
Flex-PIM: A Ferroelectric FET based Vector Matrix
Multiplication Engine with Dynamical Bitwidth and

Floating Point Precision
Yun Long, Edward Lee, Daehyun Kim, Saibal Mukhopadhyay

School of Electrical and Computer Engineering
Georgia Institute of Technology

Atlanta, USA
yunlong, elee539, daehyun.kim, saibal.mukhopadhyay@gatech.edu

Abstract—This paper presents Flex-PIM, a ferroelectric FET
(FeFET) based processing-in-memory (PIM) engine for vector-
matrix-multiplication (VMM). With FeFET as the basic memory
cell, Flex-PIM features low read latency/programming energy,
non-volatility and high density. The core of Flex-PIM micro-
architecture is an all-digital VMM engine integrated with innova-
tive memory array peripherals to realize dynamically controllable
bitwidth and floating point precision. The Flex-PIM architecture
is simulated in 28nm CMOS technology and shows multiplication-
accumulation (MAC) operations from 32-bit floating point (99
GMACS/W) to 4 bit fixed-point (3.3 TMACS/W). A system level
design with specialized instruction set is presented to acclerate
training and inference of deep neural networks (DNN) using Flex-
PIM. The full-chip simulations show that Flex-PIM can increase
computing efficiency of training and inference by 32x and 120x,
respectively, over desktop GPUs while maintaining high accuracy
over a wide-range of DNN models using flexible precision.

Index Terms—Processing in memory, ReRAM, FeFET, DNN
acceleration, digital VMM engine.

I. INTRODUCTION

Processing-in-memory (PIM) architectures [1]–[7] have
been extensively explored to accelerate vector-matrix-
multiplications (VMM) to facilitate deep neural network
(DNN) computation. The PIM design eliminates the separation
between memory and computing, providing high computa-
tional efficiency (throughput/watt). Moreover, the PIM design
can leverage emerging non-volatile memory devices, such as
ReRAM [1], [4] or Ferroelectric FET (FeFET) [3], leading to
non-volatile computing platforms.

However, the adoption of PIM-based VMM engine design
faces many critical challenges. In prior works [1], [3], [4], the
high throughput is achieved by using internally analog com-
putation, leading to overheads of analog to digital conversions
and making the computation error-prone. Consequently, most
past PIM designs employ reduced bitwidth (such as 8-bit) fixed
point data representation to manage data conversion cost. More
recently, an all-digital PIM design is proposed by leveraging
the bit-wise AND for multiplication and row-by-row read
and accumulation operation [8]. While eliminating the analog

This work is supported by National Science Foundation (NSF) (181005).
All authors are with School of Electrical and Computer Engineering, Georgia
Institute of Technology, Atlanta, GA, 30332, USA.

computation, this design still limits to 8-bit precision and
can only accelerate DNN inference. Though 8-bit precision
provides good inference accuracy for DNN models on image
classification tasks [9], we observe that more complex DNN
applications like object detection [10] require higher precision
(see section III-C). Moreover, DNN training typically requires
floating point precision to ensure good accuracy since gradient
calculation and back-propagation are very error-sensitive.

Recent developed general purpose processors (e.g. GPU)
or digital accelerators [11] can support multiple bit-precision.
More recently, a SRAM based bit-serial integer/floating point
vector computing engine is proposed [2], but the bit-serial
operation limits performance. A flexible and computationally
efficient PIM engine supporting dynamical bitwidth and float-
ing point precision is highly desired but still missing.

Towards this end, this paper presents Flex-PIM, a FeFET
based all-digital PIM architecture with flexible bit-precision
including 32-bit floating-point support. The core design of
Flex-PIM is an all-digital VMM engine that leverages bit-
wise AND and row-by-row accumulation operation. The key
benefits of Flex-PIM comes from the novel peripheral circuits
which realize dynamical bit-precision and floating point oper-
ation. With FeFET as the memory cell, we achieve lower read
latency and programming energy over ReRAM while keeping
the benefits of high density and non-volatility. We demon-
strate the application of Flex-PIM for acclerating training and
inference of DNN engines. This paper makes following key
contributions:

• We present the micro-architecture of FeFET-based VMM
engine with flexible bit-precision and floating point sup-
port. The Flex-PIM architecture is simulated in 28nm
CMOS technology to show multiplication-accumulation
(MAC) operations ranging from 32-bit floating point
to 4 bit fixed-point with computing efficiency of 99
GMACS/W to 3.3 TMACS/W.

