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Abstract—This paper aims to extract summarization and
keywords from scientific articles simultaneously, while abstract
extraction (AE) and key extraction (KE) are considered as auxil-
iary tasks to each other. For the data scarcity in scientific AE and
KE tasks, we propose a multi-task learning framework which uses
huge unlabeled data to learn scientific language representation
(pre-training) and uses smaller annotated data to transfer the
learned representation to AE and KE (fine-tuning). Although the
pre-trained language model performs well in universal natural
language tasks, its capacity still has a margin of improvement
for specific tasks. Inspired by this intuition, we use another
two tasks keyword masking and key sentence prediction before
the fine-tuning phase to enhance the language representation
for AE and KE. This language representation enhancing stage
uses the same labeled data but different optimization objectives
with the fine-tuning phase. In order to evaluate our model, we
develop and release a high-quality annotated corpus for scientific
papers with keywords and abstract. We conduct comparative
experiments on this dataset, and experimental results show that
our multi-task learning framework achieves the state-of-the-art
performance, proving the effectiveness of the language model
enhancing mechanism.

Index Terms—extractive summarization, keywords, pre-train,
multi-task

I. INTRODUCTION

The exponential increase of scientific publications in the
past decades motivates the development of automatic sum-
marization and keyword extraction for scientific articles. Text
summarization aims to generate the shorter coherent version of
the source article which retains its salient information, while
keyword extraction aims to identify several core words or
multi-words of the source article. These tasks can facilitate
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... A biofilm that has a high impact in chronic bacterial infection, being
known for the damage it causes in lungs of patients with cystic fibrosis,
is formed by the Gram-negative bacteria Pseudomonas aeruginosa. This
is an opportunistic human pathogen that can cause acute infections
in hospitalized people, especially those immunocompromised, such
as patients with acquired immunodeficiency syndrome (AIDS), and
neutropenic patients due to chemotherapy treatments. P. aeruginosa also
cause deleterious infections in individuals with burns, pneumonia in patients
receiving artificial ventilation, and keratitis in contact lens wearers. The
aim of the present study was to evaluate possible changes in the molecular
profile of biofilms from P. aeruginosa in varying stages of maturity
in two distinctsurfaces (glass and polypropylene) using MALDI-TOF MS.
In addition, the morphology of such biofilm stages was examined and
compared by scanning electron microscopy and atomic force microscopy
(AFM) ...

TABLE I
PART OF SCIENTIFIC ARTICLE. WORDS WITH ITALIC FONT ARE

KEYWORDS AND SENTENCES WITH UNDERLINE ARE THE CONTENT IN
ABSTRACT.

the understanding and accessing of long scientific articles.
Both previous keyword extraction and summarization models
are roughly divided into two paradigms, extractive model [1],
[2] and generative one [3], [4]. In this paper, we focus on
extractive models, i.e., keyword extraction (KE) and abstract
extraction (AE).

Although deep neural network based works show their
effectiveness in KE and AE, most of them just focus on a
single task and the improvement has reached a bottleneck. In
fact, scientific KE and AE are highly relevant tasks, because
the abstract could be viewed as the much shorter source text
for KE, while keywords could provide important clues for
AE. As shown in Table I, given the source scientific litera-
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Fig. 1. Overview of SciKABERT. Transfer learning with three stages for KE
and AE.

ture, the keywords “biofilm”, “pseudomonas aeruginosa”, etc.
commonly occur in the summarization sentences. It is intuitive
that, training both KE model and AE model simultaneously
could promote the performance of each task. So, this paper
aims to perform a multi-task learning of keyword extraction
and summarization.

