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Abstract—This paper investigates a novel synchronisation
strategy for controlling Internet-based teleoperation systems.
These kinds of systems considerably suffer from network-induced
latencies. Random time-varying delays resulted by the Internet
deteriorate the stability and performance of teleoperation pro-
cesses. Moreover, uncertain dynamic elements, including human
operators and partially known remote environments introduce
further difficulties to the control design of such systems. Utilising
the learning capabilities of artificial neural networks, this paper
develops an adaptive algorithm to deal with time-delays and
uncertainties negatively affecting an Internet-based teleoperation
process. The stable convergence of the proposed control algorithm
is proved by Lyapunov-Krasovskii stability criteria. Moreover,
the robust performance of the controller is also verified via
experimental evaluations.

Index Terms—Neural network, multilayer perceptron, teleop-
eration systems, time-delays, uncertainties

I. INTRODUCTION

Teleoperation technology has recently enabled the human
being to do difficult or impossible tasks that are extremely
delicate, dangerous or spatially inaccessible [1]–[3]. Generally,
teleoperation systems consist of a master device receiving
the desired task commands directly from the human operator
and a slave system. The slave system is also called the
teleoperator and its duty is to perform the desired task in
the remote environment (Figure 1). Uncertain dynamics and
partially known elements, including the human operator and
the remote workspace, severely make the control design for
these systems a very problematic challenge. On the other
hand, the master and slave systems transfer task commands
and sensory information through a communication network.
Stochastic latencies induced by the network further threatens
the stability of the teleoperation process. Several research
studies and researchers have been investigating solutions for
the teleoperation control problem.

Control approaches based on computational intelligence
techniques have shown much effective performance compared
to conventional controllers [4]. For designing an effective
controller for teleoperation systems, it is required to derive a
reliable and efficiently accurate model of all elements involved
in the teleoperation process. However, derivation of such a
model for the human operator and the remote environment, for
example, is a troublesome task by itself [5]–[12]. Learning and

Fig. 1. General schematic of a teleoperation system.

approximation capabilities of artificial neural networks (NN)
provided researchers to develop control algorithms to deal
with uncertainties and nonlinearities in complex applications,
such as teleoperation systems [13]–[17]. Researchers in [18]
proposed an adaptive NN control for teleoperation systems,
however, under constant time-delay. The adaptive NN control
developed in [12] enhanced the position tracking performance
of an uncertain teleoperation, however, under constant time-
delays. Targeting model uncertainties in master and slave
subsystems, researchers have developed NN-based adaptive
control algorithms for teleoperation applications [7], [18]–
[20]. The solution proposed in [16] improved the performance
of the teleoperation process under uncertainties and distur-
bances. [21] has proposed a nonlinear mapping algorithm
for teleoperation, however, precise model of the systems is
required.

Furthermore, uncertainties and time-delays are not the only
major concerns. Also, transparency and haptic are other main
performance objectives in teleoperation applications [4], [22].
The efficiency of haptic requires an effective force-feedback,
which is considerably vulnerable to time-delays. Employing
neural-networks for pattern extraction through the sensed force
signals, and also, estimating the future trends of the network
delay improved the performance of teleoperation systems
in terms of transparency [7], [23], [24]. However, most of
these studies in the literature have considered teleoperation
systems with fully-known dynamics and kinematics. Kine-
matic dissimilarity between the master and slave systems is
also another challenging topic in teleoperation applications
[25], [26]. Therefore, investigation for an effective control
strategy for guaranteeing the robust stability and performance
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of teleoperation systems is still a question to be answered.
Taking advantage of learning potentials of NN, this paper

proposes an adaptive technique to deal with instability and
performance degradation due to uncertainties and time-varying
delays on Internet-based teleoperation systems. To achieve this
goal, the main contributions of this study are listed as:

• A multilayer perceptron (MLP) methodology is employed
for learning and estimation purposes. Although most of
the existing NN-based control strategies in the literature
of teleoperation systems have used radial basis function
(RBF) NN structures [7], superiority of the MLP net-
works in estimation tasks has been proven in [27], [28].
Hence, in this paper, MLP networks are considered for
estimation purposes for dealing with delay and uncertain-
ties in teleoperation processes.

