding box regression in both these
two modules. L.s is a cross-entropy loss function between
prediction and ground truth, which is defined as:

Las = CrossEntropy(p, q), (5)

where p, g represent the labels of prediction and ground truth
separately. The classification in the region proposal module is
a binary classification problem, while the classification in the
head module is a multi-class classification problem. Ly, is a
smooth /1 loss function about bounding box regression, which
is defined as follows:

Lbom = g(t - l*), (6)

where ¢ denotes the offset of predicted bounding box from the
original bounding box, t* denotes the offset of ground truth
from the original bounding box. Besides, the smooth 11 loss
function can avoid exceeding the optimal value due to the
decrement of gradient, which is defined as follows:

() 0.522,
x =
g 2| — 0.5,

2| <1,
otherwise.

)

L,,qsk 1S an average binary cross-entropy loss function about
the mask branch in the head module. L, is defined as:

Linask = CrossEntropy(p; i, 4; 1) ®)

where p; ;. refers to the probability of the i-th pixel belonging
to the k-th class, and q; ), is the probability from the ground
truth. '

In summary, we minimize the loss function consisting these
three parts to attain good performance in mesoscale eddy
detection.

IV. EXPERIMENTS

We report the experimental results in this section. Firstly,
the collected and labeled multi-modal mesoscale eddy dataset
is introduced in detail. Then we present the parameter settings.
Finally, we demonstrate the effectiveness of the proposed
EDNet with comparison to the state-of-the-art.

A. The Collected and Labeled Dataset

In our work, we build a multi-modal dataset consisting of
the satellite data of three modals, i.e., SSH, SST and velocity
of flow, which are closely related to mesoscale eddy detection.
Firstly, we download the SSH, SST and velocity of flow for
a total of ten years from January 2000 to December 2009
in CMEMS, all of which are from the same sea area. The
dimensions of these three-modal data are 681 x 1440 x 120,
where 681 is the dimension of the latitude, 1440 is the
dimension of the longitude, and 120 indicates that the data
come from 120 consecutive months. Among the data of
these three modals, the SSH and SST occupy one channel

respectively, while the velocity of flow occupies two channels,
because velocity of flow contains two directions, which can be
understood as the velocity vector of a certain point in the ocean
is decomposed into the east/west direction and north/south
direction. Therefore, there are four channels in our multi-
modal data. Then, we choose the data of 40 months for a
three-month interval of 120 months to make the data diverse.
Lastly, we randomly select the data of these three modals from
multiple regions in each month without repetition, and the
regions selected are resized to 128 x 128. In addition, the
corresponding position of the SSH, SST and the velocity of
flow from the same multi-modal data is consistent. In order
to compare our method with those methods only use single-
modal data (SSH) for mesoscale eddy detection, SSH images
are labeled by experts as ground truth.

In the end, to reduce the overlapping regions of the selected
samples, we only randomly select 512 samples as our multi-
modal mesoscale eddy dataset. All the data are divided into
training set and test set according to the ratio 7:3. Based on the
experimental results in Section IV.C, we can see that the small
amount of data randomly selected in our dataset are enough
to prove the superiority of our method.

B. Parameter Settings

In our work, we perform experiments on two GPUs, and
the computational time is greatly reduced. We pre-train our
EDNet on the COCO dataset, initializing it for training on
mesoscale eddy detection. The optimization method used in
our method is stochastic gradient descent (SGD). We set three
anchor ratios as 1:1, 1:2 and 2:1, which are commonly used in
object detection. However, we need define three anchor scales
and learning rate by experiments.

For simplicity, only SSH is used as the training data for
model optimization. During training, we train the head module
for 50 epochs firstly and then train the whole network (EDNet)
for 100 epochs. According to the experiment on the COCO
dataset, we find that the learning rate of the head module has
little effect on the prediction results, so that we follow the pre-
trained network to use 0.001 as the learning rate of the head
module. Therefore, only anchor scales and the learning rate
of the whole network are not determined. For the size of our
collected dataset, we only compare anchor scales (8, 32, 128)
and (4, 16, 64), and learning rates 0.001 and 0.0001 which
are most commonly used for object detection tasks. Then we
use the optimal hyper-parameters as the baseline model for
subsequent training. Training results based on different hyper-
parameters are shown in Table I.

