
GuideSQL: Utilizing Tables to Guide the Prediction
of Columns for Text-to-SQL Generation

Huajie Wang∗, Lei Chen∗†, Mei Li∗, Mengnan Chen∗
∗School of Computer Science and Technology, East China Normal University, Shanghai, China
†Shanghai Key Laboratory of Multidimensional Information Processing, Shanghai, China

Email: 51184506041@stu.ecnu.edu.cn, lchen@cs.ecnu.edu.cn,
51184506023@stu.ecnu.edu.cn, 51174506001@stu.ecnu.edu.cn

Abstract—Text-to-SQL is a task of synthesizing SQL queries
from utterances. Most existing approaches of text-to-SQL rarely
utilize tables to guide the prediction of SQL query. We present
a novel approach called GuideSQL which predicts tables first
and uses a pruning algorithm for removing the columns which
don’t belong to the predicted tables to avoid errors caused by
misprediction of table-column dependencies. For reducing the
prediction errors of tables, we use the top-K predicted tables to
generate SQL queries and employ a string-matching algorithm
to get the most reasonable one. Futhermore, a type linking
mechanism is utilized to augment the relevance between utter-
ances and schemas. On the challenging text-to-SQL benchmark
SParC, we use previous query attention to get context-dependent
information of SQL queries. GuideSQL obtains 36.3% question
matching accuracy and 19.5% interaction matching accuracy on
the dev set. With BERT augmentation, GuideSQL achieves 49.2%
question matching accuracy and 31.6% interaction matching
accuracy on the dev set, outperforms the previous state-of-the-art
model by 2% question matching accuracy and 2.1% interaction
matching accuracy.

I. INTRODUCTION

In recent years, there has been an increasing interest in text-
to-SQL, i.e., translating a question to the corresponding SQL
query. Text-to-SQL is a sub-task of semantic parsing and it has
a long history [1]–[5]. Various neural approaches have been
proposed in context-independent datasets such as WikiSQL [6]
and Spider [7]. For example, SQLova [8] achieves more than
80% logical form accuracy on WikiSQL dev and test sets, and
IRNet [9] achieves more than 60% and 50% exact matching
accuracy on the Spider dev and test sets, respectively.

However, Yu et al. [10] present SParC, a new com-
plex context-dependent and cross-domain text-to-SQL dataset
based on Spider. Most studies in the field of text-to-SQL only
focus on translating stand-alone utterances to SQL queries, and
are hard to be extended on SParC which contains contextual
dependencies. In addition, we found that most methods [9],
[11], [12] predicted SQL queries in the normal order (e.g.,
SELECT title FROM song), without utilizing tables to guide
the prediction of SQL queries (e.g., FROM song SELECT ti-
tle). Suhr et al. [13] propose a seq2seq model with interaction-
level encoder used on ATIS [14]. It is extended on SParC to
get some new models such as CD-Seq2Seq [10] and EditSQL
[15]. EditSQL achieves the new state-of-the-art performance,

Lei Chen is the corresponding author.

Utterance 2: Show the names of singers and
the total sales of their songs.
SQL query 2: SELECT T1.name, SUM(T2.sales) FROM singer AS T1
JOIN song AS T2 ON T1.singer_id=T2.singer_id GROUP BY T1.name

 the and sale amounts .

song

title name singer
column

table

songsShow

 the and sale amounts .

title name

songsShow

Utterance 1: Show the songs and sale amounts.
SQL query 1: SELECT title , sales FROM song

Database: singer
Table: singer, song

song

Fig. 1. Top: An example of an interaction from SParC dataset. Middle: The
ambiguity of predicting column (title or name) when without using guide
mechanism. Bottom: The guide mechanism leads to predict the correct column
title when table song is predicted.

but we found EditSQL generated table and column together
(e.g., song.title) in a token during decoding phase, which
would increase the prediction risk of tables. Meanwhile, we
found that lacking the dependency between table and column
in CD-Seq2Seq caused the errors in predicting columns when
tables were mentioned in the question but columns showed
ambiguity. Considering the interaction and its corresponding
SQL queries in Fig. 1 top part, the column title is not easy
to be predicted for the first utterance because columns title
and name are similar, as shown in Fig. 1 middle part.