However, a multi-task model for KE and AE requires both
word-level and sentence-level labels, which are not included in
existing scientific datasets. Most annotated datasets just apply
to single task [4], [5] or they are too small (contains no more
than a few thousand pieces of data) to train a robust model [6],
[7]. As annotating scientific articles requires domain-specific
expert knowledge, it is difficult to construct huge labeled
datasets. Fortunately, language models (LM) such as Bidi-
rectional Encoder Representations from Transformers (BERT)
are learned unsupervised and could be easily transferred to
universal downstream natural language processing (NLP) tasks
[8], [9]. Inspired by this background, we aim to use huge
unlabeled data for learning scientific language representation
and use small annotated data for transferring the learned
representation to KE and AE. We note that, previous pre-
trained LMs are generally designed for universal NLP tasks,
so this paper also considers how to enhance the performance
of LM for AE and KE.

In this paper, we propose a new pre-training and fine-
tuning framework for multi-task learning of KE and AE. As
shown in Figure 1, this framework can be divided into three
stages: (i) We pre-train the language model on huge scientific
unlabeled data with masked LM task and next sentence pre-
diction task. (ii) We enhance the pre-trained language model
SciKABERT (stands for Scientific Keyword Extraction and
Abstract Extraction Oriented BERT) using keyword masking
task and key sentence prediction task. The SciKABERT is
initialized with the pre-trained parameters, and all of the

parameters are fine-tuned using labeled data. In keyword
masking task, we mask some keywords at random, and then
predict those masked tokens. Key sentence prediction task
aims to predict which sentence is the key one. These two tasks
could boost the performance of the language model for KE
and AE respectively. (iii) We apply the learned SciKABERT
to the multi-task of KE and AE by just appending one word
classifier layer and one sentence classifier layer, and fine-tune
parameters using labeled data. Be different from the general
frameworks for transfer pre-training LM [8] to universal NLP
tasks, which just contains one fine-tuning stage (the 3rd stage
in our approach), our framework introduces another phase (the
2nd stage) to enhance the language representation for KE and
AE tasks. These two stages use the same annotated data but
different optimization objectives.

To overcome data scarcity in scientific key extraction and
summarization, we semi-automatically construct an annotated
scientific dataset, named SciKADat, which consists of 48419
public accessible articles (with abstract and keywords) in
computer science domain. We distill the introduction as the
source text, label each word according to the given keywords
and label sentences using a greedy algorithm to maximize
ROUGE score between the selected sentences and the given
abstract [10]. Rule-based preprocessing and manual check are
further carried out to improve the quality of SciKADat. We
compare the performance of our model on SciKADat with
several important baselines. Experimental results show that our
model achieves the state-of-the-art results on both KE and AE.
Besides, we carry out ablation experiments which demonstrate
both the effectiveness of the two-stage fine-tuning mechanism
and that of the multi-task learning.

In summary, the main contributions of this paper are as
follows:
• We propose a multi-task learning framework for scientific

summarization and keywords extraction.

• We propose SciKABERT which is trained by keyword
masking task and key sentence prediction task to boost
the performance of the language model for keyword
extraction and abstract extraction.

• We construct a large scale high-quality scientific dataset
SciKADat which contains introduction, abstract and key-
words of publications. Experimental results show the
effectiveness of the LM enhancing mechanism and that
of the multi-task learning framework.

II. RELATED WORK

1) Text Summarization: Text summarization is the task of
automatically generating a shorter version while remaining the
main information and the task has two paradigms: generative
summarization (also known as abstractive summarization) and
extractive summarization. Generative summarization requires
text rewriting and may contain words not appeared in the
original text. Most recent generative models [5] are based
on Seq2Seq and attention mechanism. However, the generated
summaries are liable to reproduce factual details inaccurately



and tend to repeat themselves. Pointer mechanism [11], GAN
model [12], reinforcement learning [13] and bottom-up atten-
tion [3] are introduced to promote the performance of the
basic Seq2seq model. However, the deep semantic information
is still hard to control through these RNN-based generative
approaches. For extractive models, hierarchical Transformer
[1] and BERT [8] are pre-trained with large unlabeled data
with deep unidirectional architectures and achieve state-of-the-
art performance on CNN/DM with extractive method. These
single task models can not grasp the subjects exactly, which
is vital in summarization. In our model, we propose task-
oriented LM and multi-task training to further improve the
performance.