• We present a system design with associated instruction
set to accelerate training and inference of various DNN
models for image classification and object detection ap-
plications. The simulations show increased computing
efficiency in training (32x) and inference (120x) of DNN

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

Insulator

𝑛ା 𝑛ା

gate

subtract

Ferroelectric
layer

𝑉௚௦ = 1𝑉

𝑉ௗ௦ = 1𝑉𝐺𝑁𝐷

𝑛ା 𝑛ା

gate

subtract

𝑉௚௦ = 1𝑉

𝑉ௗ௦ = 1𝑉𝐺𝑁𝐷

High 𝑉௧௛ stateLow 𝑉௧௛ state

Cut-offTurn-on

Fig. 1. FeFET structure with polarization downwards (i.e. low Vth state) and
upwards (i.e. high Vth state).

over desktop GPU (Nvidia GTX1080Ti) while maintain-
ing high accuracy using flexible precision.

II. FLEX-PIM BASED VMM ENGIN

This section presents the micro-architecture and design
of the Flex-PIM based vector-matrix-multiplication (VMM)
engine.

A. All-digital FeFET based PIM design

1) Ferroelectric FET (FeFET): As shown in Figure 1,
FeFET is a transistor type device with ferroelectric oxide sand-
wiched in the gate dielectric stack. With different ferroelectric
polarization, FeFET exhibits switchable transistor threshold
voltage, resulting to non-volatile memory. The low writing
energy due to the unique field effect switching mechanism
is the most prominent feature which distinguish FeFET from
other emerging technologies. Further, FeFET eliminates the
large RC delay in ReRAM case, therefore, reducing the read
latency. Similar with prior works [2], [3], in this paper we use
FeFET as binary memory device (i.e. 1-bit per cell).

2) Digital VMM engine: Figure 2(a) shows the configura-
tions for analog/mix-signal based VMM engine design. Each
memory cell stores 1-bit of the weight parameter. All word-
lines are activated simultaneously and the current summed at
BL results the multiplication-accumulation (MAC) operation.
Figure 2(b) shows our digital VMM engine design, rather
than activating all the wordlines simultaneously, the memory
crossbar are accessed in a row-by-row (controlled by the
one-hot-vector circuit) sensing and accumulation fashion. At
each clock cycle, only one eni signal is enabled. Then AND
logic is performed between the enable signal (eni) and the
corresponding input value (ai). Only when both eni and ai
are high, the value (1-bit) stored in corresponding memory
cells (bi) are sensed out and accumulated in the counters.
Essentially, For N -bit number MAC operation, it takes N×R
cycles to perform the computation where N is the bitwidth
and R is the number of rows in the memory array. One should
note that while sacrificing the parallelism of analog computing,
digital PIM configuration achieves similar performance over
the analog design by eliminating the large delay introduce
by the power/area hungry ADC [1]. Detailed comparison is
discussed in section III-E.

We argue that the digital VMM engine design is orthogonal
to the memory techniques (SRAM, ReRAM, and FeFET). In

this work, we focus on FeFET and leverage its non-volatility,
high density, low read latency/write energy to achieve the
optimal computing efficiency.

B. Support for dynamical bit-precision

The flexible bit precision is achieved by a set of hierarchical
organized shifter & adder units, as shown in Figure 3 [12]. As-
suming weight parameters are 4-bit numbers and the weights
are programmed to 4 adjacent cells (because the memory cell
is binary), the first level accumulators (the smallest trapezoid
in Figure 3) accept results from 4 BLs. The result can be
directly sent to the output buffer or nearest router via the
bypass connections (blue line in Figure 3).

Additional shifter & adder units are appended at the bottom
for computation of high precision. For example, for 8-bit
precision (parameters are 8-bits number), the results from two
adjacent 4-bit shifter & adder are routed to the next level
shifter & adder which can perform the shifting and adding
operation over 8 bitlines. With more hierarchical shifter &
adder units, our design supports fixed point MAC operation
with different bit precision (up to 32-bit in our design) in the
same place.

Compared with ASIC based designs which either re-
configure floating point unit (FPU) for fixed point multipli-
cation or have separated computing resources for different
type of operations, our PIM design can support flexible bit-
precision in the same place seamlessly.

