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Abstract—Slot tagging is a key component in a task-oriented
dialogue system. Conversational agents need to understand hu-
man input by training on large amounts of annotated data.
However, most human languages are low-resource and lack
annotated training data for slot tagging task. Therefore, we aim
to leverage cross-lingual transfer learning from high-resource
languages to low-resource ones. In this paper, we propose an
adversarial cross-lingual transfer model with multi-level language
shared and specific knowledge to improve the slot tagging task
of low-resource languages. Our method explicitly separates the
model into the language-shared part and language-specific part
to transfer language-independent knowledge. To refine shared
knowledge in the latent space, we add a language discriminator
and employ adversarial training to reinforce feature separation.
Besides, we adopt a novel multi-level feature transfer in an
incremental and progressive way to acquire multi-granularity
shared knowledge. To mitigate the discrepancies between the
feature distributions of language specific and shared knowledge,
we propose the neural adapters to fuse features from different
sources. Experiments show that our proposed model consistently
outperforms monolingual baseline with a statistically significant
margin up to 2.09%, even higher improvement of 12.21% in the
zero-shot setting. Further analysis demonstrates that our method
could effectively alleviate data scarcity of low-resource languages.

Index Terms—slot tagging, cross-lingual transfer learning,
language discriminator, multi-level knowledge representation,
neural adapter

I. INTRODUCTION

Goal-oriented dialogue systems rely on a slot tagging com-
ponent to extract key information from the natural language
used in conversation [1]–[3]. Slot tagging aims to obtain the
semantic structure for a given utterance. For instance, given an
utterance ”What flights travel from las vegas to los angeles”,
slot tagging captures the semantic labels for each tokens where
the label ”B-fromloc” denotes the corresponding token ”las”
as the beginning token of original location. The state-of-the-art
models [4], [5] guarantee exceptionally high accuracy on the
task under the availability of large-scale annotated datasets.
However, more than 6,500 low-resource languages around the
world lack the labeled data necessary for training these deep
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models. In this paper, we concentrate on adversarial multi-level
cross-lingual transfer learning from high-resource languages
to low-resource languages to improve the slot tagging task of
low-resource languages.

The challenges of cross-lingual transfer learning are two-
folds: (1) Multilingual shared knowledge for transfer learning
should comprise different levels of linguistic features from
multi-sources. It’s essential to define and obtain knowledge in
a unified way. (2) Integration at each level of the knowledge
hierarchy should be adopted and discrepancies between lan-
guages must be considered. Existing approaches [6]–[8] for
the cross-lingual SLU task use auxiliary machine translation
procedure to either generate supervision in the target language
automatically or convert the test data to English. However,
these approaches will fail in languages for which machine
translation is not reliable, or even unavailable. Other works
[8]–[12] employ a language-shared encoding layer, such as
character embedding, aligned word embedding or context
encoder. All the methods only focus on weight sharing but
ignore the discrepancy between languages. Besides, most
of the models just consider single-layer parameter transfer.
Nevertheless, multi-level linguistic knowledge and integration
at each layer of the feature hierarchy are essential to cross-
lingual transfer learning.

Inspired by the previous works, our motivations are two-
folds: (1) Linguistic knowledge between languages consists
of language shared and specific parts and should be sep-
arated explicitly. Integration of two parts needs to tackle
discrepancies between languages. (2) Multi-level knowledge
transfer and feature hierarchy should be considered. In this
paper, we propose a multi-level cross-lingual transfer model
with language shared and specific knowledge to boost the
performance of monolingual slot tagging for low-resource
languages. Specifically, we explicitly separate the model into
the language-shared part and language-specific part to issue the
discrepancies between languages. To refine shared knowledge,
we add a language discriminator acting as a classifier to
determine which language the knowledge encoded in the
language-shared feature extractor belongs to. Besides, we
adopt multi-level knowledge transfer including char-level em-
beddings, word-level representation, sentence-level semantics,
and tag-level correlation in an incremental and progressive way
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to acquire multi-granularity shared knowledge. To mitigate
the disparities between the feature distributions of language
specific and shared knowledge, we propose the neural adapters
to fuse them automatically rather than direct concatenation.

Generally, our main contributions are:
1) We propose a cross-lingual slot tagging framework ex-

plicitly leveraging both language shared and specific
knowledge.