• In addition to learning capacities of MLP networks, an
adaptive online learning algorithm is also proposed to
improve the real-time performance of the system. More-
over, global convergence and stability of the online learn-
ing algorithm is mathematically proved by Lyapunov-
Krasovskii theorem.

• Employing MLP algorithm, the proposed adaptive NN
strategy provides either master and slave systems with a
smooth and possibly the most accurate estimation of their
corresponding reference signals.

• Evaluation of the proposed adaptive NN controller is
experimentally carried out on a real-world teleoperation
setup established over commercial Internet network.

The paper is organised as follows. Section II describes the
teleoperation problem considered in this study. Derivation of
the proposed adaptive NN control algorithm is detailed in
Section III, followed by the experimental evaluation in Section
IV. Finally, conclusion remarks and future directions of the
study are discussed in Section V.

II. PROBLEM DESCRIPTION

This section studies the dynamical expressions and time-
delay considerations in an Internet-based teleoperation system
schemed in Figure 1.

A. Teleoperation Dynamics

Generally, dynamic equations of the master and slave sub-
systems are expressed as:

Mm(qm)q̈m + Cm(qm, q̇m)q̇m + gm(qm) =

τm + JTm(qm)fh + µm

Ms(qs)q̈s + Cs(qs, q̇s)q̇s + gs(qs) =

τs − JTs (qs)fe + µs

(1)

in which, qi, q̇i, and q̈i (i ∈ {m: master, s: slave}) are angular
position, velocity and acceleration of the joints, Mi(qi) is
the inertia matrix, Ci(qi, q̇i) is the Coriolis and centripetal
matrix, gi(qi) is the gravity vector, µi is uncertain torques
including friction, unmodelled dynamics, and external distur-
bances. Notably, this torque vector depends on systems’ states
qi, q̇i, q̈i, and time t, i.e. µi(qi, q̇i, q̈i, t). τi is the input control

torque with unknown external disturbances τdi , respectively.
Every term in (1) is prone to uncertainties. Derivation of (1)
involves enormous mathematical and computational effort that
depending on the master and slave systems’ dynamics might be
practically impossible in some cases. In this regard, reference
[29] has proposed a symbolic modelling toolbox for robotic
manipulators. fh and fe are the Cartesian forces exerted by
the human operator and remote environment, JTi the Jacobian
matrix of the manipulators. The external Cartesian forces are
modelled by non-homogeneous mass-spring-damper dynamics
[4], [9]: {

fh = fh0 −Mhẍm −Bhẋm −Khxm
fe = fe0 +Meẍs +Beẋs +Kexs

(2)

where, Mj , Bj , and Kj (j ∈ {h, e}) are the mass, damping,
and spring coefficients, with the non-homogeneous term fj0.
All these parameters are (partially) unknown and introduce
severe uncertainties to the teleoperation performance. xi, ẋi,
and ẍi (i ∈ {m, s}) are respectively Cartesian position,
velocity, and acceleration of the master and slave systems.
These variables are in relation with joint variables based on
the corresponding forward kinematics and Jacobian:

xi = pi(qi)
ẋi = Ji(qi)q̇i

ẍi = J̇i(qi)q̇i + Ji(qi)q̈i

(3)

Jacobian expression in (3) is another source of uncertainty that
requires a great deal of attention in terms of singularity and
feasibility of the commanded teleoperation task [25]. Equation
(1) is the expression of dynamics of the teleoperation system
in joint (qi) space. However, the desired teleoperation tasks are
generally defined and commanded in the Cartesian workspace
of the master and slave robots [25]. Hence, the Cartesian
equivalent of (1) is expressed as:

Miq̈i + Ci(qi, q̇i)q̇i + gi(qi) = τi + fj + µi (4)

in which

Mi = Mi + JTi MjJi , Ci = Ci + JTi Mj J̇i + JTi BjJi

gi = gi + JTi Kjpi , fj = JTi fj0

(i, j) ∈ {(m,h), (s, e)}. It should be noted that the uncer-
tainty vectors µi are upper-bounded because of mechanical
limitations of the systems. In other words, qi, q̇i, and q̈i are
physically limited and cannot be unbounded, and therefore,
‖µi‖ ≤ Γi.