C. Support for floating point operation

Upon the support for dynamical fixed point computation,
our PIM design also supports floating point operation which
is compliant with IEEE 754 floating point standard. The single
precision format of IEEE 754 has 32-bit data width with 1-bit
for sign, 8-bit for exponent, and 23-bit for mantissa (Figure
4(a)). To clearly illustrate our approach, we use a simplified
version of floating point representation as an example which
has the first 2-bit as exponent and the rest 2-bit for mantissa
(mantissa only has integer, no fraction bit). We also assume
all the numbers are positive (there is no need for sign bit). As
a example, 1011 (first 2-bits are exponent, equals to 2; last
2-bits are mantissa, equals to 3) in decimal representation is
3 << 2 = 12 where << is the left shift operator.

The embedded table in Figure 4(a) shows the MAC oper-
ation between two vectors 〈a1, a2, a3〉 and 〈b1, b2, b3〉. The
final result equals to 52. Figure 4(b) shows how to map
this computation to our PIM design, the first step is to
map the 〈bi〉 vector to the memory crossbar. We check the
maximum exponent of the three numbers in 〈bi〉, which is 01.
Then, values with maximum exponent (b1, b2) are mapped to
the crossbar from the leftmost bitline (i.e. MSB); for value
with smaller exponent (b3), mapping is performed after right
shifting. Similar with mapping vector 〈bi〉 to the crossbar, we
implement a input vector buffer to temporarily store vector
〈ai〉. Following the same rules, for element with the maximum
exponent (i.e. a3), the mantissa is stored from the leftmost
column of the input vector buffer. For element with smaller

𝐵𝐿ଵ 𝐵𝐿ଶ 𝐵𝐿ଷ

SA SA SA

AND

𝑎ଵ

𝑎ଶ

𝑎ଷ

O
ne

-h
ot

 v
ec

to
r

𝑏ଵଷ

𝑏ଶଷ

𝑏ଷଷ

𝑏ଵଶ

𝑏ଶଶ

𝑏ଷଶ

𝑏ଵଵ

𝑏ଶଵ

𝑏ଷଵ

co
un

te
r

co
un

te
r

co
un

te
r

(b)

𝑒𝑛ଵ

𝑒𝑛ଶ

𝑒𝑛ଷ

𝑐𝑙𝑘

𝑒𝑛ଵ

𝑐𝑙𝑘

𝑒𝑛ଶ
𝑒𝑛ଶ

Shared ADC

Shift & Add

𝐵𝐿ଵ 𝐵𝐿ଶ 𝐵𝐿ଷ

𝑏ଵଷ

𝑏ଶଷ

𝑏ଷଷ

𝑏ଵଶ

𝑏ଶଶ

𝑏ଷଶ

𝑏ଵଵ

𝑏ଶଵ

𝑏ଷଵ

(a)

Voltage
sampler

𝑎ଵ

𝑎ଶ

𝑎ଷ

In
pu

t
bu

ffe
r

Fig. 2. Different PIM configurations to compute a1b1 + a2b2 + a3b3 where 〈ai〉 are 1-bit numbers and 〈bi〉 are 3-bit numbers. (a) Analog configuration.
(b) Digital configuration.

Sense amplifiers

𝑠ଷ𝑠ଶ𝑠ଵ𝑠ସ

𝐴𝑐𝑐 = 𝐴𝑐𝑐 + 8𝑠ସ + 4𝑠ଷ + 2𝑠ଶ + 𝑠ଵ

Shift & add 𝑠଼ି௕ = 2ସ𝐴𝑐𝑐ଵ + 𝐴𝑐𝑐ଶ

Shift & add

Acc: accumulator
Acc

𝐴𝑐𝑐ଵ 𝐴𝑐𝑐ଶ

𝑠ଵ଺ି = 2଼𝑠଼ି௕௜௧
ଵ + 𝑠଼ି௕

ଶ

Control logic

Memory crossbar

Acc (4-bit)Acc (4-bit)

Shift & add (8-bit)

Shift & add (16-bit)⋯

⋯

⋯

⋯

Fig. 3. Hierarchical shifter & adder used as multiplexer for dynamical bit precision [12].