In this work, we propose a new model called GuideSQL
based on CD-Seq2Seq. GuideSQL contains the guide mecha-
nism which is used to solve the misprediction of table-column
dependencies in predicted SQL queries. As shown in Fig. 1
bottom part, according to the songs in utterance, the range of

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

Original: SELECT name FROM physician EXCEPT SELECT
T2.name FROM appointment AS T1 JOIN physician AS T2
on T1.physician = T2.employeeid

IntermediateState: FROM physician SELECT name EXCEPT FROM
appointment AS T1 JOIN physician AS T2 on T1.physician
= T2.employeeid SELECT T2.name

Fig. 2. An example of getting an intermediate state of the SQL query, and
EXCEPT is a split token. The SQL contains two subqueries and the FROM
clause is moved to the first place in each subquery.

query is selected as the table song. While the table song
is predicted, we prune columns which don’t belong to table
song, then we can directly exclude the column name which
is not in song to get the correct column title. In order to
reduce the prediction errors of tables and to obtain the most
reasonable SQL query, we use an effective string-matching
algorithm to re-rank SQL queries which were generated by
top-K predicted tables. In order to predict tables instead of
columns first, we design an intermediate state of the SQL
query shown in Fig. 2. In order to augment the relevance
between utterances and schemas, we use a type linking mech-
anism to discern the type of entities (TABLE, COLUMN) in
utterances and add type information to schema embeddings.
In addition, we use previous query attention to get context-
dependent information of SQL queries on SParC dataset.
Experimental results show that GuideSQL achieves 36.3%
question matching accuracy and 19.5% interaction matching
accuracy on SParC dev set. In addition, GuideSQL with
BERT [16] augmentation obtains 49.2% question matching
accuracy and 31.6% interaction matching accuracy on SParC
dev set, gains 2% question matching accuracy and 2.1%
interaction matching accuracy improvements compared to the
previous state-of-the-art model.

II. RELATED WORK

With the advent of large-scale cross-domain text-to-SQL
data sets [6], [7], [10], instead of manually intervening in
specific databases [17]–[19], methods based on neural net-
work [8], [9], [11], [12], [20], [21] have received more
and more attention. The most of approaches only apply to
the context-independent tasks such as WikiSQL and Spider.
SQLNet [20] propose seq2set to generate SQL queries on
WikiSQL dataset. With BERT augmentation, a new model
based on SQLNet named SQLova [8] achieves the state-of-
the-art performance. But these methods are limited to support
very simple queries which only contain SELECT and WHERE
clauses. Based on SQL syntax, Yu et al. [21], Bogin et al. [12]
and Guo et al. [9], etc., use seq2tree to generate SQL queries
on Spider which does not have contextual dependencies.

However, the actual requirements are often context-
dependent. In other words, the text-to-SQL task requires
SQL queries to be obtained from context-dependent ques-
tions. Recently, Suhr et al. [13] propose a seq2seq model
with interaction-level encoder to solve the context-dependent

dataset ATIS [14], and this model is extended to SParC called
CD-Seq2Seq [10]. They use a discourse state to maintain the
entire interaction during encoding phase. In addition, during
the decoding phase, they use position embeddings to record
the position information for each utterance and propose a
mechanism to copy segments from the previous query. Based
on SyntaxSQL [21], SyntaxSQL-con [10] uses two bi-LSTM
with different parameters to encode the previous utterance and
current utterance. The decoder of SyntaxSQL-con utilizes the
SQL syntax and generation history to generate SQL queries.
Based on CD-Seq2Seq, EditSQL [15] utilizes utterance-table
encoder and table-aware decoder to incorporate the utterances
and schemas. In the decoder, EditSQL proposes an editing
mechanism for deciding whether to copy a token from the
previous query or insert a new token.