2) Keyword Extraction: Keywords are selected to intu-
itively express the subject of an article, so that readers can
determine whether to read it with a glance. Traditional key-
word extraction method is based on TF-IDF [14], but the
inherent relations between words are not taken into account.
Then approaches based on word graphs have been proposed.
TextRank [15] is the first graph-based approach for keyword
extraction. PositionRank [16] is an unsupervised approach to
extract keywords from scholarly documents. However, these
graph-based methods are unsupervised and identify keywords
from words graph manually, which lack flexibility to cope with
different types of documents. End-to-end neural approaches
have attracted more attention in recent studies. RNN mech-
anism [17], and Seq2Seq architecture [4] are proposed to
facilitate the keyword generation. While these RNN-based
methods ignore the correlation between keywords. Graph-
based method [2] employs graph ranking, and retrieval model
[18] explores the power of retrieval and extraction, achieving
state-of-the-art performance. Different from these methods,
our model, which is very good extractive model based on pre-
trained science LM, can be used to extract keywords with the
collaboration of AE.

3) Pre-trained NLP Models: Transfer learning with lan-
guage models have demonstrated that rich, unsupervised pre-
training is an integral part of many language understanding
systems, such as ELMo [19], GPT [20] and BERT [21].
Typically, these methods first pre-train neural networks on
large-scale unlabeled text corpora, and then fine-tune the
models on downstream tasks. Many tasks should leverage the
context in both direction, while the language model objective
is unidirectional. With the capability of modeling bidirectional
contexts, BERT achieves better performance than other pre-
training approaches. Inspired by these, our SciKABERT pre-
train task-oriented BERT as the base model and train multi-
task with downstream tasks.

III. METHODOLOGY

A. Preliminary

Definition 1: Abstract Extraction
Let d denotes an source document, which contains mul-
tiple sentences [s1, s2, ...., sm], where si is the i-th sen-
tence in d. Abstract extraction can be defined as the task

of assigning a label of yisen ∈ {0, 1} to each si, indicating
whether this sentence should be included in the abstract.

Definition 2: Keyword Extraction
Otherwise, document d can also be represented by several
words [w1, w2, ..., wn], where wi is the i-th words in d.
Keyword extraction can be defined as the task of assign-
ing a label of yikey ∈ {0, 1} to each wi, indicating whether
this word should be included in keywords. If continuous
words are chosed as keywords, then we process them as
a keyphrase.

We aim to train these two extraction tasks simultaneously.
Our multi-task learning framework consists of three stages:
pre-training a scientific LM with the architecture of BERT,
enhancing the scientific LM for AE and KE and fine-tuning
the multi-task model.

B. Scientific LM Pre-Training

To pre-train a scientific LM, we employ the same archi-
tecture of deep bidirectional Transformers with BERT. In
each layer, there is a multi-head self-attention sublayer and a
linear affine sub-layer with the residual connection. The self-
attention can be described as mapping a query (matrix Q) and
a set of key (matrix K) - value (matrix V) pairs to an output.
The attention distribution in self-attention layer is shown as
below:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (1)

where dk is output dimension, and 1√
dk

is used to scale the
dot product.

The language model is trained on unlabeled scientific data
using two unsupervised prediction tasks, masked LM and next
sentence prediction, which is the same as BERT.

C. Task-Oriented LM Enhancing

In the previous stage, we learn a language model which is
easily transferred to universal scientific tasks, but maybe not
optimal for specific task. In order to enhance the language
representation for KE and AE, we fine-tune the learned model
using two new tasks, keyword masking and key sentence
prediction.

