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Abstract—Twin support vector machines (TWSVM) have been
successfully applied to the classification problems. TWSVM
is computationally efficient model of support vector machines
(SVM). However, in real world classification problems issues
of class imbalance and noise provide great challenges. Due
to this, models lead to the inaccurate classification either due
to higher tendency towards the majority class or due to the
presence of noise. We provide an improved version of robust fuzzy
least squares twin support vector machine (RFLSTSVM) known
as regularized robust fuzzy least squares twin support vector
machine (RRFLSTSVM) to handle the imbalance problem. The
advantage of RRFLSTSVM over RFLSTSVM is that the pro-
posed RRFLSTSVM implements the structural risk minimization
principle by the introduction of regularization term in the primal
formulation of the objective functions. This modification leads
to the improved classification as it embodies the marrow of
statistical learning theory. The proposed RRFLSTSVM doesn’t
require any extra assumption as the matrices resulting in the
dual are positive definite. However, RFLSTSVM is based on
the assumption that the inverse of the matrices resulting in
the dual always exist as the matrices are positive semi-definite.
To subsidize the effects of class imbalance and noise, the data
samples are assigned weights via fuzzy membership function.
The fuzzy membership function incorporates the imbalance ratio
knowledge and assigns appropriate weights to the data samples.
Unlike TWSVM which solves a pair of quadratic programming
problem (QPP), the proposed RRFLSTSVM method solves a
pair of system of linear equations and hence is computationally
efficient. Experimental and statistical analysis show the efficacy
of the proposed RRFLSTSVM method.

Index Terms—Support vector machines, Twin support vector
machines, Fuzzy Membership, class imbalance.

I. INTRODUCTION

With the successful application of support vector machines
(SVM) [1], [2] to the classification problems, SVM has been
applied across different applications like face detection [3],
[4], facial expression recognition [5], speaker identification
[6], intrusion detection system [7] and so on. The performance
of the SVM is better as it implements the structural risk
minimization principle, however, suffers in real world applica-
tion due to higher computational complexity. To improve the
computational complexity of the SVM, twin SVM (TWSVM)
[8] was proposed. Unlike SVM, TWSVM constructs the pair
of non-parallel hyperplanes by optimizing the pair of quadratic
programming problems (QPPs) in such a way that the optimal
hyperplanes are proximal to the corresponding class. To reduce

the complexity further, least squares twin SVM (LSTSVM)
[9] solved a pair of system of linear equations instead of
QPPs hence lead to faster computation. Robust and sparse
linear programming TWSVM [10], [11] introduced sparseness
and efficient angle based universum least squares twin support
vector machine for pattern classification [12] used universum
data for better generalization. TWSVM models have also been
extended to multiclass problems [13] and regression problems
[14]–[16]. In [17] unconstrained optimization problem was
formulated which shows better generalization than TWSVM
model.

The issues of class imbalance and noise are prominent
in real world applications. Multiple domains like detection
of faults [18], detection of defective modules in software
[19] and so on mostly suffer due to the imbalance in the
number of samples used for training the models and hence
the classification modes are prone to be biased towards the
majority class. To subsidize outlier effect of samples in the
noisy data, fuzzy membership functions have been incorpo-
rated in SVM model to handle these problems in different
domains like bankruptcy problem [20] and object tracking
[21]. Distance based fuzzy membership function were used in
fuzzy support vector machines [22] wherein the samples are
weighted via its distance from the class centroid. The outlier
effect is reduced as they are assigned smaller weights by the
fuzzy membership function. Fuzzy least squares SVM [23]
was proposed to tackle the problems in multi-class domain.
Assuming that the sample is a member of both the classes
with different proportion of membership weights, bilateral
weighted fuzzy SVM [24] and proximal bilateral weighted
fuzzy SVMs [25] were proposed. Fuzzy SVM [26] used
within class structure based fuzzy membership and while as
fuzzy SVM [27] maximized the partition index. To handle the
multilabel classification problems, fuzzy SVMs for multilabel
classification [28] was modeled. Robust energy based least
squares twin SVMs (RELS-TSVM) [29] reduced noise via
energy parameters and emerged as best classifier in recent
evaluation [30]. Sparse and noise insensitive models [31]–[34]
were introduced based on pinball loss function. TWSVM has
also been used in ensemble methods to further improve the
generalization ability [35].