The type linking we proposed is inspired by the type
recognization mechanisms in TypeSQL [22] and IRNet [9].
TypeSQL utilizes type information based on knowledge to
recognize entities mentioned in an utterance, then concatenates
embeddings of words and their corresponding types to the
encoder. IRNet only recognizes the partial matching and exact
matching of tables and columns mentioned in a question, then
takes the average of the type and words embeddings as the
input. Our method is similar to IRNet, but we remove the
partial matching case.

III. METHODOLOGY

Our model is based on CD-Seq2Seq [10], along with three
novel components. (1) We use guide mechanism to limit the
prediction space of columns and re-ranking mechanism to
improve exact matching accuracy. (2) We use type linking to
augment the relevance between utterances and schemas. (3)
We add previous query attention and schema attention to the
decoder. Fig. 3 illustrates the architecture of GuideSQL.

A. Type Linking

We use an effective method based on string-matching
to implement type linking and define two types (TABLE,
COLUMN) of entities that may be mentioned in a question.
First, all the n-grams of length 1-6 are enumerated in a
question. Then, we traverse the n-grams from length 6 to 1. If
an n-gram exactly matches a table name or a column name,
we mark this n-gram as TABLE or COLUMN. If an n-gram
matches both TABLE and COLUMN, we prioritize TABLE.
Once an n-gram is assigned, we will recognize the next part
of question which does not overlap the detected n-gram.
In addition, we add TABLE and COLUMN embeddings to
schemas for predicting the correct type of schema entries.

B. Schema Embedding

Let Ec denotes the average embedding of table words or
column words, and Eτ denotes the type embedding. We take
the average of Ec and Eτ embeddings to generate the schema

utterance
embedding

question

type

Give the player id and

None None column None

 schema
embedding

shema player id birth date loser rank matches players
type column column column table table

CD-Seq2Seq Encoder

…

Attention

LSTM LSTM LSTM

Guide
mechanism

Guide
mechanism

Guide
mechanism

previous query
embedding

SQL SELECT birth_dateFROM players

…

…

last name

column

… Attention Attention

players SELECT player_id

…

Re-ranking mechanism

}context
vector

DecoderEncoder

SOD\HUV

last_name

first_name

player_id

None

instead

ORDER

Fig. 3. Our model architecture is based on CD-Seq2Seq [10]. The inputs to the encoder are schema embedding, utterance embedding and previous query
embedding. The decoder has been extended to include schema attention, previous query attention, guide mechanism and re-ranking mechanism. As shown in
the figure, the table ‘players’ is used to guide prediction of the column ‘player id’.

embedding. We define hS as the schema embedding and
calculate it as:

hS = Avg(Ec + Eτ) . (1)

C. Input Encoder

Let xi = [(xi,1, τi,1), · · · , (xi,L, τi,L)] denotes the non-
overlap span sequence of a question in turn i and L is the
length of xi, xi,j denotes the jth span tokens in turn i and τi,j
denotes the type of xi,j which we obtained in section III-A.
First, we take the average of xi,j and τi,j embeddings as the
span embeddings ei,jx . Then, we implement the interaction-
level encoder similar to CD-Seq2Seq. We use a bi-directional
LSTM [23] and the forward LSTM is defined by:

h
−→
E
i,j = LSTM

−→
E
([
ei,jx ;hIi−1

]
,h
−→
E
i,j−1

)
, (2)

where h
−→
E
i,j is the jth forward hidden state in turn i. hIi−1 is the

discourse state in turn i−1 which can maintain and update over
the entire interaction. The backward LSTM h

←−
E
i,j is modified

analogously. We compute a hidden state hEi,j = [h
−→
E
i,j ;h

←−
E
i,j]

for each span embedding ei,jx , and the discourse state hIi is
computed as:

hIi = LSTMI
(
hEi,L,h

I
i−1
)
. (3)

D. Decoder

An LSTM decoder with attention [24], [25] is used to
generate SQL queries in GuideSQL. In addition, we use
embeddings φI to record the relative position information
and they are learnt for each possible distance 0....h from the
current utterance.