2) Our model adopts multi-level cross-lingual knowledge
transfer including char-level embeddings, word-level
representation, sentence-level semantics, and tag-level
correlation. Linguistic knowledge can be integrated at
each layer of the feature hierarchy via the neural
adapters.

3) We add a language discriminator to the shared feature
extractor and employ adversarial training for the whole
model to reinforce the performance of feature separation
and slot tagging simultaneously.

II. MONOLINGUAL BASELINE ARCHITECTURE

In this paper, we mainly focus on the fundamental slot
tagging task. The goal of slot tagging is to assign a cat-
egorical label to each token in a given sentence. Though
traditional methods such as Hidden Markov Models (HMMs)
and Conditional Random Fields (CRFs) [13], [14] achieved
high performance on slot tagging tasks, they typically relied
on hand-crafted features, therefore it is difficult to adapt them
to new tasks or languages. Recently plentiful proposals based
on the neural network [15], [16] have been proved to make a
significant difference.

Therefore, we design our monolingual baseline architecture
adopted from the LSTM-CNNs [16] as shown in Fig 1. First,
each word xi is represented as the concatenation ri of word
embedding and character embedding which is extracted from
a CharCNN network. Then, a bidirectional LSTM processes
the sequence R = {r1, ..., rL} where L is the length of the
input sentence. The output of biLSTM is a sequence H =
{h1, ..., hL} consisting of L fixed-size vectors. Next, a linear
layer transforms each hi to a score vector yi, in which each
component represents the predicted score of a target tag. To
model correlations between tags, a CRF layer is added at the
top to generate the best tagging path for the whole sequence.

III. ADVERSARIAL CROSS-LINGUAL TRANSFER
LEARNING WITH LANGUAGE SHARED AND SPECIFIC

KNOWLEDGE

In this part, we will adequately delineate our multi-level
cross-lingual model with language shared and specific knowl-
edge via transfer learning. We start from a brief description of
the overall architecture and then dive into the details of each
part of the proposed model.

Suppose that we have a dataset Ds = {(Xi, Yi)}Ns

i=1

of English, where s represents the source language, Xi =
(x1, ..., xL) is the input sequence and Yi = (y1, ..., yL) is the
corresponding tag sequence. Ns is the size of the dataset Ds.
Analogical to the notations of English dataset Ds, the Spanish
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Input Sequence

Bidirectional RNN Encoder

Linear Layer

score 
vectors

CRF Layer
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Fig. 1. Monolingual baseline architecture for slot tagging.

dataset is formalized as Dt = {(Xj , Yj)}Nt

j=1. In this paper, we
aim at improving the performance of low-resource languages
via multi-level cross-lingual transfer learning. Therefore, we
use the dataset from [8] where Ns ≈ 8.5Nt. See more detailed
statistical summary in the dataset section. 1

A. Model Overview

Fig 2 illustrates the full architecture of our multi-level
cross-lingual model. Generally, the proposed model contains
three submodules represented by the three columns in the
figure respectively. Thereof, the left and right columns denote
language-specific slot tagging models for English and Spanish
respectively and the middle column performs as a language-
shared feature extractor. The main idea of our method is
to transfer language-shared knowledge from the multilingual
setting to improve the monolingual slot tagging, especially for
low-resource languages. To acquire multi-granularity shared
knowledge with significant generalization capability and avoid
catastrophic forgetting, we adopt multi-level knowledge trans-
fer including char-level embeddings, word-level representa-
tion, sentence-level semantics, and tag-level correlation in
an incremental and progressive way via neural adapters. By
combining previously learned features in this manner, our
model achieves richer compositionality, in which prior knowl-
edge is no longer transient and can be integrated at each
layer of the feature hierarchy. Besides, we add a language
discriminator acting as a classifier to determine whether the
knowledge encoded in the language-shared feature extractor is
from English or Spanish. When a well-trained discriminator
can’t classify the language of the input sequence properly, we
can think the shared knowledge is language invariant [17].

In the subsequent sections, we will elaborate each com-
ponent of our multi-level cross-lingual model, and how they

1We describe our model based on the assumption that English is of high-
resource languages and Spanish is of low-resource languages. Our model can
still be applied to other languages.
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Fig. 2. The overall architecture of our multi-level cross-lingual model.

are combined to boost the performance of the monolingual
baseline model for slot tagging.