B. Transmission Delay in Teleoperation

In a teleoperation system, the Reference signals are trans-
mitted trough the communication channels and are affected by
the delays: {

x∗
s(t) = xdm(t) = xm(t− Tf (t))

f∗h(t) = fde (t) = fe(t− Tb(t))
(5)



with Tf (t) and Tb(t) as forward and backward time-varying
delays, respectively. In this paper, we employ a neural
network-based prediction method for smoothly approximating
the delayed reference signals.

III. ADAPTIVE NEURAL CONTROL

This section describes the derivation of the proposed adap-
tive NN control algorithm for uncertain Internet-based teleop-
eration systems. Left-hand side of (4) has a property called
linearity in parameters [7], [20]; i.e.:

Miq̈i + Ci(qi, q̇i)q̇i + gi(qi) = Ψi(qi, q̇i, q̈i)~θi (6)

with the parameters vector ~θi and the regressor matrix Ψi. This
property is very useful in adaptive control design practices for
these systems [7], [18]–[20]. Combining (4) and (6) we have:

Ψi(qi, q̇i, q̈i)~θi = τi + fj + µi (7)

Assuming that the desired reference signals result in the
desired regressor Ψ∗

i and parameters ~θ∗i , and subsequently, the
desired control torque τ∗i ,

Ψ∗
i (qi, q̇i, q̈i)

~θ∗i = τ∗i

Utilising NN proficiency, we develop an adaptive control
algorithm to estimate the desired torques τ∗i by τ̂i in the
presence of unknown external elements fj and µi. In other
words, the neural adaptive strategy generates τ̂i to effectively
approximate τ∗i that guarantees the stable performance of the
teleoperation system. Accordingly, τ̂i will also compensate
for the time-delays and uncertainties taking place on the
teleoperation process.

A. Multilayer Perceptron Neural Networks

Among the NN architectures, multilayer perceptron (MLP)
is one of the most commonly used NN techniques [30].
Here, we employ MLP for the estimation purpose in this
study. In MPL networks, nodes (neurons) are hierarchically
structured in several fully connected layers. The first and the
last layers are respectively called the input and output layers.
The layers sit in between are called hidden layers. Hidden
layers carry out the main computational tasks to approximate
the desired output [31]. Fig 2 schemes the MLP structure with
the corresponding layers and functions used in this study.

In our application, output of the MLP is derived as:

ξi = W i
1ei+βi1 , δil =

1

1 + e−ξi
, γ̂i = W i

2δ
i
l +βi2 (8)

in which, es = x∗s − x̂s for the slave robot, and em = f∗h −
f̂h for the master device, are the training errors being fed
as the network input. ξi is the output of nodes (neurons) in
the first layer. W i

1 = [wi1]m×n and W i
2 = [wi2]o×m are the

weight matrices and βi1 and βi2 are the biases for each layer.
m and n are the number of nodes (neurons) in the antecedent
and consequent layers, respectively. l is the number of hidden
layers with the corresponding activation (sigmoid) function δil .

Fig. 2. Schematic of the MLP neural network used in this study.