We compute the attention between the decoder hidden state
and the interaction encoder hidden state as:

sk(t, j) = hDk Wtoken-att[h
E
t,j ;φ

I(i− t)]
αtoken = softmax(s)

ctokenk =

i∑
t=i−h

|xt|∑
j=1

αtokenk (t, j)[hEt,j ;φ
I(i− t)] ,

(4)

where αtoken is the attention weight and hDk means the
hidden state of decoder in step k, |xt| means the length of
xt and ctokenk is the attention vector. Wtoken-att is the trainable
parameter.

The attention between the decoder hidden state and the
schema is calculated as follows:

sk(l) = hDk Wschema-atth
S
l

αschema = softmax(s)

cschemak =

|schema|∑
l=1

αschemak (l)hSl ,

(5)

where |schema| denotes the length of hS , Wschema-att is the
trainable parameter. The context vector ck is a concatenation
of ctokenk and cschemak :

ck = [ctokenk ; cschemak] . (6)

At each decoding step, the decoder choose to predict a SQL
keyword or a schema entry (table or column). We first use a
heuristic algorithm to get the type of prediction for the current

1 SELECT player_id , last_name FROM
players ORDER BY birth_date LIMIT 1

SELECT loser_id , loser_name FROM
matches ORDER BY tourney_date LIMIT 1

SELECT player_id , tours FROM ranking
 ORDER BY ranking_date LIMIT 1

2

3

1

utterance: Give the player id and
last name of the oldest player.

3

1

0

string-matching

Fig. 4. An example of re-ranking mechanism. There are three generated SQL
queries from decoder and we use string-matching algorithm to choose the first
SQL query whose matching number is the largest, which is 3.

step. Once we get the current predicted type, we define hC as
follows:

hC =

{
hStable, if type is table
hScolumn, otherwise ,

(7)

where hStable is the schema embedding only contains table em-
beddings, hScolumn only contains column embeddings which
belong to the previous predicted tables. Then we calculate the
output probability distribution as follows:

ok = tanh([hDk ; ck]Wo)

mSQL = okWSQL + bSQL

mschema = okWschemah
C

P (yk) = softmax([mSQL;mschema]) ,

(8)

where mSQL and mschema are SQL keywords scores and
schema entries scores respectively. Wo, bSQL, WSQL and
Wschema are trainable parameters.

E. Re-ranking

We found that using tables to guide prediction of columns
could cause many errors when the tables were predicted
incorrectly. In addition, the correct table always appears in
the top-K table prediction spaces. Hence, we first use top-K
tables to predict columns for generating SQL queries. Then
we calculate the similarity between the SQL query and the
utterance. We found that even if the predicted tables were
similar, the columns from different SQL queries had obvious
differences. Hence, we use the string-matching algorithm
which only calculates the matching number between SQL
tokens and utterance tokens. Finally, we choose the SQL query
of maximun matching number as the target SQL query which
can improve the accuracy. Fig. 4 illustrates an example of re-
ranking mechanism.

F. Previous Query Attention

Inspired by EditSQL, we add previous query attention to the
context vector which can slightly improve interaction matching
accuracy. First, we encode previous predicted SQL query in a
bi-LSTM. Then we calculate the attention between the decoder
hidden state and the previous predicted query as:

TABLE I
EXACT MATCHING ACCURACY ON SPIDER DEV SET.