B. Shared Character Embeddings

On the first level of the proposed model, we construct the
basis of the architecture by sharing character-level embeddings
among all languages. This level of parameter sharing aims to
provide universal character representation and morphological
feature extraction capability for English and Spanish. We sup-
pose sharing character-level embeddings results in a common
character embedding space between the two languages, and
intuitively should allow for more efficient transfer learning at
the character level. 2

Character-level features can represent morphological and
semantic information; e.g., the English morpheme ”dis-”
usually indicates negation and reversal as in ”disagree” and
”disapproval”. For low-resource languages lacking data to
suffice the training of high-quality word embeddings, char-
acter embeddings learned from other languages may provide
crucial information for labeling, especially for rare and out-of-
vocabulary words. For example, the English word ”unhappi-
ness” acts as a noun, meaning ”not happy”. Even if it’s absent
in the vocabulary, the model may infer its meaning from the
suffix ”un” (present negation), root ”happy”, and the prefix
”ness” (represent nominalization).

Our implementation follows [16], employing a character-
level CNN to extract character-level features for each word.
Specifically, the model uses a character embedding matrix to
lookup a sequence of vectors, corresponding to each character
in a word. These vectors are subsequently feed into a convo-
lution layer with multiple kernels, followed by a max-pooling
layer.

2Our work mainly focus on languages with the same alphabet, not consid-
ering languages like Japanese which is written using an unsegmented mixture
of two syllabaries as well as thousands of Chinese characters. [10] proposed
a Mixed Orthographic Model (MOM) to tackle the issue. We leave it to our
future work.

C. Monolingual and Aligned Cross-Lingual Word Embeddings

In addition to character-level embeddings, word embeddings
are still essential to represent lexical and semantic information.
We develop an integration strategy of combining two kinds of
word embeddings for language shared and specific informa-
tion. For monolingual slot tagging submodules of English and
Spanish represented by the left and right columns in Fig 2,
we apply pre-trained English and Spanish word embeddings
respectively to capture language-specific knowledge. The for-
malization defines as follows:

rsi = ecxi
⊕ ewxi

,∀i = 1, . . . , Ls (1)
rtj = ecxj

⊕ ewxj
,∀j = 1, . . . , Lt (2)

where the final word representation rsi of English is the con-
catenation of shared character embeddings ecxi

and monolin-
gual pre-trained word embeddings ewxi

. Ls is the length of in-
put sequence. We could obtain the Spanish word representation
rtj in the same way. For the language-shared feature extractor,
we employ the multilingual word embeddings aligned to a
common vector space. The embeddings are pre-computed in
an offline fashion and are not adapted while training the whole
model. In our experiments, we use MUSE [18] cross-lingual
embeddings.

Since the word embeddings for source and target language
share a common vector space, the shared parts of the target
low-resource language model are capable of processing data
samples from the completely unseen target language and
perform accurate prediction, i.e. enabling zero-shot cross-
lingual slot tagging.

D. Multi-Layer Language Shared and Specific RNN Encoders
with Neural Adapters

Since we get char-level and word-level representations for
each word in addition to shared word embeddings, the pro-
posed model wishes to incorporate language-shared knowledge



to enhance the slot tagging of low-resource language via non-
linear neural adapters [19], [20].

Specifically, we use gate mechanism as the implementation
of neural adapters. Suppose the language-specific representa-
tion for source language rsi ∈ RE and the language-shared
representation ri ∈ RE , where E is the embedding size, the
output of neural adapter is calculated as follows:

g = σ(W g · [rsi ; ri] + bg) (3)
routi = g ⊗ rsi + (1− g)⊗ ri (4)

where W g ∈ RE×2E and bg ∈ RE are trainable parameters
in each neural adapter, σ(·) denotes sigmoid operation, and
⊗ denotes the element-wise multiplication. Here we only
give formula of neural adapter for source language, but it is
absolutely the same when it comes to target language.

In our work, we aim to transfer cross-lingual knowledge in
an incremental and progressive way. To mitigate the discrep-
ancies between the feature distributions of language specific
and shared knowledge, we propose the neural adapters to fuse
them. Besides, the neural adapters could automatically adjust
the appropriate scales of the different knowledge inputs and
avoid catastrophic forgetting.

The previous works [10]–[12], [20], [21] usually take care of
knowledge transfer of the top layer, immune to the inner fea-
ture hierarchy of multi-layer RNN encoders. We assume that
each layer of RNN encoders comprises coarse-to-fine granular-
ity complementary information, facilitating gains of sentence-
level semantics. Experiment results show that the incorporation
of multi-layer sentence-level semantics substantially boosts the
performance of natural language understanding under low-
resource settings.