SA and counter

𝑐𝑙𝑘ଵିଷ

𝑐𝑙𝑘ସି଺
𝑐𝑙𝑘଻ିଽ

𝑐𝑙𝑘ଵ଴ିଵ

1 0

1 1

0 1

10 10

01 00

00 01

Input vector buffer

𝑐𝑙𝑘ଵିଷ:

𝑐𝑙𝑘ସି଺:

𝑐𝑙𝑘଻ିଽ:

𝑐𝑙𝑘ଵ଴ିଵଶ:

= 4 × 2଴

= 4 × 2ଵ

= 6 × 2ଶ

= 2 × 2ଷ

Final result: 𝟓𝟐

IEEE 754 Floating Point Standard:
Single precision

31 30 − 23 22 − 0

Sign Exponent Mantissa

𝑆 = aଵ𝑏ଵ + 𝑎ଶ𝑏ଶ + 𝑎ଷ𝑏ଷ = 52

Simple example (2bit exp + 2bit mantissa)

(a) (b)

0

0

0

1 0

1 0

1 1

0 1

0

0

0

0

0

0

0

𝑐𝑙𝑘ଵଷି

𝑐𝑙𝑘ଵଷିଵହ: = 0 × 2ସ0 0 0

𝒃𝟏

𝒃𝟐

𝒃𝟑

𝒂𝟏

𝒂𝟐

𝒂𝟑

Fig. 4. (a) IEEE floating point standard and simplified version of floating point data representation. (b) Mapping and computing of floating point MAC inside
memory.

exponent (i.e. a1 and a2), we perform right shift and append
0 to the left end. Figure 4(b) shows how we map 〈ai〉 and 〈bi〉
to the input vector buffer and memory array, respectively.

After mapping is done, computation process is similar as
fixed point operations. At the first clock cycle, we fetch one
value from the input vector buffer (start from the top-right
corner) and activate the first WL accordingly. Since we only
have three WLs, it takes 3 cycles to get the first part of the
partial sum (Figure 4(b)). This process is repeated until all the

values are fetched from the input vector buffer. After proper
shifting, these partial results are summed together to get the
final result, which is 52.

One big challenge is that for single precision floating point
number, the range of exponent is -127 to 128, indicating that
the length of the input vector buffer and number of columns
in memory array to represent one number should be at least
255 bits/cells, to accommodate all possible values. This is
apparently not practical and will significantly slow down the

memory
crossbar

54%

input
buffer

9%

counter
array
26%

shift & adder
hierarchy

5%

wl peripherals
6%

memory
crossbar

15%
input
buffer
3%

counter
array
27%

shift & adder
hierarchy

47%

wl
peripheral

s
8%

Power (19.42 mW) Area (0.034 mm2)

4-bit 8-bit 16-bit 32-bit
Floating-

point

Throughput 64 GOPs 16 GOPs 4 GOPs 1 GOPs 1.9 GOPs

Density
1.88

TMACs/mm2
470

GMACs/mm2
117

GMACs/mm2
29

GMACs/mm2
56

GMACs/mm2

Efficiency
3.3

TMACs/W
824

GMACs/W
206

GMACs/W
52

GMACs/W
99

GMACs/W

VMM engine throughput and computing efficiency

11
4

u
m

296 um

VMM engine layout view:

Fig. 5. Top: Distributed power and area for one VMM engine with a 256× 256 FeFET crossbar. Middle: VMM engine throughput, computing density and
computing efficiency with different bit-precision (TMACs/GMACs: Tera or Giga multiplication accumulation operation). Bottom: Layout view for a VMM
engine (the area is 0.034mm2).

computing speed. In our implementation, we set the length
of input vector buffer (also the number of cells to store one
mantissa) to be 23-bit (same with the matissa’s length in single
precision floating point format). We argue it can provide the
same precision as CMOS logic based floating point unit (FPU)
design, where rounding errors also happen when the difference
of the exponents of two operands are larger than 23-bit. For
example, with single precision notation, 1.5×2−1+1.5×2−32

still equals to 1.5× 2−1 for a standard FPU.

D. Design and Simulations of VMM engine

The physical design of Flex-PIM based VMM engine is
performed considering 28nm technology. For FeFET crossbar,
WL driver and sense amplifier, we perform detailed SPICE
simulation using the extracted netlist of the custom layout to
estimate the energy/latency for data sensing. Then the SPICE
simulation is coupled with synthesized digital blocks (such as
the one-hot vector, counter array, shifter & adder hierarchy,
etc) to form the VMM engine modeling. Synopsys Design
Compiler and PrimeTime are used to model the power and
area of the synthesized components.