In class imbalance learning, SVM classifiers are biased
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towards the majority class due to presence of majority of
samples of a particular class and fewer samples of the other
class which leads to more misclassifications in minority class.
To overcome this problem, different approaches have been
followed in the literature. FSVM-CIL [36] used different
parameters and fuzzy membership functions, one-class SVM
[37] used conformal kernel, boosting based SVM [38], scaling
kernel-based SVM [39], hybrid sampling based SVM [40],
weighted least squares projection twin SVMs with local infor-
mation [41], fuzzy least squares twin SVMs [42], two-norm
squared fuzzy based least squares twin parametric-margin
SVM [43], fuzzy total margin based SVM [44] and maximum
margin twin spheres SVM [45] for imbalanced data classi-
fication. Recently, entropy-based fuzzy SVM [46] assigned
weights using information entropy. The down side of this
model is that higher weights are assigned to those samples of
majority which are outliers hence outliers are emphasized re-
sulting in lower performance. Twin SVM models based on in-
formation entropy to handle the class imbalance problems have
also been proposed [47]–[49]. The universum based approach,
known as reduced universum twin SVM for class imbalance
learning [50], used universum data points to handle the class
imbalance problem. Robust fuzzy least squares twin SVMs
(RFLSTSVM) for class imbalance learning [51] introduced
a new membership function which takes imbalance ratio of
the data samples into consideration. RFLSTSVM implements
the empirical risk minimization principle and is based on the
assumption that the inverse of the matrices resulting from
the dual formulation always exist as the matrices are positive
semi-definite. To overcome these issues in RFLSTSVM, we
propose regularized robust fuzzy least squares twin SVMs
(RRFLSTSVM) for class imbalance learning by introducing
the regularization term in the primal formulation of the
RFLSTSVM. The advantages of the proposed RRFLSTSVM
over RFLSTSVM are:

• The proposed RRFLSTSVM implements structural risk
minimization principle while as RFLSTSVM minimizes
the empirical risk.

• The proposed RRFLSTSVM doesn’t require any extra
assumption as the matrices resulting in the dual of the
proposed RRFLSTSVM are positive definite. However,
RFLSTSVM is based on the assumption that the inverse
of the matrices resulting in the dual always exist as the
matrices are positive semi-definite.

The paper outline is given as: brief introduction is given
in Section I, Section II gives related work, and the proposed
work is discussed in Section III. Experimental evaluation and
discussion are given in V and concluding remarks are given
in Section VI.

In this paper, all vectors are column vectors unless trans-
posed to a row vector. The vector of ones with appropriate
dimensions is given by ei, i = 1, 2. Consider a binary classi-
fication problem, with the minority class samples termed as
positive samples A ∈ Rm1×n, majority class samples termed
as negative samples B ∈ Rm2×n of the training set, n is the

dimension of each sample and m1 +m2 are the total number
of samples in training set. Imbalance ratio (IR) is defined as

IR =
Number of negative samples
Number of positive samples

. (1)

II. RELATED WORK

Here, we will give the formulation of baseline methods-
twin SVM (TWSVM) [8], least squares twin SVM (LSTSVM)
[9], fuzzy twin SVMs (FTWSVM) [36] and robust fuzzzy least
squares twin SVMs (RFLSTSVM) [51].

A. TWSVM

The primal formulation of the TWSVM [8] is given as:

min
w1,b1

1

2
‖K(A,Dt)w1 + eb1‖2 + c1e

tξ1

s.t. − (K(B,Dt)w1 + eb1) + ξ1 ≥ e, ξ1 ≥ 0e (2)

and

min
w2,b2

1

2
‖K(B,Dt)w2 + eb2‖2 + c2e

tξ2

s.t. (K(A,Dt)w2 + eb2) + ξ2 ≥ e, ξ2 ≥ 0e. (3)

The dual of quadratic programming problems (QPPs) (2)
and (3) in terms of Lagrange multipliers α and β are given as
follows:

Max
α

etα− 1

2
αtG(HtH)−1Gtα (4)

s.t. 0e ≤ α ≤ c1e,

where G = [K(B,Dt) e] and H = [K(A,Dt) e], and

Max
β

etβ − 1

2
βtP (QtQ)−1P tβ (5)

s.t. 0e ≤ β ≤ c2e,

where Q = [K(B,Dt) e] and P = [K(A,Dt) e]. After
solving (4) and (5), the optimal hyperplanes are given as :[

w1

b1

]
= −(HtH)−1Gtα, (6)[

w2

b2

]
= (QtQ)−1P tβ. (7)

B. LSTSVM

Least squares twin SVM (LSTSVM) [9] solves a system of
linear equations instead of QPPs, hence this leads to the high
computational efficiency.