E. Shared CRF Layer

In our experiment setting, English corpus Ds and Spanish
corpus Dt share the same tag set. Therefore, we design
the cross-lingual shared CRF layer to unearth the tag-level
correlation. For example, our model corrects Spanish phrase
[B-datetime veinte] [B-datetime minutos] (means twenty min-
utes in English) to [B-datetime veinte] [I-datetime minutos]
because the CRF layer trained on plenty of English sentences
assigns a low score to the rare transition (B-datetime, B-
datetime) and promotes (B-datetime, I-datetime). We expect
this tag-level correlation could help learn shared transition
knowledge from high-resource languages.

In the shared CRF layer, given an input sentence x of length
L and the tag scores y, the final score of a sequence of tags
z is defined as:

S(x,y, z) =

L∑
t=1

(
Azt−1,zt + yt,zt

)
(5)

where A is a transition matrix in which Ap,q represents the
binary score of transitioning from tag p to tag q, and yt,z
represents the unary score of assigning tag z to the t-th word.

TABLE I
SUMMARY STATISTICS OF THE DATASET WE USE. THE THREE VALUES IN

TABLE CELLS CORRESPOND TO THE NUMBER OF UTTERANCES IN THE
TRAINING, DEVELOPMENT, AND TEST SPLITS.

Number of utterances Slot typesDomain English Spanish

Alarm 9,282/1,309/2,621 1,184/691/1,011 2
Reminder 6,900/943/1,960 1,207/647/1,005 6
Weather 14,339/1,929/4,040 1,226/645/1,027 5

Total 30,521/4,181/8,621 3,617/1,983/3,043 11

Given the ground truth sequence of tags z, we maximize the
following objective function during the training phase:

O = logP (z|x)

= S(x,y, z)− log
∑
z̃∈Z

eS(x,y,z) (6)

where Z is the set of all possible tagging paths.

F. The Language Discriminator

The language discriminator aims at facilitating shared cross-
lingual features of the source language and target language
through adversarial learning. We would like to differentiate
the language-shared features from language-specific features
to improve the generalization capability of transfer learning.
When a well-trained discriminator can’t classify the language
of the input sequence properly, we can think the shared
knowledge is language invariant [17].

As the previous works [22], [23] applied CNN to some
related classification tasks, we construct our discriminator with
CNN in a homogeneous manner. First, the input to the CNN
is the context-aware representation H = {h1, . . . ,hL} of the
input sentence. We introduce a convolutional layer upon hi:

f i = Relu (Whi−k:i+k + b) (7)

where hi−k:i+k is the concatenation of vectors from hi−k to
hi+k, W and b are convolutional kernel and the bias term
respectively. k is the (one-side) window size of convolutional
layer. A number of different kinds of kernels with different
windows sizes are used in our work to extract different features
at different scales. Next, we apply a max-over-time pooling
operation over the feature maps to get a new feature map
f . Finally, the feature map is fed into a fully connected
network with a sigmoid activation function to make the final
predictions:

p(d) ∝ exp (Wd · f + bd) (8)

where d is the language label of source language English or
target language Spanish.

IV. EXPERIMENTS

A. Dataset

In our experiments, we use the cross-lingual slot tagging
dataset presented in [8]. The dataset contains English, Span-
ish and Thailand sentences annotated according to the same
annotation scheme, from which we select English as source
language and Spanish as target language. It consists of three



TABLE II
PERFORMANCE COMPARISON BETWEEN MONOLINGUAL AND CROSS-LINGUAL MODELS WITH DIFFERENT COMPONENTS.

Language Setting Model F1-score

Spanish

Monolingual Baseline without CRF 84.77
Monolingual Baseline(full model) 86.05
Cross-lingual Our method without CRF 86.12
Cross-lingual Our method without neural adapters 86.58
Cross-lingual Our method without language discriminator 86.98
Cross-lingual Our method(full model) 88.14*

English

Monolingual Baseline without CRF 94.85
Monolingual Baseline(full model) 95.49
Cross-lingual Our method without CRF 95.35
Cross-lingual Our method without neural adapters 95.69
Cross-lingual Our method without language discriminator 95.93
Cross-lingual Our method(full model) 96.05

domains: Alarm, Reminder and Weather. Note that we report
the scores on the overall dataset rather than single domain.

