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Abstract—Finding the optimal control strategy for traffic
signals, especially for multi-intersection traffic signals, is still a
difficult task. The use of reinforcement learning (RL) algorithms
to this problem is greatly limited because of the partially
observable and nonstationary environment. In this paper, we
study how to eliminate the above influence from the environment
through communication among agents. The proposed method,
called Information Exchange Deep Q-Network (IEDQN), has
a learning communication protocol, which makes each local
agent pay unbalanced and asymmetric attention to other agents’
information. Besides the protocol, each agent has the ability
to abstract local information from its own history data for
interacting, which means that the communication can avoid the
dependent instant information and it is robust to the potential
time delay of communication. Specifically, by alleviating the ef-
fects of partial observation, experience replay can recover to good
performance. We evaluate IEDQN via simulation experiments in
the simulation of urban mobility (SUMO) in a traffic grid, and it
outperforms the comparative multi-agent RL. (MARL) methods
in both efficiency and effectiveness.

Index Terms—Adaptive traffic signal control (ATSC), multi-
agent reinforcement learning (MARL), communication learning.

I. INTRODUCTION

Traffic congestion is a growing problem and it causes huge
economic losses and people’s time wastes besides environ-
mental pollution in urban daily life. However, there is not
a good method to alleviate this problem. Adaptive traffic
signal control (ATSC) is attracting wide interest in recent
years, which aims to reduce the total delay time or the queue
length of all travelers in the whole transportation system by
optimizing the policies of traffic signals. According to the
current traffic dynamic conditions, ATSC controls the timings
or the orders of signal phases to ease congestion. Besides the
traditional pre-timing or actuated control methods, SCOOT
[1] and SCATS [2] are two of the most widely used ATSC
systems in numerous cities across the world. Although these
two methods could take account of real-time traffic conditions
of the local intersection, they have a limited degree to describe
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the traffic situation and cannot deal with complex traffic
dynamics.

Since the 1990s, computational intelligence methods like
genetic algorithm [3], fuzzy logic [4, 5], and several other
methods have been used for the ATSC problem. Nevertheless,
they do not have satisfactory performance in terms of effi-
ciency and effectiveness. Reinforcement learning (RL) [6] is
considered as one of the promising methods to the ATSC prob-
lem because of its ability to deal with the sequential decision-
making problem under the environment with an unknown
model like a traffic system. The central idea of RL is that,
under the framework of Markov decision process (MDP), an
agent learns to maximize its expected return from the environ-
ment and during this learning process it optimizes the decision
policy by trial and error [7-9]. Traditional RL algorithms have
the strength to cope with the sequential decision problems
by using tabular methods or linear approximations, while its
power of decision is limited to low-dimensional problems.
Contrast to the needs for extracting low-dimensional features
by hand, deep neural network (DNN) [10] has the strength
of its end-to-end feature representation ability. To utilize this
abstraction ability to the high-dimensional input from the
environment, deep reinforcement learning (DRL) [11] was
proposed to combine RL and DNN to work in complex control
tasks [12]. With the experience replay mechanism [13, 14],
DRL could use its history experiences more efficiently.

As there are many intersections in a traffic system, the
application of RL in ATSC has two main ways. One way
is to see the whole system as a single centralized agent
and there will be only this single agent making decisions.
The agent receives the joint observation of all intersections
as the input and it determines the joint action for all local
intersections. This large-scale control can cause the curse of
dimensionality. The other way is to use the view of the multi-
agent problem to investigate the ATSC problem. While this
perspective views each intersection as a single agent, the
observation of each agent received from the environment is
no longer a full observation of the entire system, but only a



partial one. It means that the framework of MDP does not suit
this problem anymore, and the partially observable Markov
decision process (POMDP) [15] may be better. However,
there are many difficulties to directly utilize RL algorithms
to a POMDP problem, such as the bad convergence policy
caused by a nonstationary environment or the ineffectiveness
of experience replay. Some mechanisms like coordination,
communication, and incremental learning [16, 17] have been
introduced to alleviate the negative effects of partial obser-
vation and nonstationary environment, which makes RL fit
problems of this type.