1) Task #1: Keyword Masking: In this task, we simply mask
some percentage of the labeled keywords at random, and then
predict those masked keywords. This procedure is similar to
the masked LM task in BERT and other Cloze tasks [1], [22].
We mask 15% WordPiece tokens in each sequence. If the
ratio of keywords in a sequence exceeds 15%, we just mask
the keywords randomly; otherwise, we mask all keywords
and mask some common words at random. During test time,
the input text is not masked. To make our model can adapt
to documents without masks, we don’t always replace the
selected word with [MASK] token. The same as [21], once a
word is selected as one of the 15% masked words, we replace
it with one of three methods as follows.
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Fig. 2. The architecture of SciKABERT during multi-task fine-tuning. Abstract Classifier only takes care of [CLS], which is the representation of one
sentence. Keywords Classifier needs process all tokens. [SEP] is a special separator token at the end of sentence, E means the input embedding.

• replacing the chosen words with [MASK] token 80% of
the time.

• replacing the word with a random word 10% of the time.
• keeping the word unchanged 10% of the time.

2) Task #2: Key Sentence Prediction: The next sentence
prediction (NSP) task in BERT samples two spans of text
from corpus and predicts a binary objective to understand
the relationship between these two segments. [CLS] is the
first token of every sequence, and it is used as the aggregate
sequence representation for NSP.

Different from NSP, we sample continuous separated sen-
tences from source article and try to predict which ones are
crucial. In our model, the unit of input text is sentence rather
than segment. So, we need to assign individual representation
to each sentence. Just as BERTSUM [8], we insert a [CLS]
token before each sentence and a [SEP] token after each
sentence to highlight the boundary between sentences. In this
way, our model can predict key sentence through multiple
[CLS] tokens, by labeling 1 to crucial ones and 0 to others.
In addition, our task pays more attention to the importance
of sentence instead of sequential relationship, which has the
same goal with AE.

For segment embeddings, BERT only has two labels: EA,
EB , because there are only two segments in NSP. However,
there are multiple sentences in our model, so we assign EA

and EB alternately to each sentence in our task to distinguish
different sentences, as shown in Figure 2.

Keyword masking task and key sentence prediction task are
trained together with cross entropy objective function, in the
light of MLM and NSP.

D. Multi-Task Fine-Tuning

The Multi-Task model is SciKABERT appending with one
KE module and one AE module. The parameters of SciK-
ABERT are first initialized with the parameters learned from
the previous stage, and then fine-tuned using labeled data.

1) Keyword Extraction Module: For keyword extraction
task, we will get the final predicted score ŷikey for each
word, which is calculated by adding a simple classifier to
the SciKABERT output. Then we choose binary classification
entropy between Ŷkey and gold label Ykey as the loss function.
Just as [8], there are three types of classifier stacked on
the top of BERT output: Linear Classifier, RNN Classifier,
Transformer Classifier.

Transformer model achieved great performance in NLP, so
we apply a two-layer Transformer for BERT outputs:

h̃l = LayerNorm(hl−1 +MultiHeadAtt(hl−1))

hl = LayerNorm(h̃l + FeedForwardNN(h̃l))
(2)

where l is the depth of stacked layers, h0 is the BERT outputs
with positional embeddings.

The final output layer is also a linear classifier:

ŷikey = σ(hLi Wh + bih) (3)

where Wh and bh are parameters of linear layer in Trans-
former classifier, hLi is the top layer vector for i-th word of
Transformer outputs and L is 2 in our model.

2) Abstract Extraction Module: Abstract extraction is simi-
lar to keyword extraction except for that we only care about the



representation of [CLS]. So we employ another Transformer
classifier:

ŷisen = σ(h
′

iW
′

h + b
′i
h ) (4)

where W
′

h and b
′

h are the parameters of linear layer in
Transformer classifier, h

′

i is the sentence-level output of top
Transformer layer.