Table I contains several summary statistics of the dataset.
Note that the percentage of training examples as compared to
development and test examples is much higher for the English
data than for the Thai and Spanish data. We decided for a
more even split for the latter two languages so that we had a
sufficiently large data set for model selection and evaluation.

B. Implementation Details

We implement all slot tagging models within the AllenNLP
framework [24]. We train models for 500 epochs and select
the model that performs best on the development set via early
stopping. We use the Adam optimizer [25] with a learning
rate of 0.0001. We train our models with a batch size of
256 in the cross-lingual slot tagging dataset. We use dropout
of 0.2 in the BiLSTM and set the size of the BiLSTM
layers to 300 dimensions. For multilingual word embeddings
in the experiments, we use Multilingual Unsupervised or
Supervised word Embeddings(MUSE) to transfer word-level
shared knowledge.

C. Comparison of Different Models

In this part, we present the empirical results under different
experiment settings. In Table II, we compare our method with
the monolingual LSTM-CNNs model(denoted as baseline)
with/without CRF layer, our method without CRF, our method
without neural adapters and our method without language
discriminator for both target language Spanish and source lan-
guage English. All of the experiments above are performed on
the full dataset. We leave zero-shot transfer learning to the next
section. The numbers with * indicate that the improvement of
our model over all baselines is statistically significant with
p < 0.05 under t-test.

From Table II, we can see that our method substantially out-
performs the monolingual baseline model up to 2.09% in target
language Spanish. Meanwhile, the components we propose,
neural adapter and language discriminator, also consistently
achieve statistically significant improvements. Furthermore,
whether the CRF layer is applied to the slot tagging model
has little effect on performance improvement, which reveals

TABLE III
COMPARISON WITH STATE-OF-THE-ART MODELS. monolingual baseline IS

THE BASIC ARCHITECTURE WE EXPLAIN IN MONOLINGUAL BASELINE
ARCHITECTURE SECTION. our method IS THE OVERALL ARCHITECTURE

OF MULTI-LEVEL CROSS-LINGUAL MODEL WE PROPOSE.

Language Model F1-score

Spanish

monolingual baseline 86.05
NeuroNER [26] 86.72
multi-lingual multi-task [12] 87.90
ELMo [27] 88.01
Bert [28] 87.10
our method 88.14

changing the capacity of the model(such as adding more
RNN layers, changing different activation function, etc) does
not exacerbate the effect of our method. In other words,
our method obtains consistent performance gain from cross-
lingual knowledge transfer, whatever architecture of the basic
monolingual slot tagging model differs. Note that we employ
the same basic architecture of slot tagging model, except for
the progressive connections in all experiments. Therefore, we
could replace the baseline architecture with other slot tagging
models. For instance, the RNN layers could be substituted by
Transformer layers.

Results of source language English show that although we
design this method for low-resource settings, it also achieves
good performance in high-resource settings. The empirical re-
sults substantiate shared knowledge across different languages
facilitates natural language understanding, especially for low-
resource languages.

D. Comparison with State-of-the-Art Models

In Table III, we compare our model with more state-of-the-
art sequence tagging models using all Spanish and English
data. Both ELMo [27] and Bert [28] are recent methods of
contextual word representations, which have been proved to
drastically improve a large portion of tasks of natural language
understanding. In our experiments, we typically employ the
same setting as the original paper did. For emphasis, Spanish
represents the low-resource language as the source language
while English is referred to the target language. Since the



TABLE IV
SLOT TAGGING EXAMPLES OF SPANISH FROM THE MONOLINGUAL BASELINE MODEL AND OUR METHOD, EACH OF WHICH CONTAINS A SPANISH TEXT, A
CORRESPONDING ENGLISH TRANSLATION, RESULTS OF MONOLINGUAL BASELINE AND OUR METHOD. THE [GREEN] ( [RED]) HIGHLIGHT INDICATES

A CORRECT (INCORRECT) TAG. FOR SIMPLICITY, WE OMIT CORRECT O TAGS.