The objective function of the LSTSVM are given as:

min
w1,b1

1

2
‖K(A,Dt)w1 + e1b1‖2 +

c1
2
ξt1ξ1 (8)

s.t. − (K(B,Dt)w1 + e2b1) + ξ1 = e2,

and

min
w2,b2

1

2
‖(K(B,Dt)w2 + e2b2)‖2 +

c2
2
ξt2ξ2 (9)

s.t. K(A,Dt)w2 + e1b2 + ξ2 = e1.



Substituting the equality constraints in the corresponding
objective function, we have

min
w1,b1

1

2
‖(K(A,Dt)w1 + e1b1)‖2

+
c1
2
‖K(B,Dt)w1 + e2b1 + e2‖2. (10)

Take the gradient of QPP (10) w.r.t. w1 and b1 and set it to
zero, and writing in matrix notation, we get[

w1

b1

]
= −(F tF +

1

c1
EtE)−1F te2, (11)

where E = [K(A,Dt) e1] and F = [K(B,Dt) e2].
With the similar approach followed for solving QPP (9)[

w2

b2

]
= (EtE +

1

c2
F tF )−1Ete1. (12)

C. FTWSVM

Here, the distance based fuzzy membership functions [36]
is used in TWSVM [8] formulation. The primal formulation
of the FTWSVM are given as

min
w1,b1,ξ1

1

2
‖K(A,Dt)w1 + e1b1‖2 + c1s

t
2ξ1

s.t. − (K(B,Dt)w1 + e2b1) + ξ1 ≥ e2, ξ1 ≥ 0 (13)

and

min
w2,b2,ξ2

1

2
‖K(B,Dt)w2 + e2b2‖2 + c2s

t
1ξ2

s.t. K(A,Dt)w2 + e1b2 + ξ2 ≥ e1, ξ2 ≥ 0, (14)

where slack variables are given as ξ1, ξ2, penalty parameters
as c1, c2 and s1, s2 denote fuzzy membership weights. Here,
fuzzy membership function assigns weights based on the
distance of each sample from the class centroid. If d denotes
the sample distance from the class centroid and δ is a small
positive integer then the fuzzy membership function is given
as:

fmem = 1− d

max(d) + δ
. (15)

Following the same procedure as in TWSVM for solving
the objective functions (13) and (14), we have the dual as

min
α

1

2
αT (StS)T tα− et2α

s.t. 0 ≤ α ≤ αs2c1 (16)

and

min
β

1

2
βS(T tT )Stβ − et1β

s.t. 0 ≤ β ≤ βs1c2, (17)

where T = [K(B,Dt) e2] and S = [K(A,Dt) e1].
The optimal hyperplanes are given as[
w1

b1

]
= −(StS + δI)−1T tα and

[
w2

b2

]
= (T tT + δI)−1Stβ,

where δ is a small value to avoid the ill conditioning of the
matrices.

D. RFLSTSVM

The objective functions of the robust fuzzy least squares
twin SVM (RFLSTSVM) [51] are as follows:

min
w1,b1,ξ1

1

2
‖K(A,Dt)w1 + e1b1‖2 +

c1
2
(s2ξ1)

t(s2ξ1)

s.t. − (K(B,Dt)w1 + e2b1) + ξ1 = e2, (18)

and

min
w2,b2,ξ2

1

2
‖K(B,Dt)w2 + e2b2‖2 +

c2
2
(s1ξ2)

t(s1ξ2)

s.t. K(A,Dt)w2 + e1b2 + ξ2 = e1, (19)

where A and B denote classes of the minority (class-1)
and majority (class-2), respectively, s1 and s2 denote fuzzy
membership functions and ξ1, ξ2 are the slack variables.

The function for assigning the fuzzy weights to the samples
is given as

fmem =

1, for positive class data points,

z + z(
exp(c0(

d1−d2
d − d2

r2
)−exp(−2c0))

exp(c0)−exp(−2c0)
), otherwise.