In this paper, we propose a communication-learning-based
method to a large-scale ATSC problem by alleviating the
effects of partial observation, called Information Exchange
Deep Q-Network (IEDQN). There are three agents, one for
information extracting, another for information exchanging
and the third for learning policies from the comprehensive
input concatenated by local observation and the exchanged in-
formation called message. Except the centralized information
exchanging agent, the other two agents are both decentralized
and their parameters are shared among all local intersections.
The message protocol can be learned automatically by in-
formation exchanging network so that it can achieve better
performance than using raw observations from neighborhoods,
not only in the effectiveness of this information but also in
the communication efficiency considering the dimensions of
messages. The comprehensive input of policy agents, espe-
cially the messages according to the learned protocol, could
make the agent have a global observation to some degree and
that makes DQN work. It is worth mentioning that all the
so-called information is non-instant information from the last
time step so that the possible time delay of communication
has little damage to the decision-making process. Experiments
demonstrate that our method can find better policy than
existing methods such as IQL [18] and MA2C [19].

II. RELATED WORK

The direct way to utilize RL algorithms in the multi-
intersection ATSC problem is centralized methods which re-
gard the entire system as a single RL agent [20]. By using
the coordination graph, Kuyer et al. [21] and Van der Pol
and Oliehoek [22] first trained a coordination model between
two joint agents and then extended it to the centralized joint
coordination over the global joint action. It faces scalability
issues when the number of agents grows.

To fit large-scale problems better, independent RL methods
are proposed in which each RL agent only controls a single
intersection in the traffic system. Various independent Q-
learning methods with different function approximations [23—
25] are investigated for ATSC. Li et al. [26] combined DQN
with stacked auto-encoders to control a single intersection.
The recently proposed method Intellilight in [27] designed a
phase gate and memory palace to solve the potential problem
of ignorance of the current phase and unbalanced memory
buffer.

Though individual and independent methods perform well
in control tasks of a single intersection, the phenomenon of
partial observation and nonstationary environment influences
their performance in multi-agent scenarios. Communication-
based methods are proposed to avoid the above influence. El-
Tantawy et al. [28] proposed an indirect heuristic communi-
cation mechanism, by using an estimator model of neighbor
policies. Arel et al. [29] and Wiering [30] added neighbor
states directly to the local agent’s state. Nishi et al. [31]
used hidden states abstracted by graph convolutional neural
network (GCN) of neighbors. Chu et al. [19] utilized not
only neighbors’ states but also their past policies, besides the
extension of IQL to IA2C. However, the influence between
local agents and other agents is unbalanced and asymmetric
as investigated in [32], and the above communication methods
pay equal attention to all the neighbors, which might cause the
aliasing phenomenon that was triggered by partial observation
to be solved not well.

III. INFORMATION EXCHANGE DEEP Q-NETWORK

The difficulty to solve an ATSC problem is mainly con-
centrated on the partially observable and nonstationary envi-
ronment. Our method investigates the communication-learning
mechanism among agents to make MARL work better for
this problem. The entire model can be divided into three
parts from bottom to top layers, which are the decentralized
Information Abstraction Blocks, a centralized Information
Exchange Net and the decentralized Q-Prediction Nets, for
short as Info-Block, Mess-Net and Q-Net, respectively. Via
this communication-learning method, the problems caused by
POMDP and nonstationary environment could be alleviated.

A. Infomation Abstraction

Although using neighbor agents’ instant raw data from
the environment is popular in communication-based MARL
methods, the use of this instant information faces two main
shortcomings. One is that raw data from the environment often
mean less amount of information with a high dimension. The
other is that the use of instant information is not robust when
the communication time delay appears. For the first one, most
proposed methods rely on the shallower layers of each agent
to abstract the useful information, while it means that the input
dimension of each agent is higher and the feature abstraction
layers might ignore or not give enough attention to its own
observation by contrast to the entire input’s high dimension.
For the second one, most methods would like to assume that
the communication is ideal and the delay would not appear.

To improve the robustness of communication among agents,
we propose to use the non-instant information in place of the
instant information, which means that the observation and Q-
values of this local agent in the last timestep are used rather
than the current timestep’s. In contrast to that every neighbor
of the local agent needs to repeat the procedure to abstract the
raw data from a local agent, we propose that each local agent
has an information abstraction block to represent its raw data
into a lower dimension as shown in Fig. 1. This information
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Fig. 1. The model of Info-Block.

i" = ReLU(W"d} + b") is going to be sent to all agents
according to the learned communication protocol, where for
each agent 4 its history data d} is concatenated by its current
observation and Q-values as d? = {0} ql'}. By sharing this
Info-Block among all agents as W' = ... =W = .. = W"
and b = ... = b" = ... = b", the results of this block will be
highly structured. The information can be formulated as

i" = ReLU(WdP 4 b),
or in an information matrix form, like
I, = ReLU(WD; + ). (D

To the end, as the input is combined with raw observation
of the local agent and Q-values of the last timestep, this
abstraction block also has the ability to describe a potential
prediction of local agent’s observation in the current timestep.