#1 Spanish text: ¿ Mi àrea es propensa a tornados
English translation: is my area prone to tornadoes
? monolingual baseline: O [O] [O] O O O [B-weather/attribute]
? our method: O [B-location] [I-location] O O O [B-weather/attribute]

#2 Spanish text: cual es el pronóstico para la proxima semana
English translation: what is the forecast for next week
? monolingual baseline: O O O [O] O O [B-datetime] [I-datetime]
? our method: O O O [B-weather/noun] O O [B-datetime] [I-datetime]

#3 Spanish text: ¿ Va a llover en Atlanta este fin de semana
English translation: is it going to rain in Atlanta this weekend
? monolingual baseline: O O O [B-weather/attribute] O [O] [B-datetime] [I-datetime] [B-datetime] [I-datetime]
? our method: O O O [B-weather/attribute] O [B-location] [B-datetime] [I-datetime] [I-datetime] [I-datetime]

main purpose of our method is to improve the performance
of low-resource languages, we only conduct our experiments
on Spanish for computation cost.

Results show that our method outperforms these state-of-
the-art models with a statistically significant margin, especially
over recent ELMo and Bert. Since ELMo and Bert are trained
on a large monolingual Spanish corpus to learn linguistic
knowledge, we argue that our method could effectively learn
better cross-lingual knowledge from the source language En-
glish.

V. QUALITATIVE ANALYSIS

A. Effect of Cross-Lingual Learning
In Table IV, we demonstrate some slot tagging examples

from the monolingual baseline model and our method.
The first example of Table IV shows that shared character-

level embeddings boost the performance of transfer learning.
Rare words in Spanish may utilize shared lexical knowledge
from similar words in English. For instance, monolingual
baseline fails to recognize ”Mi àrea”, extremely rare words in
Spanish dataset, while our method is capable of understanding
them. We assume that our method transfer shared morpholog-
ical information from similar English words ”my area”.

The next example proves that cross-lingual word embed-
dings also help identify rare words in low-resource languages
via aligned embedding space. In example 2, ”pronóstico” only
occurs six times in Spanish dataset, so monolingual baseline
cannot recognize it. However, ”pronóstico” is intimately as-
sociated with ”forecast” which is frequent in English dataset,
enabling our method to transfer knowledge from high-resource
languages.

The final example shows that the shared CRF layer learns
the transition relationship among slot tags from English and
applies it to Spanish. For instance, the monolingual base-
line mistakenly assigns ”B-datetime I-datetime B-datetime I-
datetime” to ”este fin de semana”. By contrast, our method
adopts knowledge from English dataset where ”B-datetime I-
datetime I-datetime I-datetime” occurs more frequently and
gets a higher transition score.
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Fig. 3. Effects of different shared layer for cross-lingual transfer learning.

All of the examples substantiate that our cross-lingual
method could effectively alleviate data scarcity of target lan-
guages by transferring shared knowledge from high-resource
languages to low-resource ones.

B. Multi-Level Knowledge Transferability

In this part, we shed light on the transferability of multi-
level knowledge and unearth effects of different shared layer
for cross-lingual transfer learning. Fig 3 shows the perfor-
mance gain of our models with different variants compared
to the monolingual baseline. We perform 4 model variants,
each of which only contains one shared layer, such as char-
level embeddings, aligned word-level embeddings, sentence-
level RNN layer and tag-level CRF layer.

Experiment Setting The cross-lingual model with only
shared char-level embeddings represents the submodules of
the left and right columns in Fig 2 only share char-level em-
beddings without aligned word embeddings, language-shared
encoders, while the other parts are the same as the monolingual
baseline. For clarity, we eliminate the language discriminator
component among all of the models in Fig 3. For the model
with only shared RNN encoders, we employ monolingual word
embeddings as the input of shared RNN encoders. The only
difference between baseline and model with only shared CRF
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Fig. 4. Results of few-shot learning for Spanish with different sizes of English training examples. We report all of these F1-scores across 5 training runs.
Figure (a) (b) (c) represent the learning curves when the size of English data is 100, 1000, and 10000 respectively.

is whether the CRF layer is shared by the source language and
the target language.

Results and Analysis Results of Fig 3 convincingly
substantiate shared RNN layers make a notable difference
compared to the shared layers of other levels. We assume
that the performance gain is predominantly attributed to
sentence-level language-shared semantics. Besides, aligned
cross-lingual word embeddings and shared CRF layer also
make exceptional effects. Overall, all levels of shared knowl-
edge facilitate to recognize slot tags and work in a comple-
mentary way.