(20)

Here, z = 1
1+IR , IR is imbalance ratio, d1, d2 represents the

Euclidean distance of the data samples from the positive and
negative class, respectively, d is distance between the class
centroids, and negative class maximum distance from centroid
is given by r2, c0 is the exponential scale of the membership
function.

Following the similar approach as in LSTSVM for solving
the QPPs (18) and (19), the optimal hyperplanes are given as[

w1

b1

]
= −(T tT +

1

c1
RtR)−1T ts2e1, (21)

where R = [A e1] and T = [s2B2 s2e2] and[
w2

b2

]
= (RTR+

1

c2
T tT )−1Rts1e1, (22)

where R = [s1A s1e1] and T = [B e2].

III. PROPOSED REGULARIZED ROBUST FUZZY LEAST
SQUARES TWIN SVMS (RRFLSTSVM)

In this section, we present the proposed RRFLSTSVM
formulation for both linear and non-linear cases.

A. Linear RRFLSTSVM

The objective function of the proposed RRFLSTSVM for
linear case is given as:

min
w1,b1

c3
2
(‖w1‖2 + b21) +

1

2
ηt1η1 +

c1
2
(s2ξ2)

t(s2ξ2)

s.t. Aw1 + e2b1 = η1,

− (Bw1 + e1b1) + ξ2 = e1, (23)



and

min
w2,b2

c4
2
(‖w2‖2 + b22) +

1

2
ηt2η2 +

c2
2
(s1ξ1)

t(s1ξ1)

s.t. Bw2 + e1b2 = η2,

(Aw2 + e2b2) + ξ1 = e2, (24)

where A,B are the matrices of minority and majority class
and m1,m2 are the dimensions of fuzzy membership vectors
s2 and s1, respectively.

Substituting the constraints of (23) in its objective function,
we have

min
w1,b1

c3
2
(‖w1‖2 + b21) +

1

2
‖Aw1 + e2b1‖2

+
c1
2
‖s2((Bw1 + e1b1) + e1)‖2. (25)

Setting the gradient of (25) w.r.t. w1 and b1 to zero, and writing
in matrix notation, we get[

w1

b1

]
= −

[
T tT + 1

c1
RtR+ c3

c1
I
]−1

(T ts2e1). (26)

where R = [A e2] and T = [s2B s2e1].
Similarly, the solution of QPP (24) is given as:[

w2

b2

]
= [RtR+

1

c2
T tT +

c4
c2
I]−1(Rts1e2), (27)

where R = [s1A s1e2] and T = [B e1].

B. Non-Linear RRFLSTSVM

The objective function of the proposed RRFLSTSVM for
non-linear case is given as:

min
w1,b1

c3
2
(‖w1‖2 + b21) +

1

2
ηt1η +

c1
2
(s2ξ2)

t(s2ξ2) (28)

s.t. K(A,Dt)w1 + e2b1 = η1, (29)
− (K(B,Dt)w2 + e1b1) + ξ2 = e1 (30)

and

min
w2,b2

c4
2
(‖w2‖2 + b22) +

1

2
ηt2η +

c2
2
(s1ξ1)

t(s1ξ1) (31)

s.t. K(B,Dt)w2 + e1b2 = η2, (32)
K(A,Dt)w2 + e2b1 + ξ1 = e2, (33)

where A,B denote the matrices of minority and majority class
and m1,m2 are the dimensions of fuzzy membership vectors
s2 and s1, respectively. Also, D = [A;B],K(A,Dt) and
K(B,Dt) are the kernel matrices.

On the similar lines to linear case, we can obtain the
following[

w1

b1

]
= −

[
T tT + 1

c1
RtR+ c3

c1
I
]−1

(T ts2e1). (34)

where R = [K(A,Dt) e2] and T = [s2K(B,Dt) s2e1]
and the second optimal hyperplane as follows

[
w2

b2

]
=
[
RtR+ 1

c2
T tT + c4

c2
I
]−1

(Rts1e2), (35)

where T = [K(B,Dt) e1] and R = [s1K(A,Dt) s1e2].
Note that in both linear and non-linear cases of the proposed

RRFLSTSVM, samples are weighted by the fuzzy membership
function given in (20).