Model Dev Set
SyntaxSQLNet (augment) [21] 24.8
RCSQL [26] 28.5
EditSQL [15] 36.4
GNN [12] 40.7
Global-GNN [27] 52.7
IRNet [9] 53.2
EditSQL (BERT) [15] 57.6
IRNet (BERT) [9] 61.9
GuideSQL 36.8

sk(p) = hDk Wquery-atth
Q
p

αquery = softmax(s)

cqueryk =

|q|∑
j=1

αqueryk (p)hQp ,

(9)

where hQp is the pth token encoder hidden state of the previous
predicted SQL query. Wquery-att is the trainable parameter and
|q| is the length of previous SQL query. Then we change the
context vector as:

ck = [ctokenk ; cschemak ; cqueryk] . (10)

Moreover, we use another layer to score the previous query
tokens:

mprev = okWprevh
Q , (11)

where mprev is previous query tokens scores and Wprev is the
trainable parameter. Then the output probability distribution is
modified as follows:

P (yk) = softmax([mprev;mSQL;mschema]) . (12)

IV. EXPERIMENT

In this section, we evaluate the effectiveness of GuideSQL
on both Spider and SParC semantic parsing datasets. Spider
contains 8659, 1034, 2147 interactions and SParC contains
3034, 421, 842 interactions for training, development and
testing. As the test sets of SParC and Spider are unreleased,
all evaluations are performed on the publicly available dev
sets. We use exact matching accuracy to evaluate our model
on Spider dataset. On SParC, question matching accuracy (the
exact set matching score over all questions) and interaction
matching accuracy (the exact set matching score over all
interactions) are used to evaluate our model. We do not use
any data augmentation for fair comparison. In addition, we
conduct an ablation study to analysis the contribution of each
mechanism on SParC dev set. Our code is publicly available.1

1https://github.com/cfhaiteeh/GuideSQL

TABLE II
OVERALL RESULTS OF QUESTION MATCHING ACCURACY AND INTERACTION MATCHING ACCURACY ON SPARC DEV SET.

Model Question Matching Interaction Matching
Dev Set Dev Set

SyntaxSQL-con [10] 18.5 4.3
CD-Seq2Seq [10] 17.1 6.7
EditSQL [15] 33.0 16.4
EditSQL(BERT) [15] 47.2 29.5
GuideSQL(BERT) 49.2 31.6
GuideSQL 36.3 19.5

- query attention 36.0 18.5
- query attention - re-ranking 33.3 16.6
- query attention - re-ranking - guide 19.7 7.8

TABLE III
ACCURACY OF QUESTION MATCHING ON SPARC DEV SET BY DIFFERENT

HARDNESS LEVELS.

Model

Goal Difficulty

Easy Medium Hard Extra
Hard

(481) (441) (145) (133)
SyntaxSQL-con [10] 38.9 7.3 1.4 0.7
CD-Seq2Seq [10] 35.1 7.0 2.8 0.8
GuideSQL(BERT) 70.5 43.1 26.2 17.3
GuideSQL 57.8 28.8 14.5 7.5

A. Experimental Setup

The two datasets contain two different aspects of text-to-
SQL task, hence we use different components of the model to
address them.

For Spider, we don’t use the interaction-level component
which contains discourse state, position state and previous
query attention.

Conversely, we evaluate our model on SParC with all
mechanisms. We set hyperparameters h = 5 for the position
state and K = 5 for the re-ranking mechanism. We use 50-
dimensional position embeddings which are initialized from a
random uniform distribution U [−0.1, 0.1] and are fixed during
training.

More configurations both on Spider and SParC are as
follows. Our model is implemented in PyTorch [28] and we
use Adam [29] for optimization. We use 300-dimensional
SQL keyword embeddings which are initialized from a ran-
dom uniform distribution and are also fixed. We use the
pretrained GloVe word embeddings [30] for utterance embed-
dings, schema embeddings and previous query embeddings,
all of them without being fixed. The other hyperparameters
are the same as those of CD-Seq2Seq in our model and we
use the official evaluation script2 to calculate accuracy.