B. Information Exchange

Through the Info-Block, each agent has the ability to struc-
turally summarize useful information in a lower dimension.
However, how to use this useful information to conduct high-
quality communication also needs designing. In contrast to the
traditional interaction only between neighbors, we introduce
a coordinator agent that learns the protocol automatically
to design an efficient communication mechanism. As each
intersection is in a different location in the traffic system,
each intersection pays different attention to other agents in
this system, which reflect not only in the weights of its
neighbors but also in the number of agents it focuses on. If the
information from Info-Block is fed directly to their neighbors,
every agent will focus on different agents in an unbalanced
sensitive degree as shown in Fig. 2b. As a result, it needs
to design every agent according to its role in the current
given traffic network environment, which means that it cannot
be generalized to other occasions because the topological
structure varies. Also, there is a problem of different sensitive
regions, which is due to different agents showing various
sensitive degrees to the same attention regions as shown in
Fig. 2c.

We propose a centralized coordinator that can learn a
protocol for the communication in the whole system as shown
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Fig. 2. The problem of unbalanced and asymmetric influence among agents in
ATSC. (a) Intersections in different locations in a real-world traffic network.
(b) Unbalanced influence to intersection B. (c) Asymmetric influence between
intersections A and C.

in Fig. 3. It means that, for every message receiver, the
coordinator learns special information impact factors from all
other agents. As the receiver differs, the impact factors differ,
too. It can be formulated as

ml' = f"(I;0"). )

Though impact factors differ with the receivers, the output
of this Mess-Net, which is called message, could still be seen
as structured data in the next part of our work. It means
that each receiver receives a message vector in the same
formulation from the entire system, regardless of where the
message vector comes from and how important a role other
agent plays in this vector. Such a highly structured message
is beneficial for our index-free and location-ignored method.

C. O-Net

Like Info-Block, the Q-Net is also a parameter sharing
network, which merges all differences into the centralized
Mess-Net and leaves the rest common knowledge, regardless of
the location or index of local agents, to Info-Block and Q-Net.
There is only an IQL agent with shared parameters working
for all intersections, which is shown in Fig. 4. We suppose
that the integration of messages and current local observation
could be seen as a fully observable state which alleviates the
partially observable problem. While we suppose the messages
from Mess-Net imply a potential prediction of current policies,
the environment is no longer a nonstationary one, which means
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Fig. 4. The model of Q-Net.

experience replay could play a role in training the IQL agent.
The output of this Q-Net is the prediction of Q-values for
each action under the current integrated state, which can be
formulated as

a' = {a’ (s, a";0)}. Va" € A" s} = {0}, mi 1}, (3)

where the superscript # means the value of this variety differs
for each different local agent h. In RL, the Q-value function
is iteratively updated by using Bellman equation as

Qir1(s,a) =E [r+7m&}in(s’,a’|s,a)} . 4)
The target Q-value can be formulated as

h - _
S if s441 = ST,
Yo =\ rh+ ymax,n gl 1, otherwise,

®)
and the parameters W, b, 0, o are all trainable during minimiz-
ing the loss function:

Ly(o,0",W.b) = E (4" —a/'(0}',m{"1,a/;0))*] . (6)

Our method combined with these three above parts can be
described in the form of Algorithm 1, and the entire model
is shown in Fig. 5. Note that each upper letter means a
concatenation of corresponding lower letters as

I ={if, . i’}
Dy = {d},...,dM}, where d = {q}', o]},

and Qy, Oy, My, Ay, R; are also the same form.
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Fig. 5. The entire model of proposed IEDQN. Specifically, all the Info-Block
and Q-Net are sharing parameters respectively.