To reduce the inverse computation time, we use Sher-
man–Morrison–Woodbury (SMW) [52] formula.

Classification of the test sample x ∈ Rn is based on the min-
imum perpendicular distance of the sample from the optimal
hyperplanes K(xt, Dt)w1+b1 = 0 and K(xt, Dt)w2+b2 = 0.

It should be noted that adding the regularization term
makes both the matrices

[
T tT + 1

c1
RtR+ c3

c1
I
]−1

and[
RtR+ 1

c2
T tT + c4

c2
I
]−1

as positive definite, hence, the pro-
posed RRFLSTSVM method is more robust and stable as
compared to RFLSTSVM and LSTSVM methods.

IV. COMPUTATIONAL COMPLEXITY

The time complexity of TWSVM is of the order of O(2×
(m2 )

3) for a balanced dataset of size m. In the formulation
of LSTSVM, two matrix inversions are computed of the size
(m + 1) where m = m1 + m2 is the size of the training
set. To reduce the computation further, SMW [52] is used
which requires inversions of matrices smaller than (m+1). The
size of the matrices involved in the optimization problem of
RFLSTSVM model is same as that LSTSVM model. However,
additional complexity is involved for the computation of fuzzy
weights. The complexity of fuzzy membership of RFLSTSVM
model is O(m1) where m1 is size of negative class samples
as the samples of positive class are assigned weights as 1.

The computational complexity of the proposed
RRFLSTSVM is similar to RFLSTSVM model as the
size of the matrices involved in the optimization problem
of the proposed RRFLSTSVM model is similar to that of
RFLSTSVM model.

V. NUMERICAL EXPERIMENTS

In this subsection, we evaluate the proposed RRFLSTSVM
method with the baseline methods i.e. TWSVM [8], LSTSVM
[9], FTWSVM [36], RFLSTSVM [51] on various imbalanced
datasets based on the accuracy and training time. The details
of the datasets [53], [54] are given in Table-I. In Table-I, first
column gives the dataset name, training and testing dataset
sizes are given in second column, imbalance ratio in the whole
dataset is given in third column and imbalance ratio of the
training dataset is given in fourth column. For example, ecoli−
0− 1− vs− 5 is divided into training and testing set of sizes
120 × 6 each, with the imbalance ratio (IR) equal to 11 in
whole dataset and 16.429 in the training set.

In the given experiments, we used five-fold cross validation
to evaluate the performance of the given baseline methods
and the proposed RRFLSTSVM method. All the experiments
were performed in Matlab R2017a on the machine Intel(R)
core(TM) i7−6700 processor with 8GB RAM. We employed
non-linear kernel (Gaussian kernel) K(xi, xj) = −‖xi −
xj‖2/µ2 where xi, xj ∈ Rm and µ is the kernel parame-
ter in the given experiments. We used grid search method
to obtain the optimal parameters. The optimal parameters



TABLE I: Dataset details

Datasets (Train-size,Test-size) IR(All) IR(Train)
ecoli-0-1-vs-5 (120× 6, 120× 6) 11 16.1429
ecoli-0-1-4-7-vs-5-6 (150× 6, 182× 6) 12.28 10.5385
ecoli-0-2-3-4-vs-5 (100× 7, 102× 7) 9.1 6.69231
ecoli-0-2-6-7-vs-3-5 (110× 7, 114× 7) 9.18182 7.46154
ecoli-0-4-6-vs-5 (100× 6, 103× 6) 9.15 11.5
ecoli-0-6-7-vs-3-5 (110× 7, 112× 7) 9.09091 12.75
segment0 (500× 19, 1808× 19) 6.0152 6.04225
heart-stat (130× 13, 140× 13) 0.8 0.830986
ripley (600× 2, 650× 2) 1 1.07612
shuttle-c0-vs-c4 (900× 9, 929× 9) 13.8699 13.5161
ecoli-0-1-4-6-vs-5 (150× 6, 130× 6) 13 9.71429
vowel (500× 10, 488× 10) 9.97778 9.86957
brwisconsin (300× 9, 383× 9) 0.538288 0.875
vehicle2 (400× 18, 446× 18) 2.88073 2.47826
shuttle-6-vs-2-3 (100× 9, 130× 9) 22 19
pima (300× 8, 468× 8) 1.86567 1.63158
new-thyroid1 (100× 5, 115× 5) 5.14286 3.54545
yeast1 (500× 8, 2468× 8) 2.45921 2.96825
segment0 (500× 19, 1808× 19) 6.0152 6.04225
ecoli0137vs26 (180× 7, 131× 7) 4.75926 4.625
cleve (150× 13, 147× 13) 1.16788 1.23881
votes (200× 16, 235× 16) 1.58929 1.5974
aus (300× 14, 390× 14) 1.24756 1.12766
iono (200× 33, 151× 33) 0.56 0.834862