B. BERT Embeddings

To further study the effectiveness of GuideSQL, we use
BERT [16] on SParC dataset to encode interactions, schemas
and previous queries. Our BERT embeddings are similar to
EditSQL [15] and SQLova [8], we use pretrained small cased

2https://github.com/taoyds/sparc

TABLE IV
ACCURACY OF QUESTION MATCHING ON SPARC DEV SET BY DIFFERENT

TURNS.

Model
Turn #

1 2 3 >=4
(421) (421) (269) (89)

SyntaxSQL-con [10] 38.6 11.6 3.7 1.1
CD-Seq2Seq [10] 31.4 12.1 7.8 2.2
GuideSQL(BERT) 65.1 46.8 36.1 25.0
GuideSQL 52.7 33.5 23.0 12.5

BERT model and the sequence is fed into the pretrained BERT
model as follows:

[CLS], Xi,[SEP], T1, [SEP], . . . , Tn, [SEP], C1

[SEP], . . . , Cm, [SEP]

where [CLS] and [SEP] are split tokens, Xi is the utterance
tokens. Tj contains the table tj and columns which belong to
tj , Ck only contains column tokens. All of Xi, Tj and Ck
contain type information. We use the hidden states which are
produced from BERT as embeddings. In addition, we use a
bi-LSTM to encode the BERT embeddings of Tj and Ck.
Then we take the final hidden state of the bi-LSTM over
BERT embedding Tj as the table tj embedding and the final
hidden state of the bi-LSTM over BERT embedding Ck as the
column Ck embedding. We found using BERT could reduce
the prediction errors of tables obviously, hence we don’t use
re-ranking mechanism when using BERT embeddings.

C. Results

Table I shows the results of the exact matching accuracy
on Spider set. We found that our model only uses guide and
re-ranking mechanisms can outperform some recent neural
models. Table II shows the results of question matching
accuracy and interaction matching accuracy by comparing
GuideSQL with previous models on SParC. In addition,
GuideSQL outperforms EditSQL without BERT augmentation,
and there are 3.3% question matching accuracy and 3.1%
interaction matching accuracy improvements on the dev set.
When using BERT augmentation, GuideSQL achieves 49.2%
question matching accuracy and 31.6% interaction matching
accuracy on the dev set, which outperforms the EditSQL by

qu
es

tio
n

m
at

ch
in

g
ac

cu
ra

cy
 (%

)

0
10

20
30

40
50

60

Hardness Level

Easy(481) Medium(441) Hard(145) Extra Hard(133)

GuideSQL-query attention -re-ranking -guide
GuideSQL-query attention -re-ranking
GuideSQL-query attention
GuideSQL

Fig. 5. Effects of different mechanisms in GuideSQL at different hardness
levels on SParC dev set.

2% question matching accuracy and 2.1% interaction matching
accuracy on the dev set.

We further study the performance of GuideSQL in different
hardness levels according to the official classification. There
are 481, 441, 145, 133 questions for easy, medium, hard and
extra hard levels respectively. As shown in Table III, our model
outperforms baseline models which provide the data in all four
hardness levels on dev set. To gain how utterance position
effects the performance, we measure our model in different
turns by official classification. There are 421, 421, 269, 89
questions for turn 1 to 4. As shown in Table IV, GuideSQL
outperforms baseline models in all turns on dev set. Moreover,
utterances in the later turns have a greater dependence on
previous turns and have a greater risk for error propagation.

D. Ablation Study

We ablate the major novel mechanisms of GuideSQL to
assess their impacts on SParC dev set and we only consider
performances without BERT augmentation. First, we remove
the previous query attention and Table II shows that the
performance drops by 0.3% in question matching accuracy
and drops by 1% in interaction matching accuracy. Then, we
remove the re-ranking mechanism, and it can be found that
question matching accuracy drops by 2.7% and interaction
matching accuracy drops by 1.9% in Table II. Finally, Table
II shows removing the guide mechanism causes large drops
in performance to 19.7% of question matching accuracy and
7.8% of interaction matching accuracy respectively.