D. Communication Cost Analysis

We propose a communication-learning-based MARL
method for ATSC, and this communication mechanism is
based on non-instant data from the last timestep. Via the
centralized coordinator as Mess-Net, two types of commu-
nication channels are established. In one channel Info-Block
plays the role of the sender and Mess-Net plays the role of
the receiver. In the other one, Mess-Net plays the role of
the sender and Q-Nert plays the role of the receiver. Suppose
the number of agents in the entire traffic system is M, the
frequency of communication during a single decision process
is 2M . Popular methods consider the communication between
neighbors, which is at least 4(M — /M) in a square traffic
grid. The ratio of communication frequency between our
methods and these neighbors-based communication methods

is
M . 1
T=———- — =
20M — /M) 2’
which indicates that our method can reduce about 50% com-
munication cost as the number of agents in the system grows.

IV. EXPERIMENTS

We conduct simulation experiments in a 5x5 traffic grid net
based on an open source traffic simulation application called
Simulation of Urban MObility (SUMO) [33], which is widely
used in several research topics like route choice, traffic light
algorithm and so on.

To apply RL algorithms to ATSC, the first to be considered
is a good definition of RL agent, which we call RL settings,
about state space, action space, and reward. Besides the RL
settings, the traffic network and traffic data also need to be
considered.

A. RL Settings

About RL settings, we use the similar definition in [19].



Algorithm 1: Information Exchange DQN

1 Initialize replay memory buffer B

2 Initialize Info-Block, Mess-Net and Q-Net with random
weights W, 0,0, o

3 for episodes = 1,..., N do

4 Initialize Dy and O,
5 Initialize I using Dy
6 | Initialize message vectors m{ = f"(Iy;0"),Yh € M
and send it to agent h
7 fort=1,....,T do
8 Calculate Q; according to M;_; and O,
9 for each agent h=1,..., M do
10 With probability € select a random action a/?
otherwise select action a? = arg max,n qr
11 end
12 Execute actions A;, obtain rewards R; and
observations Oy 1
13 Store transition (Dy_1, 0y, Ay, Qt,Opy1) in B
14 Sample random minibatch of transitions
(Dj-1,0;,4;5,Q;,0;41) from B
15 for each agent h=1,...., M do
16 Calculate message vector m? using (2)
17 Calculate target Q-value with respect to (5)
18 Calculate loss L7 (o, 0", W, b) using (6)
19 Update parameters o, 0", W, b according to
Li(o,0", W,0)
20 end
21 Calculate I; and M,
22 Send message vector m/ to agent h
23 end
24 end

1) State Space: The local observation, after combining the
ideas of [20] and [34], is defined as

ol = {wait, [l]vw‘wet[l]}ihee,leLih , @)

where [ is each incoming lane of intersection i, wait[s] mea-
sures the cumulative delay of the first vehicle and wave|veh]
measures the total number of approaching vehicles along each
incoming lane, within 50m to the intersection.

The input of Info-Block, which called history data d, is
defined by Q-values and local observation as

dr = {q!, o'}, (8)

and the state of Q-Net is formed by local observation and
message that is generated by the above history data as

sp = {off,ml_,}, where my'_ | = f"(I,_1;0"). (9

2) Action Space: Contrast to traditional methods’ cyclic
phases with only two actions as switch and not-switch, our
RL action uses a one-hot vector with the same dimension of
possible phases of the local intersection to determine the next
phase of the local agent. If the continuous two decisions are
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Fig. 6. The simulation environment of the experiment. (a) A traffic gird
of 25 intersections with 4 example flows (two omitted flows in this pic are
swapped O-D pairs as the shownw two). (b) One of the intersections. (c)
Possible actions.

different, an all-yellow phase appears lasting for t,[s| before
the second decision’s execution.

3) Reward Definition: The definition of reward can be
formulated as follows:

>

ih€e,l€L;p

rf’ = — (queuer atll] + a - waitiy ae]l]),  (10)

where a is a trade-off coefficient, and queue is the measured
queue length along each incoming lane. In our experiments,
the coefficient a is set as 0.2[veh/s].

4) Other Settings: Besides the definition of state space,
action space and reward, the timestep between two decisions
also needs to be set. We prefer At = 5s which means the
interaction between RL agents and traffic environment appears
every 5s. If the next decision is different from the last one, an
all-yellow phase would appear with the duration of ¢, = 2s
to ensure a safe switch between phases.