are chosen from the following range of parameters c1 =
[10−5, ..., 105], c3 = [10−5, ..., 105], µ = [2−5, ..., 25], c0 =
[0.5, 1, 1.5, 2, 2.5]. The parameters for TWSVM, LSTSVM,
FTWSVM , RFLSTSVM and proposed RFLSTSVM are set
c1 = c2. Also, for proposed RFLSTSVM we used c3 = c4 for
evaluation.

A. Results and Discussion

The evaluation of the baseline methods and the proposed
RRFLSTSVM method is performed on the datasets [53], [54].
The results obtained are given in Table-II. One can see from
the given table that the proposed method achieved highest
accuracy and lowest rank.

We perform statistical analysis to evaluate the effectiveness
of the proposed RRFLSTSVM method. The average ranks of
the given baseline methods and the proposed RRFLSTSVM
method are presented in Table-II. We use Friedman test and
Nemenyi post hoc test [55] to evaluate the performance of 5
methods on 24 datasets. Under null hypothesis, all the given
models are assumed to be equal. The Friedman statistic χ2 is
given as follows:

χ2 =
12N

K(K + 1)

[∑K
j=1R

2
j −

K(K+1)2

4

]
, (36)

where K is the number of models evaluated on N datasets
and

FF =
(N − 1)χ2

N × (K − 1)− χ2
, (37)

where FF is distributed with F ((K − 1), (N − 1)(K −
1)) = F (4, 92) = degrees of freedom with 5 methods and
24 datasets. After calculation, we get χ2 = 13.7385 and
FF = 3.8412. At 5% level of significance, the critical value
of F (4, 92) = 2.465. Since 3.8412 > 2.465, hence we reject
the null hypothesis. We use Nemenyi post hoc test to evaluate

the methods in pairwise. To show that significant difference
exists between the two methods, the average ranks of the two
methods must differ by at least the critical difference (cd)
given as

cd = qα

√
K(K + 1)

6N
. (38)

At 5% level of significance, q0.05 = 2.728 for the evaluation
of 5 methods. After calculation, we have cd = 1.2452. The
difference of average ranks of pair of methods (RFLSTSVM,
LSTSVM)= 1.4166, (RFLSTSVM, FTWSVM)= 1.5 which
is greater than cd = 1.2452 hence, proposed RRFLSTSVM
is better than LSTSVM and FTWSVM methods. However,
Nemenyi test fails to detect the significant difference between
the RRFLSTSVM, TWSVM and RRFLSTSVM, FLSTSVM.
But one can see from Table-II that the proposed RRFLSTSVM
achieved better performance and lower rank as compared to
the given baseline methods.

Figure 1 shows the effect of parameters c1 and c3 on the per-
formance of the proposed RRFLSTSVM method. In Figures
(1a), (1b), (1c) and (1e), one can see that the performance
is better in the middle range of c1 and c3 parameters. In
Figure (1d), one can see that the performance of the proposed
RRFLSTSVM method is lower at higher values of c1 and
c3 and is higher in the middle range of c1 parameters. In
Figure (1h), the performance decreases at higher values of c3
and lower values of c1 after a certain range. Hence, given the
effect of parameters the model parameters need to be chosen
carefully to get the optimal performance.