The cost function Ei = 1
2e
T
i ei is considered for the gradient-

based updating rules as follow (p = 1 . . . n, q = 1 . . .m):

wi1p(t+ 1) = αiw
i
1p(t) + λi(t)

∂Ei
∂wi1p

wi2q(t+ 1) = αiw
i
2q(t) + λi(t)

∂Ei
∂wi2q

(9)

with the adaptive learning rate λi(t) and a sufficiently small
positive constant αi. Derivation of the gradient terms and the
adaptation law of the learning rate in (9) is later detailed in
this section. Calculating the one-step derivative of (9) gives:

ẇi1p = (αi − 1)wi1p + λi
∂Ei
∂wi1p

ẇi2q = (αi − 1)wi2q + λi
∂Ei
∂wi2q

(10)

Then, we will compute the partial derivative terms in (10) in
order to stably minimise the cost functions (errors). To avoid
getting stuck in local minima, we apply Lyapunov-Krasovskii
theorem to derive the adaptive learning laws. For this purpose,
we propose the Lyapunov-Krasovskii functional below based
on the cost function Ei:

Vi =Ei +

∫ t

t−Tf,b(t)

Eidσ +

∫ t

t−Tf,b(t)

Ėidσ

+

∫ 0

−Tmax

∫ t

t+δ

Eidδdσ +
1

2
λ̃2i

(11)

in which, Tmax is the maximum delay happening through the
communication network, and λ̃i = λi − λ∗i is the adaptation
error of the learning rate λi to reach its desired value λ∗i .
To obtain the globally-optimal update laws (10) we calculate
the time-derivative of the Lyapunov-Krasovskii function Vi to
examine its negative definiteness. Differentiation of Vi gives:

V̇i = Ėi + E2
i − (1− Ṫf,b)Ei(t− Tf,b)2 + Ė2

i

− (1− Ṫf,b)Ėi(t− Tb,f )2 + TmaxE
2
i

−
∫ t

t+δ

E2
i dδ +

˙̃
λiλ̃i

(12)



Knowing that Tmax < ∞ and Ṫf,b ≤ 1 [9], and the fact that
reference signals are physically limited due to mechanical con-
straints of the robotic systems max(‖x∗s‖, ‖f∗h‖, ‖ẋ∗s‖, ‖ḟ∗h‖) ≤
∆ <∞;

V̇i ≤Ėi + (1 + Tmax)E2
i + Ė2

i +
˙̃
λiλ̃i (13)

Considering λ∗i > (1 + Tmax), and proposing the adaptive
learning rate as:

λ̇i =
˙̃
λi = E2

i =
1

4
‖ei‖4 (14)

(13) becomes:
V̇i < Ėi + Ė2

i + λiE
2
i (15)

Applying chain rule and (10) results in:

V̇i <

n∑
p=1

∂Ei
∂wi1p

ẇi1p +

m∑
q=1

∂Ei
∂wi2q

ẇi2q + Ė2
i + λiE

2
i (16)

substituting (10) into (16):

V̇i <

n∑
p=1

∂Ei
∂wi1p

(
(αi − 1)wi1p + λi

∂Ei
∂wi1p

)
+

m∑
q=1

∂Ei
∂wi2q

(
(αi − 1)wi2q + λi

∂Ei
∂wi2q

)
+Ė2

i + λiE
2
i

(17)

Hereafter, we only present the procedure for one weight wi1p as
the process is exactly identical for all other weights. Therefore,
simplifying (17) results in:

V̇i <
∂Ei
∂wi1p

(
(αi − 1)wi1p + λi

∂Ei
∂wi1p

)
+

1

n+m

(
Ė2
i + λiE

2
i

) (18)

which can be rewritten in a quadratic form:

V̇i < λi︸︷︷︸
ai1p

( ∂Ei
∂wi1p

)2
+ (αi − 1)wi1p︸ ︷︷ ︸

bi1p

∂Ei
∂wi1p

+
1

n+m

(
Ė2
i + λiE

2
i

)
︸ ︷︷ ︸

ci1p

(19)

and then solving for ∂Ei

∂wi
1p

requires:

(bi1p)
2 − 4ai1pc

i
1p =

((αi − 1)wi1p)
2− 4λi

n+m

(
Ė2
i + λiE

2
i

)
= 0

(20)

which has solutions naming ωi1p,1 and ωi1p,2 for wi1p. Then,
the solutions of (19) for ∂Ei