E. Multi-Task Learning Objective Functions

Our model consists of two parts, abstract and keyword
extraction. The loss function of each task is shown as follows:

Jkey =

− 1

N

N∑
i=1

[yikeylog(ŷ
i
key) + (1− yikey)log(1− ŷikey)]

Jabs =

− 1

M

M∑
i=1

[yisenlog(ŷ
i
sen) + (1− yisen)log(1− ŷisen)]

(5)

where M is the number of sentences in article, N is the
number of tokens in article, yikey and yisen are the ground-
truth labels.

For the purpose of improving shared deep stacked bidi-
rectional Transformers encoder, we train KE and AE model
simultaneously. The joint multi-task objective is minimized by:

J = λJabs + (1− λ)Jkey (6)

where λ is hyper-parameters that determines weights of two
objectives, and it is tuned on the validation set.

IV. EXPERIMENT

A. Dataset

There has been several publicly-available datasets with
scientific papers which are designed for single-task. Krapivin
[7] provides 2,304 papers with full-text and author-assigned
keywords. KP20k [4] consists of 567,830 papers without the
full-text or introduction. SemEval-2010 [6] contains 288 arti-
cles collected from the ACM Digital Library. However, these
datasets don’t involve all elements (abstract, keywords and
article), or the number of papers is too small. So we construct
a large labeled dataset for KE and AE named SciKADat.

We first download English scientific papers with intro-
duction, abstract and keywords from various online digital
libraries, which is open access to everyone, including Sci-
enceDirect, WWW and KDD, etc. Note that, we use introduc-
tion as the source article because it involves main information
of the whole paper and is easy to handle. Then, we preprocess
the dataset using heuristic rules such as removing papers
of which the abstracts are copied from introduction directly,
removing sentences which has formula or special symbols.
Considering the extraction task, we only preserve the present
keywords, which can cover most of original ones. Finally,
we ask several graduate students who mastering in English

Dataset Train Validation Test

Num of Articles 40916 3717 3786

Introduction Sentences 25.53 25.45 25.55
Introduction Words 636.22 633.40 637.25
Abstract Sentences 4.28 4.25 4.27
Abstract Words 97.63 96.76 97.43
Keywords 5.16 5.15 5.09

TABLE II
SCIKADAT STATISTICS: NUMBER OF ARTICLES AND AVERAGE NUMBER

OF OTHERS

to review each abstract with the readability and coherence,
then we remove bad ones.

The words are easy to label according to the keywords
provided in the original paper. To label the sentences according
to the abstract in the original paper, we use a greedy algorithm
to generate an oracle abstract for each introduction by greedily
selecting sentences that can maximize ROUGE scores [10].
We assigned label 1 to sentences in oracle abstract and 0 to
others.

After above automatically preprocessing and labeling,
SciKADat contains 48,419 high-quality articles with labeled
keywords and key sentences. We use 40,916 articles as the
training set, 3,717 ones as the validation set and 3,786 ones
as the test dataset. The details are shown in Table II:

B. Implementation Details

Our first stage is Science LM Training, which is similar to
the pre-training of BERT. Fortunately, SciBERT [23] is trained
on papers from the unlabeled corpus of SemanticScholar 1,
with corpus size of 1.14M and 3.1B tokens. So we reuse
SciBERT as our first stage.

In the second stage, we implement our model with the
pre-trained parameters from previous stage, “scibert-scivocab-
uncased” of SciBERT 2. Our model was keeping training by
following the original method 3 on a single machine with 4
Nvidia Tesla V100 GPUs.

For the third stage, classifiers for abstract and keyword
extraction are jointly fine-tuned simultaneously with a unified
loss function. Following the recommended settings in the
BERT code, we set a maximum sentence length of 128 tokens
and total length of 512 tokens. We train the model for 100,000
steps on same machine with batch size of 20. Adam with
β1 = 0.9, β2 = 0.999 is used for fine-tuning. The hyper-
parameters λ for Jabs and Jkey is 0.6. Learning rate schedule
is following with warming-up on first 10,000 steps, using the
strategies in Transformer [24]. The dropout rate in all layers
are 0.1.