B. Traffic Settings

As shown in Fig. 6a, the traffic network is a 5 x 5 grid and
each intersection in this grid is uniform. The intersection is
made up of E-W two-lane arterial streets and N-S one-lane
avenues, with speed limits of 20m/s and 11m/s, respectively.
On each intersection, there are five possible phases available,
which are EW-S, EW-L, W-LS, E-LS, and NS-LS as shown
in Fig. 6b.
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In the entire system, the synthetic traffic flow data are
combined with four time-variant traffic flow groups as shown
in Fig. 7. To describe these traffic flows, we use the origin-
destination (O-D) pairs description. There are three major
flows Fy with O-D pairs x21-5, x11-%15 and x1-rs5, and three
minor flows f; with O-D pairs xo-T24, T3-T23 and z4-Too.
Their opposite flows with swapped O-D pairs appear at 15min.

C. Experiment Results

In the experiment, we compare our method IEDQN with
some other methods in large-scale ATSC problem. MA2C
is a modified version of IA2C, which is inspired by IQL.
IQL is a benchmark method in MARL, and we use this
method appended with neighbors’ observation [29] with DNN
as an approximation function to fit Q-function, which called
Neighbor-IQL. We train these methods over 2M steps, and
each episode in the traffic environment is 7" = 720 steps with
3600s as /At = 5s. Then, these trained models perform over 10
episodes to show their performance of the learned policy. The
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MDP settings in the experiment are v = 0.99 and o = 0.75.
The setting of MA2C is the same as in [19]. For DQN based
methods, the replay buffer size is 1000 and the sample size is
|B| = 20, besides e-greedy with linearly decaying e from 1.0
to 0.01 for the first 1M steps.

1) Training Results: We show the curves of the average
reward per step in each episode of the mentioned methods in
Fig. 8. It can be seen that a bad convergence trend occurs in
Neighbor IQL, which might be caused by a phenomenon of
state aliasing as a result of the partial observation. With steps
increasing, the performance of IEDQN is better than MA2C,
though research shows that A2C performs better than DQN,
and that means the communication mechanism of IEDQN can
alleviate the influence of partial observation better than the
limited communication between neighbors.

2) Evaluation Results: ATSC aims to reduce congestion. It
also can be considered to decrease the average queue length
and reduce the average intersection delay.

Fig. 9 shows the average queue length per simulation



TABLE I
PERFORMANCE IN EVALUATION FOR DIFFERENT METHODS

Temporal Average

Temporal Peaks

Metrics TEDQN | MA2C | Neighbor IQL | IEDQN | MA2C | Neighbor IQL
avg. queue length [veh] 1.15 2.71 3.46 2.34 4.70 6.70
avg. intersection delay [s/veh] 7.33 233.80 118.35 24.34 347.02 284.99
avg. vehicle speed [m/s] 4.63 1.49 2.21 19.22 14.23 12.09

second over 10 evaluation episodes. When traffic demand is
increasing, all of the queue lengths would grow in these three
methods. Neighbor IQL obtains a bad result as the queue
length is out of control. Though MA2C has no ability to solve
congestion, it shows the capacity of controlling the congestion
situation in an acceptable range and the situation no longer
becomes worse. IEDQN performs a stable policy to control
congestion in a low level and can fast alleviate the congestion.

Fig. 10 plots the average intersection delay across the entire
system over evaluation episodes. It shows a positive correlation
between the delay and the queue length, respectively in the
three methods, which means the learned policy of each method
is not only to decrease the average queue length but also the
delay. What is surprising is that the performance of delay in
MAZ2C is worse than in Neighbor IQL, which might indicate
that the convergence policy of MA2C pays more attention to
the queue length rather than the delay. The line of IEDQN
shows its good control to delay even at peak time. We
summarize the performance metrics of each method in Table I,
including average queue length, average intersection delay, and
average vehicle speed.

V. CONCLUSION

In this paper, we propose a communication-learning-based
method, IEDQN, to solve the ATSC problem. The novel
features proposed are, 1) to alleviate the influence of partially
observable environment, we use a centralized coordinator
with learned protocol, instead of information and protocol
by hand; 2) the history data rather than instant information
are used in the communication among agents, which is robust
to communication time delay; 3) experience replay can work
because of the alleviation of problems caused by nonsta-
tionary environment. Experiments in a synthetic traffic grid
demonstrate that even the model of the ATSC problem is
POMDP, the proposed IEDQN still obtains stable and optimal
performance by eliminating the impact of partial observation
to some degree.
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