VI. CONCLUSION AND FUTURE WORK

To summarise the paper, we proposed regularized robust
fuzzy least squares twin SVM (RRFLSTSVM) to handle the
imbalance problem in classification tasks. In the proposed
RRFLSTSVM method, regularization term is incorporated in
the primal formulation of the objective function to imple-
ment the structural risk minimization principle. The proposed
RRFLSTSVM method is not based on any assumptions as
the matrices resulting from the dual formulation are positive
definite. Hence, the proposed RRFLSTSVM model is more
robust and stable as compared to RFLSTSVM method. The
proposed RRFLSTSVM method is more efficient as compared
to the TWSVM, the former solves the system of equations
while as the latter solves a pair of quadratic programming
problems for obtaining the optimal hyperplanes. The perfor-
mance of the proposed RRFLSTSVM method is evaluated on
multiple datasets. From the given results, one can see that the
proposed RRFLSTSVM method achieved better generalization
and lower rank. The statistical analysis further validate the
efficiency of the proposed RRFLSTSVM method. In future, we
would like to extend the work to multiclass datasets with class
imbalance problems. Furthermore, solving the optimization
problems more efficiently is another future directions. One can
also focus on extending this work to large scale problems.
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Fig. 1: Impact of varying the parameters c1 and c3 on the proposed RRFLSTSVM method.



TABLE II: Comparison of classification models on multiple datasets based on non-linear kernel (Gaussian-kernel)

Datasets TWSVM LSTSVM FTWSVM RFLSTSVM Proposed RRFLSTSVM
(Accuracy,Time) (Accuracy,Time) (Accuracy,Time) (Accuracy,Time) (Accuracy,Time)
(c1, µ ) (c1, µ ) (c1, µ ) (c0, c1, µ ) (c0, c1, c3, µ )

ecoli-0-1-vs-5 89.1667,0.0126 89.1667, 0.0014 76.9231, 0.0179 84.6154, 0.0107 91.4809, 0.0119
(0.00001, 0.03125) (0.00001, 0.03125) (0.00001, 16) (0.5, 0.001, 32) (2.5, 0.00001, 10, 32)

ecoli-0-1-4-7-vs-5-6 93.4066,0.0128 93.4066, 0.0028 83.0392, 0.0249 90.7843, 0.0239 90.7843, 0.0169
(0.00001, 0.03125) (0.00001, 0.03125) (0.01, 32) (0.5, 0.0001, 32) (0.5, 0.0001, 0.00001, 32)

ecoli-0-2-3-4-vs-5 93.1373,0.008 93.1373, 0.0012 100, 0.0141 98.9474, 0.0114 93.6842, 0.0086
(0.00001, 0.03125) (0.00001, 0.03125) (0.1, 32) (1.5, 0.0001, 32) (0.5, 0.00001, 10, 32)

ecoli-0-2-6-7-vs-3-5 92.1053,0.0122 92.1053, 0.0015 61.1111, 0.0157 66.1905, 0.0098 86.9841, 0.0095
(0.00001, 0.03125) (0.00001, 0.03125) (0.001, 32) (0.5, 0.1, 32) (1.5, 0.01, 1, 32)

ecoli-0-4-6-vs-5 88.3495,0.011 88.3495, 0.0016 75, 0.0149 90.5678, 0.0092 96.7033, 0.0099
(0.00001, 0.03125) (0.00001, 0.03125) (0.001, 32) (0.5, 0.00001, 32) (2, 0.00001, 10, 16)

ecoli-0-6-7-vs-3-5 87.5,0.0112 87.5, 0.0018 64.2857, 0.0161 81.6327, 0.0094 82.1429, 0.0095
(0.00001, 0.03125) (0.00001, 0.03125) (0.001, 16) (0.5, 0.0001, 32) (1, 0.001, 0.0001, 32)

segment0 91.0951,0.1464 91.0951, 0.0735 97.8037, 0.2086 98.902, 0.36 99.0958, 0.1888
(0.0001, 32) (0.01, 32) (100, 32) (0.5, 0.1, 32) (1, 0.1, 0.0001, 32)

heart-stat 55.7143,0.0211 55.7143, 0.002 68.4167, 0.0196 64.4325, 0.0133 66.8188, 0.0149
(0.0001, 16) (0.0001, 32) (0.1, 32) (0.5, 1, 32) (0.5, 0.00001, 0.001, 32)

ripley 90.9231,0.0922 89.2308, 0.0517 90.9387, 0.2731 91.9595, 0.2595 90.9909, 0.2569
(0.1, 0.03125) (0.01, 0.25) (0.1, 0.5) (1, 1, 0.5) (1, 10, 100, 0.125)

shuttle-c0-vs-c4 98.493,0.2203 98.1701, 0.1431 97.541, 0.6835 99.9424, 0.6192 99.9424, 0.5932
(0.0001, 32) (0.01, 32) (0.00001, 32) (1, 0.1, 32) (1, 0.1, 0.00001, 32)