We explored various crossbar size and aspect ratio for the
design space optimization. Crossbar with 256 rows/columns
produces the best overall performance in terms of efficiency
and computing density. Top of Figure 5 shows the power and
area distribution for a VMM engine design with a 256× 256
FeFET crossbar. The VMM engine are divided into 5 blocks,

namely, memory crossbar, WL peripherals (one-hot-vector
unit), counter array for data accumulation, input buffer to
temporary input vector storage, and shifter & adder hierarchy
to realize flexible bit-precision.

The memory crossbar and counters occupy the majority of
the power consumption (80%) because we use a higher internal
memory clock (4GHz) to reduce the computation latency. On
the other side, shifter & adder hierarchy takes 47% area but
only consumes 5% power. This is because we only use it when
the row-by-row data sensing is finished and the data in the
counter are ready. Most of the time, the shifter & adder unit are
idle. The insert table in Figure 5 illustrates the VMM engine
throughput, computing density and computing efficiency under
different bit-precision. The layout view of one VMM engine
is shown at the bottom of Figure 5.

E. Design Overhead

Enabling the dynamical bit-precision and floating point
computing is expected to introduce additional hardware design
cost and increase computation latency. The overhead mainly
comes from two aspect: additional clock cycles for data shift-
ing/adding and mantissa shifting for floating point operation.

For the first design overhead, assuming we perform 16-bit
fixed point operation using a 256×256 memory array, it takes
256× 16 = 4096 cycles to accumulate data (i.e. the 256 rows
are iterated 16 times). Then, another 3 clock cycles are re-
quired for the data going through the shifter & adder hierarchy.

VMM engine arrays and H-NoC

Micro-
processor

Address
register

Multiplier array

Pooling processor

Adder array

ReLU

Others (divider, find_max)

VMM engine Router

DMA + Read/write buffer

Memory interface to high-bandwidth DRAM

Functional units and
Control logic

Fig. 6. System Architecture. There are 2048 VMM engines in total (16 MB)
with each VMM engine contains one 256× 256 FeFET crossbar.

In another word, the additional cost to realize dynamical bit-
precision is negligible. On the other side, for floating point
operation, mantissa must be shifted based on its exponent
value accordingly. We argue that bit shifting is a much cheaper
operation than multiplication and can be handled externally.
Therefore, the hardware cost is also insignificant. Overall,
the cost for dynamical bit-precision and floating point are
trivial in terms of latency (< 1%) and chip power (5%).
We also synthesize a baseline digital VMM engine which
only support 8-bit fixed point computation by elinimating the
shifter & adder units, resulting to 896 GMACs/W efficiency.
Meanwhile, Flex-PIM demonstrates 824 GMACs/W at 8-
bit precision, less than 8% overhead in terms of computing
efficiency.

On the other side, our design introduces large area overhead
(47%) due to the fact that there are significant amount of
registers for intermediate data storage inside shifter & adder.

III. FLEX-PIM APPLICATION: DNN ACCELERATION

This section discusses one application of Flex-PIM: The
acceleration of training and inference of various DNN models.

A. System Architecture

The system design largely follows existing PIM based DNN
accelerator architecture [1], [3] with several modifications to
accommodate our VMM engine design and instruction set
decoding procedure. As shown in Figure 6, VMM engines
are placed in a 2-D plate, interconnected with a hierarchical
network-on-chip (H-NoC). An accumulator is implemented
inside the router to realize on-the-fly partial results sum-
mation (in the case that single matrix operation is mapped
to multiple VMM engines). Experiments indicate that such
NoC design can significantly improve the data transmission
efficiency (both input data dispatching and result collection)
[3]. Additional to the original design, in this work we de-
sign the H-NoC to support flexible bit-precisions and our
implementation is fully parameterized. To be more specific,

TABLE I
FLEX-PIM INSTRUCTION SET.