∂wi
1p

will be:

(1− αi)ωi1p,1
2λi

,
(1− αi)ωi1p,2

2λi
(21)

Remark: Maximum solutions in (21) makes V̇i much negative,
and accordingly, guarantees the stable performance of the

Fig. 3. The bilateral teleoperation setup considered in this study for
experimental evaluations. The setup consists of two haptic devices as the
master and slave subsystems. Sampling rate for data collection and control
implementation is 1,000 samples per sec (1kHz).

teleoperation system under the controller (8) with the adaptive
learning rate (14) and weights’ update laws (9). It also
demonstrates the global convergence of the learning algorithms
(9) and (10) that will not get stuck in local optima. It should be
mentioned that the same proof procedure applies for all other
weights in (8). The next section studies the effectiveness of the
proposed neural adaptive control methodology on a real-world
teleoperation system.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

This section presents the experimental evaluation carried
out on a real-world teleoperation setup under the proposed
adaptive neural controllers (8). For this purpose, we have
considered two Omni haptic devices as the master and slave
systems. The considered teleoperation setup is shown in Fig
3. Each device has three degrees of freedom (DoF) oper-
ating in a Cartesian workspace with six DoF. The commu-
nication medium between the master and slave systems of
the experimental teleoperation is established through a local
area network (LAN). Based on previous experienced latency
measurements in [8], [9], [11], forward and backward delays
implemented between the two sides of the teleoperation setup
are shown in Fig 4. At the slave side, we have placed an
object with unknown dynamics (Me, Be and Ke). The same
condition applies at the master side where the human operator
is unknown (Mh, Bh and Kh). The initial values of these pa-
rameters for training and experimental purposes are considered
as: Mh = I3×3 = Bh = Kh, Me = 0.1 × I3×3 = Be = Ke.
fe0 and fe0 are both considered [0 0 0]T . It should be
noted that the training parameters for the neural network are
considered as 6 nodes in the input layer (n = 6), 18 nodes for
the hidden layer (m = 18) and 3 nodes for the output layer
(o = 3).

The evaluation results are accordingly shown in Figures
5 to 10. It should be mentioned that as shown in Figure 1,
the human operator manipulates the unknown object through
the slave device interacting with the remote environment. In
this scenario, the contact forces should be as if the human
operator interacts with the object directly. In other words,
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forces imposed between the slave system and object are
desired to be the same as those exposed between the master
device and the human hand. Figure 5 illustrates the position
tracking and errors of the slave robot under the developed
controller. Velocity tracking of the slave robot is also shown
in Figure 6. That figure shows the largest amount of errors
due to the fluctuating behaviour of the motion of the human
hand. Although, the controller effectively commands the robot
to follow the same motion. Moreover, Figure 7 shows joints
angles of the both robots to have a better understanding of the
systems’ dynamic behaviour. Demonstrated in Figure 8, stable
force reflection of the teleoperation setup is significant due to
the effective estimations provided by the proposed adaptive
MLP. Eventually, convergence of the adaptive and training
parameters of the controller is shown in Figure 10.
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V. CONCLUSIONS

This study concerned the control design for teleoperation
systems suffering from uncertainties in communication and
modelling. There have been a large number of conventional
control strategies for such systems, however, they mostly
fail to deal with unknown situations occurring in real-world
practices. On the other side, artificial neural networks have
shown a promising performance in uncertain conditions and
estimating complex, nonlinear models. Hence, the current ar-
ticle enjoyed the approximation capabilities of MLP networks
and proposed a stable control methodology for uncertain tele-
operation systems under randomly time-varying delays. The
convergence and stability of the proposed method have been
proven via Lyapunov-Krasovskii theorem. Moreover, practical
effectiveness of the proposed MLP-based control technique
was verified through a real-time Internet-based communication
between two haptic devices. This research opens new doors to
future investigations in further empowering the teleoperation
applications by employing more advanced computational in-
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Fig. 9. Torque signals generated by the controllers.

telligence approaches.
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