In addition, we evaluate the effects of different mechanisms
at different hardness levels and different turns. Fig. 5 and
Fig. 6 show that the guide mechanism makes a significant
contribution in GuideSQL. Furthermore, how to use schema
structure takes an important part in text-to-SQL task.

V. CONCLUSION

We present GuideSQL that uses predicted tables to guide the
prediction of columns in text-to-SQL task and it outperforms
the previous state-of-the-art model on SParC. We found that
guide mechanism can effectively improve the performance on

qu
es

tio
n

m
at

ch
in

g
ac

cu
ra

cy
 (%

)

0

10

20

30

40

50

60

Turn #

1(421) 2(421) 3(269) >=4(89)

GuideSQL-query attention -re-ranking -guide
GuideSQL-query attention -re-ranking
GuideSQL-query attention
GuideSQL

Fig. 6. Effects of different mechanisms in GuideSQL at different turns on
SParC dev set.

predicting columns when tables were predicted. The re-ranking
mechanism can reduce the prediction errors of tables. Experi-
mental results show that our model improves the performance
not only in predicting simple queries, but also in predicting
nested, complex queries in unseen databases.

REFERENCES

[1] D. H. D. Warren and F. Pereira, “An efficient easily adaptable system
for interpreting natural language queries,” American Journal of Compu-
tational Linguistics, vol. 8, pp. 110–122, 1981.

[2] I. Androutsopoulos, G. D. Ritchie, and P. Thanisch, “Natural language
interfaces to databases - an introduction,” Natural Language Engineer-
ing, vol. 1, pp. 29–81, 1995.

[3] A.-M. Popescu, A. Armanasu, O. Etzioni, D. Ko, and A. Yates, “Modern
natural language interfaces to databases: Composing statistical parsing
with semantic tractability,” in COLING, 2004.

[4] A. Giordani and A. Moschitti, “Generating sql queries using natural
language syntactic dependencies and metadata,” in NLDB, 2012.

[5] C. Wang, A. Cheung, and R. Bodik, “Synthesizing highly expressive
sql queries from input-output examples,” in Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, vol. 52, no. 6, 2017, pp. 452–466.

[6] V. Zhong, C. Xiong, and R. Socher, “Seq2sql: Generating structured
queries from natural language using reinforcement learning,” CoRR, vol.
abs/1709.00103, 2017.

[7] T. Yu, R. Zhang, K. Yang, M. Yasunaga, D. Wang, Z. Li, J. Ma, I. Li,
Q. Yao, S. Roman, Z. Zhang, and D. Radev, “Spider: A large-scale
human-labeled dataset for complex and cross-domain semantic parsing
and text-to-sql task,” in EMNLP, 2018.

[8] W. Hwang, J. Yim, S. Park, and M. Seo, “A comprehensive explo-
ration on wikisql with table-aware word contextualization,” CoRR, vol.
abs/1902.01069, 2019.

[9] J. Guo, Z. Zhan, Y. Gao, Y. Xiao, J.-G. Lou, T. Liu, and D. Zhang,
“Towards complex text-to-sql in cross-domain database with interme-
diate representation,” in ACL 2019 : The 57th Annual Meeting of the
Association for Computational Linguistics, 2019, pp. 4524–4535.

[10] T. Yu, R. Zhang, M. Yasunaga, Y. C. Tan, X. V. Lin, S. Li, I. L.
Heyang Er, B. Pang, T. Chen, E. Ji, S. Dixit, D. Proctor, S. Shim, V. Z.
Jonathan Kraft, C. Xiong, R. Socher, and D. Radev, “Sparc: Cross-
domain semantic parsing in context,” in Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics. Florence,
Italy: Association for Computational Linguistics, 2019.

[11] L. Dong and M. Lapata, “Coarse-to-fine decoding for neural semantic
parsing,” in ACL 2018: 56th Annual Meeting of the Association for
Computational Linguistics, vol. 1, 2018, pp. 731–742.