Instruction type Operands Execution flow

Control
Precision, Train/inference mode,

Batch size, registers
Reset control

variables and regs

Layers

Conv layer
Output feature map, Input feature map,

Convolution kernels
Load data

↓
dispatch data

↓
computing

↓
collect result

↓
store data

FC layer
Output vector, Input vector,

Weight matrix

Pooling layer Output matrix, Input matrix

BN layer Output matrix, Input matrix

Activation Output vector, Input vector

Parameter
specification

Input size, Kernel size, Output size
Determine
load/restore

pattern

Control instruction (set register)

OPcode

6-bit

Reg_index

7-bit

Reg_content

32-bit

Unused

19-bit

Control instruction (set precision)

OPcode

6-bit

Precision

7-bit

Unused

51-bit

Layer instruction (Conv layer)

OPcode

6-bit

Result_add

7-bit

Unused

37-bit

Input_add

7-bit

Weight_add

7-bit

Layer instruction (Activation layer)

OPcode

6-bit

Result_add

7-bit

Unused

37-bit

Input_add

7-bit

Activation

7-bit

Parameter specification (Conv layer)

OPcode

6-bit

Input_w

12-bit

Input_l

10-bit

Kernel_size

10-bit

Kernel_num

10-bit12-bit

Input_d

4-bit

(a):

(b):

(c):

(d):

(e):

Fig. 7. Examples for Flex-PIM instruction set.

with different parameters, our H-NoC can be reconfigured
to achieve different levels of hierarchy and data bandwidth
to fit various application scenarios. In our implementation,
we end up with a 7 level NoC hierarchy, containing 2048
VMM engines with the total memory capacity 16MB. In
addition to the VMM engines array, several functional units
are implemented to support the computation which can’t be
accelerated inside memory, such as Pooling, ReLU, random
number generator, to name a few.

B. Instruction set and programming model

A key step to enhance the system flexibility is to design a
dedicated domain-specific instruction set. Our instruction set
is designed based on high-level (i.e. DNN layers) abstraction,
making the code more readable and informative.

As shown in Table I, there are three types of instructions,
control, layers, and parameter specification. Instructions are
64-bit with the first 6-bit as Opcode. The first 2-bit of Opcode
specify the instruction types (00 for control, 01/10 for layers
and 11 for parameter specification). Control instruction is used
to define computing precision, set running mode (inference
or training) and write address register. Examples for control
instruction are shown in Figure 7(a, b). The second type of
instruction defines the layer and where the weight/activation

should be fetched from. For layers containing weight parame-
ters (e.g. Conv layer in Figure 7(c)), there are three operands
(each has 7-bit, corresponding to the 128 address registers)
for computing result address Resultadd, activation address
Inputadd, and weights address Weightadd. For layers without
weights (e.g. activation layer in Figure 7(d)), the third operand
is to indicate the computing type.

However, we are still facing an issue that 64-bit instructions
can not include all the information for a layer definition, such
as input feature map depth, convolution kernel size, etc. This
leads to the implementation of the parameter specification
instruction. During execution, once an instruction is decoded
and identified as layer-type instruction, the processor immedi-
ately fetches another instruction (i.e. a parameter specification
instruction) from the instruction buffer. After getting all the
necessary knowledge, the processor then asks the DMAC
(direct memory access controller) to fetch data from the right
location and perform data partition and dispatching. Figure
7(e) shows an example of a parameter specification instruction
which provides definitions for a Conv layer.

A software/hardware interface is designed to bridge the gap
between software and hardware, letting users easily deploy
their applications without specific hardware knowledge. With
the well-defined instruction set, the implementation of the soft-
ware/hardware interface becomes straightforward. The runtime
system takes DNN definition file (and pre-trained model if
available) as input, sets the computing model and running
precision, and performs layer-wise interpretation to translate
the high-level python script to the developed instructions.

C. Benefits of flexible bit-precision

The motivation for flexible bit-precision design is to ex-
plore the optimal tradeoff between accuracy and computing
efficiency. To be more specific, we can use low precision (e.g.
8-bit) for DNN models which are robust towards quantization
while high precision (e.g. 16-bit or floating point) for models
which are sensitive. Even more, we can have different preci-
sion inside a single network. For example, our experiment with
Faster-RCNN (an object detection network) [10] shows that
the accuracy (mAP) drops 30% for uniform 8-bit quantization
even after re-training. The solution to compensate the accuracy
drop is called adaptive/dynamical quantization where only part
of the DNN model is quantized. As shown in Figure 8, we
reduce the bitwidth of the backbone feature extractor (ResNet-
101) to 8-bit and keep the rest intact (the first and last layer
of ResNet-101 are not quantized). The accuracy is largely
recovered. Since the backbone occupies the majority (more
than 90%) of the parameter size and computation, we still
achieve significant gain from the dynamical quantization.