ecoli-0-1-4-6-vs-5 95.3846,0.0125 95.3846, 0.0021 91.6667, 0.0254 91.6667, 0.0173 95.9677, 0.0166
(0.00001, 0.03125) (0.00001, 0.03125) (0.01, 32) (0.5, 0.01, 32) (2.5, 0.1, 10, 16)

vowel 97.1311,0.0715 96.3115, 0.0272 94.1032, 0.2012 97.1744, 0.1837 97.0618, 0.1767
(1, 32) (1, 2) (0.1, 32) (2, 0.1, 32) (2.5, 1, 0.0001, 32)

brwisconsin 98.1723,0.0244 97.6501, 0.0084 97.6046, 0.07 97.3592, 0.0683 98.2626, 0.0712
(0.00001, 8) (0.0001, 4) (10, 32) (2, 0.01, 16) (2, 0.1, 1, 16)

vehicle2 80.2691,0.0542 80.2691, 0.0264 92.7666, 0.1315 97.3294, 0.1195 94.8994, 0.1115
(0.0001, 32) (0.01, 32) (0.01, 32) (0.5, 0.1, 32) (2.5, 0.001, 0.0001, 32)

shuttle-6-vs-2-3 96.1538,0.0104 96.1538, 0.0017 60, 0.0146 60, 0.0112 98.8, 0.0076
(0.00001, 0.03125) (0.00001, 0.03125) (0.00001, 32) (0.5, 0.00001, 32) (1.5, 0.00001, 1, 32)

pima 67.9487,0.0371 67.5214, 0.0146 67.8716, 0.0699 64.3478, 0.0625 68.2583, 0.0609
(0.00001, 32) (0.001, 32) (0.00001, 32) (2.5, 0.001, 32) (0.5, 10, 100, 32)

new-thyroid1 98.2609,0.0185 96.5217, 0.0016 100, 0.0136 99.0196, 0.0083 99.0196, 0.0075
(0.01, 32) (0.001, 16) (0.00001, 32) (2, 0.1, 32) (2, 0.1, 0.0001, 32)

yeast1 74.8784,0.0598 75.2026, 0.0337 69.3355, 0.1882 69.8818, 0.1846 69.9169, 0.1832
(0.1, 0.25) (0.1, 1) (0.00001, 2) (1, 0.1, 2) (2.5, 0.001, 0.001, 0.25)

segment0 91.0951,0.1365 91.0951, 0.0723 97.8037, 0.2128 98.902, 0.2005 99.0958, 0.1809
(0.0001, 32) (0.01, 32) (100, 32) (0.5, 0.1, 32) (1, 0.1, 0.0001, 32)

ecoli0137vs26 94.6565,0.0335 93.8931, 0.0032 93.1818, 0.0315 96.8098, 0.0228 95.4337, 0.0234
(0.001, 0.125) (0.1, 1) (1, 1) (0.5, 0.1, 16) (1, 0.1, 100, 0.25)

cleve 76.8707,0.0192 78.9116, 0.003 82.5974, 0.023 79.1558, 0.0164 82.013, 0.0159
(0.01, 32) (0.1, 8) (0.00001, 32) (2, 1, 16) (0.5, 0.1, 0.001, 32)

votes 96.1702,0.0219 95.3191, 0.0042 97.02, 0.0363 95.6311, 0.0294 95.6311, 0.0354
(0.01, 32) (0.0001, 8) (10000, 32) (2, 1, 32) (2, 1, 0.00001, 32)

aus 84.6154,0.0235 77.9487, 0.0104 85.8514, 0.07 86.7766, 0.0641 86.5426, 0.0618
(0.1, 32) (1, 32) (0.1, 8) (1, 1, 16) (2.5, 1, 0.1, 4)

iono 92.053,0.0199 92.7152, 0.005 84.9877, 0.0375 84.8522, 0.0299 90.5665, 0.0317
(0.1, 32) (1000, 0.5) (0.1, 4) (2.5, 1, 8) (0.5, 1, 0.01, 4)

Average Accuracy 88.4813 88.0322 84.5771 86.9534 90.4207
Average Rank 3.0417 3.4583 3.5417 2.9167 2.0417
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