As can be seen from the table, we obtain the best mAP
of 56.35% when the anchor scale is (4,16, 64) and the initial
learning rate of the whole network is 0.0001.

C. Experimental Results

1) Multi-Modal Data Fusion Experiments: The experiment
in this section is designed to verify the effectiveness of multi-
modal data fusion. a, 8 and v are hyper-parameters of the
SSH, SST and velocity of flow, respectively, where o + 3 + v



TABLE I
THE RESULTS OBTAINED BY USING DIFFERENT ANCHOR SCALES AND
LEARNING RATES.

anchor scale learning rate of mAP
the whole network %
(8,32,128) 0.001 45.50
(4,16, 64) 0.001 53.89
(8,32,128) 0.0001 52.62
(4, 16, 64) 0.0001 56.35

= 1. Hyper-parameters not only reflect the importance of the
data of these three modals on mesoscale eddy detection, but
also demonstrate whether multi-modal data fusion is helpful
for mesoscale eddies detection or not. We try a lot of different
combinations of «, § and 7. The experimental results are
shown in Table II.

TABLE II
THE RESULTS OBTAINED BY USING DIFFERENT COMBINATIONS OF «, 3
AND 7.

mAP %
4491
49.26
56.35
5291
5743
56.48
60.48
59.62
58.49
66.85
58.69
58.70
5743
59.73
57.75
60.76
60.15
67.47
70.27

BN Lo O DO U Wo| DO| = DO =] N = =] =] Of = O O =T

N | wof ol bof ro| | pof 0| bo| =] =] = =] = o] =| o of @
| N DO U Lo U | DO | | H| N = Of —| —| O | O

According to the experimental results, we can see that the
best mAP of 70.27% is obtained when the ratio of «, S and
v is 5:3:2. It is also observed in the Table II that multi-modal
data fusion is better than using single-modal data for detecting
mesoscale eddies.

2) Comparison between the Mesoscale Eddies Detection
Algorithms: Based on the selected optimal hyper-parameters,
we compare different mesoscale eddy detection algorithms
with the proposed network to demonstrate the effectiveness of
EDNet. Since there are not many deep learning methods for
mesoscale eddy detection, we choose EddyNet and PSPNet
for comparison, which can detect mesoscale eddies in pixel-
level. However, the EddyNet and PSPNet achieve semantic
segmentation, while the proposed EDNet can achieve instance
segmentation. Hence, we evaluate our method at the level of
semantic segmentation for fair comparison. The final exper-
imental results obtained by using different networks on our

multi-modal mesoscale eddy dataset are shown in Table III.
As can be seen from the table, our proposed network yields
86.18% in terms of mAP at the level of semantic segmentation,
which is 5.4% higher than EddyNet and 4.12% higher than
PSPNet. Therefore, our method achieves better performance
than the other methods. Some results of mesoscale eddy
detection using our method can be seen in Fig. 8. Through
comparison with the ground truth, it is clear that results of
mesoscale eddy detection using our method is very close to
the ground truth.

TABLE III
THE RESULTS OBTAINED BY USING DIFFERENT NETWORKS ON OUR
MULTI-MODAL MESOSCALE EDDY DATASET.

Methods | mAP %

EddyNet 80.78
PSPNet 82.06
EDNet 86.18

/g

(b) Ground truth
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(a) Our method

Fig. 8. Results of mesoscale eddy detection using our method on our multi-
modal dataset. (a) Examples of mesoscale eddy detection results using our
method; and (b) The ground truth labeled by experts.

V. CONCLUSION

In this paper, we introduce a novel multi-modal mesoscale
eddy detection dataset, which contains the SSH, SST and ve-
locity of flow. In addition, a mesoscale eddies detection model
named EDNet is proposed. EDNet contains four modules, i.e.,
multi-modal data fusion module, deep fusion module, region
proposal module and head module. The proposed EDNet is the
first using bounding boxes and masks to detect mesoscale ed-
dies, achieving a combination of object detection and instance
segmentation. In the consequence, the experimental results by
using EDNet on the multi-modal mesoscale eddy dataset are
much better than that obtained by previous approaches for
mesoscale eddy detection.
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