D. Performance of benchmark DNN models

Our benchmark includes three image classification DNN
models (AlexNet [13], VGG [14], and ResNet-50 [15]) us-
ing ImangeNet dataset [16] and one object detection model
(Faster-RCNN with ResNet-101 as the feature extractor) using
MS-COCO dataset [17].

TABLE II
COMPARISON WITH OTHER IN/NEAR MEMORY DESIGNS.

Memory
solution

Precision Configs
Computing
efficiency
(GOPs/W)

SRAM PIM [2] SRAM
Fixed point

Floating point
Digital

560 (8-bit)
N/A (floating point)

ReRAM PIM [1] ReRAM Fixed point Analog 381 (16-bit)

FeFET PIM [3] FeFET Fixed point
Mixed-
signal

443 (8-bit)

Flex-PIM FeFET
Fixed point

Floating point
Digital

824 (8-bit)
206 (16-bit)

99 (floating point)

During inference phase, we use 8-bit for both the activation
and weight parameters for the image classification DNN
models (AlexNet, VGG, and ResNet-50). For Faster-RCNN,
we apply the dynamical quantization methodology where only
the backbone network is quantized to 8-bit. For training, 32-bit
floating point is applied for all the benchmark models.

Figure 9 shows the speed comparison of desktop GPU
(Nvidia GTX1080Ti) and Flex-PIM for training and inference
across the benchmark DNN models under varying batch sizes.
For complex DNN models (such as VGG-16, ResNet-50, and
Faster-RCNN), we choose smaller batch sizes to avoid the
run out of GPU memory error. The throughput (i.e. images
per second) for each DNN models are normalize towards
the GPU throughput with minimum batch size for better
visualization. We observe that Flex-PIM outperforms GPU
solution by 6.1x and 23.2x in terms of training and inference
speed, respectively. Additionally, desktop GPU’s power is
5.2x higher than Flex-PIM (47W for 2048 VMM engines
and corresponding function units), resulting up to 32x - 120x
computing efficiency (GMACs/W) improvement.

E. Comparison with prior works

Compared with prior mixed-signal FeFET based PIM archi-
tecture (443 GMACs/W with 8-bit precision) [3], we achieve
2x performance improvement benefiting from the all-digital
VMM engine design and the high internal memory clock
frequency. Also, our design is more flexible with the support
for dynamical bitwidth and floating point precision. On the
other hand, ISAAC [1], a ReRAM based analog PIM ar-
chitecture supports 16-bit fixed point computing, illustrates
384 GMACs/W efficiency, which is 1.8x higher than our
approach. However, it ignores the large RC delay of ReRAM
sensing and is error-prone due to the analog computing.
We also compare with recent SRAM based in/near memory
design [2], which gives 560 GMACs/W performance for 8-
bit integer multiplication. Our design outperforms it by 50%
improvements. The key results and design configurations for
these PIM architectures are summarized in Table II.

As a conclusion, Flex-PIM demonstrates state-of-the-art
performance while achieves both accuracy and flexibility.

ConvNet (ResNet-101)
(1st feature extractor)

RPN&ROI pooling

Bbox_pred

Class_pred

ConvNet
(2nd feature extractor)

Non-Quantized Quantized

A
ve

ra
g

e
m

A
P

@
0

.5
IO

U

0

10

20

30

40

50

60

70

FP 32-bit 16-bit 8-bit
(uniform)

8-bit
(dynamic)

30%

6%

(a)

(b)

Fig. 8. (a) Adaptive/dynamical quantization for Faster-RCNN, only the middle layers of the ResNet-101 (first stage feature extractor) are quantized to 8-bit.
(b) Accuracy (mAP @ 0.5 IOU) under different bit-precision and dynamical quantization.