[12] B. Bogin, J. Berant, and M. Gardner, “Representing schema structure
with graph neural networks for text-to-sql parsing,” in ACL 2019 : The
57th Annual Meeting of the Association for Computational Linguistics,
2019, pp. 4560–4565.

[13] A. Suhr, S. Iyer, and Y. Artzi, “Learning to map context-dependent
sentences to executable formal queries,” in NAACL HLT 2018: 16th
Annual Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, vol. 1,
2018, pp. 2238–2249.

[14] C. T. Hemphill, J. J. Godfrey, and G. R. Doddington, “The atis
spoken language systems pilot corpus,” Proceedings of the workshop
on Speech and Natural Language - HLT ’90, 1990. [Online]. Available:
http://dx.doi.org/10.3115/116580.116613

[15] R. Zhang, T. Yu, H. Er, S. Shim, E. Xue, X. V. Lin, T. Shi, C. Xiong,
R. Socher, and D. Radev, “Editing-based sql query generation for cross-
domain context-dependent questions,” in 2019 Conference on Empirical
Methods in Natural Language Processing, 2019.

[16] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of
deep bidirectional transformers for language understanding,” in NAACL,
2019.

[17] D. H. D. Warren and F. C. N. Pereira, “An efficient easily adaptable
system for interpreting natural language queries,” Computational Lin-
guistics, vol. 8, no. 3, pp. 110–122, 1982.

[18] F. Li and H. V. Jagadish, “Constructing an interactive natural language
interface for relational databases,” very large data bases, vol. 8, no. 1,
pp. 73–84, 2014.

[19] N. Yaghmazadeh, Y. Wang, I. Dillig, and T. Dillig, “Sqlizer: query
synthesis from natural language,” PACMPL, vol. 1, pp. 63:1–63:26,
2017.

[20] X. Xu, C. Liu, and D. X. Song, “Sqlnet: Generating structured queries
from natural language without reinforcement learning,” ArXiv, vol.
abs/1711.04436, 2018.

[21] T. Yu, M. Yasunaga, K. Yang, R. Zhang, D. Wang, Z. Li, and D. R.
Radev, “Syntaxsqlnet: Syntax tree networks for complex and cross-
domaintext-to-sql task,” in EMNLP, 2018.

[22] T. Yu, Z. Li, Z. Zhang, R. Zhang, and D. Radev, “Typesql:
Knowledge-based type-aware neural text-to-sql generation,” Proceedings
of the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language
Technologies, Volume 2 (Short Papers), 2018. [Online]. Available:
http://dx.doi.org/10.18653/v1/n18-2093

[23] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, p. 1735–1780, Nov 1997. [Online].
Available: http://dx.doi.org/10.1162/neco.1997.9.8.1735

[24] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” in ICLR 2015 : International
Conference on Learning Representations 2015, 2015.

[25] M.-T. Luong, H. Pham, and C. D. Manning, “Effective ap-
proaches to attention-based neural machine translation,” arXiv preprint
arXiv:1508.04025, 2015.

[26] D. Lee, “Clause-wise and recursive decoding for complex and cross-
domain text-to-sql generation,” in 2019 Conference on Empirical Meth-
ods in Natural Language Processing, 2019.

[27] B. Bogin, M. Gardner, and J. Berant, “Global reasoning over database
structures for text-to-sql parsing,” in 2019 Conference on Empirical
Methods in Natural Language Processing, 2019.

[28] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison,
A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An
imperative style, high-performance deep learning library,” in
Advances in Neural Information Processing Systems 32, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, Eds. Curran Associates, Inc., 2019, pp. 8024–
8035. [Online]. Available: http://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learning-library.pdf

[29] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic op-
timization,” in ICLR 2015 : International Conference on Learning
Representations 2015, 2015.

[30] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP), 2014,
pp. 1532–1543.