C. Zero-shot Transfer Learning

As mentioned in the previous section, just from the results
on the full dataset, it is not entirely clear whether there is a
significant advantage of our multi-level cross-lingual method.
Therefore, we conduct additional experiments with plentiful
smaller training sets of the target language Spanish: the case
where no annotated data in the target language exists (zero-
shot) and the case where a very limited amount of training
data in the target language exists(few-shot). We would expect
our multi-level cross-lingual model with language shared and
specific knowledge to facilitate much better performance gain
in the zero-shot and very low-resource scenarios than mono-
lingual baseline.

Experiment Setting We use the same models with the
same hyperparameters in this section, except the number of
Spanish training utterances. In the zero-shot case of Table V,
we only use English data for training. For the learning curve
experiments, we sample 10, 20, 50, 100, 200, 500, or 1000
utterances from the target language Spanish for training and
upsample the target language data so that it roughly matches
the size of the English data. For these experiments, we report
the average F1-scores of slot tagging across 5 runs. Fig 4(a)
(b) (c) represent the learning curves respectively when the size
of English data is 100, 1000, and 10000.

Results and Analysis Table V shows the results of zero-shot
learning for Spanish with different sizes of English training
examples. These results indicate that our multi-level cross-
lingual method consistently outperforms monolingual baseline
with a statistically significant margin up to 12.21%. Multi-

TABLE V
RESULTS OF ZERO-SHOT LEARNING FOR SPANISH WITH DIFFERENT SIZES

OF ENGLISH TRAINING EXAMPLES WHILE THE SIZE OF SPANISH
TRAINING EXAMPLES IS 0.

Target Language Model Training Examples
of English F1-score

Spanish Monolingual baseline 0 6.48
Spanish Our method 100 18.69
Spanish Our method 1000 25.87
Spanish Our method 10000 35.01

level cross-lingual shared knowledge can significantly boost
the performance of slot tagging for low-resource languages on
the zero-shot setting. Moreover, the size of the English data
also makes a difference. More data from source languages
results in better performance gains. We assume that sufficient
source data demonstrates requisite linguistic knowledge.

The results for different Spanish training set sizes are shown
in Fig 4. We observe that cross-lingual training improves
the results over training only on the target language (to a
much bigger extent when there is much less target language
training data available). We further observe that cross-lingual
learning leads to much more stable training which can be
seen in the much smaller ranges of results as compared to
the models trained only on the target language. Considering
Fig 4(a) (b) (c) together, we find more source data of high-
resource languages facilitates to stabilize the training process
and results in faster convergence.

VI. RELATED WORK

A number of transfer learning approaches have been pro-
posed for solving the data-lacking issue. Early approaches [7],
[29] mainly rely on machine translation systems to translate
either training or testing utterances, together with token-level
alignment to align tags with tokens. Several works such as
[9] employ cross-lingual word embeddings to utilize shared
knowledge in word embeddings layer. [8] uses extra features
derived from pre-trained machine translation model to help
transfer common knowledge. They pre-trained several types
of machine translation model between low-resource language
and high-resource language, using its encoder to provide cross-
lingual features when training target model.



Besides those model-driven approaches, transferring param-
eters and then fine-tuning has also proved to be useful. [26]
breaks slot tagging model into several layers, and studies
different impact when transferring parameters of different
layers. In [30], the authors find that transferring parameters
of character embeddings and character RNN is most useful,
since many languages share the same alphabet, and may have
similar affixes. [10] focuses on transfer learning from English
to Japanese, proposing the method called romanization to help
dissimilar languages share a common character embedding
space. Other approaches include [31], which encodes slot
description to vectors and employs an attention layer to obtain
slot-aware representations of user input, and [20], which uses
features derived from the source model.

VII. CONCLUSION AND FUTURE WORK

In this paper, we introduce a novel multi-level cross-
lingual model with language shared and specific knowledge
for slot tagging to transfer shared linguistic features from high-
resource languages to low-resource languages. Experiment
results show that our method effectively alleviates issues of
data scarcity and performs significantly better than state-of-
the-art monolingual baseline by a large margin of 2.09% in
absolute F1-score when training with the full dataset, even
higher improvement of 12.21% in a zero-shot learning setting
where no example of the target language is used. We provide
extensive analysis of the results to shed light on future work.
We plan to extend our method to more low-resource languages,
especially for Chinese and Japanese with no similar alphabet
as English. Besides, our method could also be applied to other
cross-lingual NLP tasks, such as sentiment classification and
dependency parsing.
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