0

5

10

15

20

25

16 64 256512 4 16 32 64 4 16 32 64 4 16 32 64

AlexNet VGG-16 ResNet-50 Faster-RCNN

Desktop-GPU Flex-PIM

0
5

10
15
20
25
30
35
40
45

16 64 256512 4 16 32 64 4 16 32 64 4 16 32 64

AlexNet VGG-16 ResNet-50 Faster-RCNN

Desktop-GPU Flex-PIM

N
or

m
al

iz
ed

 s
p

ee
d

N
or

m
al

iz
ed

 s
p

ee
d

Training (Desktop GPU vs. Flex-PIM) Inference (Desktop GPU vs. Flex-PIM)

(a) (b)

Fig. 9. Normalized training/inference speed of desktop GPU (Nvidia GTX1080Ti) and Flex-PIM for benchmark DNN models with varying batch size. The
batch sizes for AlexNet are 16, 64, 256, 512; for other DNNs, the batch sizes are 4, 16, 32, 64. For inference, 8-bit is used for AlexNet, VGG, and ResNet-50;
dynamical precision (8-bit + floating point) is used for Faster-RCNN. For training, all benchmark DNNs use floating point precision.

IV. CONCLUSION

In this work, we propose FeFET based PIM architecture to
accelerate both DNN inference and training. With FeFET as
the basic memory cell, all-digital VMM engine configuration,
and dedicated circuit design to support dynamical bit-precision
and floating point operation, we realize a highly efficient, flexi-
ble and accurate PIM design. We perform detailed power/area
analyses and the design overhead is carefully evaluated. As
FeFET continues to mature towards a commercial technology,
we show the pathway to a fully-fledged flexible in-memory
DNN accelerator solution.

REFERENCES

[1] A. Shafiee et al., “Isaac: A convolutional neural network accelerator with
in-situ analog arithmetic in crossbars,” in Computer Architecture (ISCA),

2016 ACM/IEEE 43rd Annual International Symposium on, pp. 380–392,
IEEE, 2016.

[2] J. Wang et al., “A compute sram with bit-serial integer/floating-point
operations for programmable in-memory vector acceleration,” in Pro-
ceedings of the International Solid-State Circuits Conference (ISSCC),
pp. 1440–1448, 2019.

[3] Y. Long et al., “A ferroelectric fet based power-efficient architecture for
data-intensive computing,” in Proceedings of the International Confer-
ence on Computer-Aided Design (ICCAD), p. 32, ACM, 2018.

[4] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and
Y. Xie, “Prime: A novel processing-in-memory architecture for neural
network computation in reram-based main memory,” in ACM SIGARCH
Computer Architecture News, vol. 44, pp. 27–39, IEEE Press, 2016.

[5] L. Song, X. Qian, H. Li, and Y. Chen, “Pipelayer: A pipelined reram-
based accelerator for deep learning,” in High Performance Computer
Architecture (HPCA), 2017 IEEE International Symposium on, pp. 541–
552, IEEE, 2017.

[6] S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie, “Drisa:
A dram-based reconfigurable in-situ accelerator,” in Proceedings of the
50th Annual IEEE/ACM International Symposium on Microarchitecture,

pp. 288–301, ACM, 2017.
[7] C. Eckert et al., “Neural cache: Bit-serial in-cache acceleration of deep

neural networks,” arXiv preprint arXiv:1805.03718, 2018.
[8] Y. Long et al., “A ferroelectric fet based processing-in-memory architec-

ture for dnn acceleration,” IEEE Transactions on Exploratory Solid-State
Computational Devices and Circuits, no. 99, pp. 1–14, 2019.

[9] E. Wang et al., “Deep neural network approximation for custom
hardware: Where we’ve been, where we’re going,” arXiv preprint
arXiv:1901.06955, 2019.

[10] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international
conference on computer vision (ICCV), pp. 1440–1448, 2015.

[11] H. Sharma et al., “Bit fusion: Bit-level dynamically composable ar-
chitecture for accelerating deep neural network,” in 2018 ACM/IEEE
45th Annual International Symposium on Computer Architecture (ISCA),
pp. 764–775, IEEE, 2018.

[12] Y. Long, E. Lee, D. Kim, and S. Mukhopadhyay, “Q-pim: A genetic
algorithm based flexible dnn quantization method and application to
processing-in-memory platform,” in Proceedings of the 57th Annual
Design Automation Conference, pp. 1–6, 2020.

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, pp. 1097–1105, 2012.

[14] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[15] K. He et al., “Deep residual learning for image recognition,” in Proceed-
ings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

[16] J. Deng et al., “Imagenet: A large-scale hierarchical image database,”
in Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE
Conference on, pp. 248–255, Ieee, 2009.

[17] T.-Y. Lin et al., “Microsoft coco: Common objects in context,” in
European conference on computer vision, pp. 740–755, Springer, 2014.