C. Evaluation Metric

The standard metrics for keyword extraction performance
are precision, recall and F-measure (F1). Precision is defined

1https://www.semanticscholar.org/
2https://github.com/allenai/scibert
3https://github.com/google-research/bert



as the number of correctly predicted keywords over the number
of all predicted keywords. Recall is defined by the number
of correctly predicted keywords over the total ground-truth
keywords. F1 is the weighted average of precision and recall.
For summarization experiments, we use the common metrics,
F1 of ROUGE-1, ROUGE-2 and ROUGE-L4, which are com-
puted based on overlapping lexical units between generated
summaries and golden ones.

V. RESULT AND ANALYSIS

In this section, we firstly evaluate KE and AE on several
extractive and generative baselines respectively, shown in
Table III and Table IV. Then we carry out some ablation
studies about the performance of different classifier layers,
the efficiency of different stages and the contribution of each
components in SciKABERT, shown in Table V and Table VI.
We also analyze the score trend of KE and AE with different
factors in Figure 3.

A. Evaluation on Abstract Extraction

In order to evaluate the effectiveness of our model on AE,
we select four extractive methods and six generative ones as
baselines, which achieve the best performance on CNN/DN
dataset.
• Generative Methods. Attention-Based Seq2Seq [5], [25]

puts forward a generative method for summarization with
neural network. Pointer-Generator [11], DeepRL [13]
and GAN [12] use sequence to sequence framework,
respectively plusing copy mechanism and coverage mod-
eling, reinforcement learning and generative adversarial
learning. Unified Model [26] is the combine of extraction
and generation model. Bottom-Up [3] generates sum-
marization by combining word prediction model with
bottom-up attention model.

• Extractive Methods. Lead-3 and TextRank [15] are clas-
sical unsupervised and extractive models for summa-
rization. SummaRuNNer [10] is RNN-based extractive
model. The most recent work BERTSUM [8] is a pre-
training language model for extractive summarization,
and outperforms HIBERT [1] obviously on CNN/DM.

As shown in Table III, the extractive methods generally
perform better than generative ones. On our dataset, Sum-
maRuNNer significantly outperforms many other generative
or extractive approaches, and TextRank is better than almost
all Seq2Seq-based models. The reason may be that generative
methods will generate many duplicate words and irrelevant
expressions. Bottom-Up outperforms other generative models
because there is more explicit sentence compression with
bottom-up attention. It is worth noting that BERT-based mod-
els achieve prominent improvement on AE. BERTSUM gets
2.51, 4.37, 2.46 promotion on Rouge-1, Rouge-2, Rouge-
L, compared with SummaRuNNer. SciKABERT achieves the
state-of-the-art performance with the task-oriented LM for
summarization task.

4https://github.com/andersjo/pyrouge

Models (%) Rouge-1 Rouge-2 Rouge-L

Seq2Seq 41.60 19.96 35.93
Pointer-Generator 42.33 20.25 36.57
Unified-Model 43.19 20.67 36.68
DeepRL 42.76 18.82 36.90
GAN 41.92 19.65 35.71
Bottom-Up 43.92 21.65 37.21

Lead-3 31.61 11.70 26.54
TextRank 43.20 25.56 40.42
SummaRuNNer 45.66 26.11 42.77
BERTSUM 48.17 30.48 45.23
SciKABERT 49.34 31.85 46.55

TABLE III
THE PERFORMANCE OF DIFFERENT MODELS ON AE.

Models (%) F1@3 F1@5 F1@10

CNN 18.42 15.18 11.03
CopyCNN 31.74 26.38 20.27
RNN 19.53 15.58 12.18
CopyRNN 32.37 28.72 20.92

TF-IDF 13.21 11.63 9.12
TextRank 15.58 13.77 8.50
PositionRank 30.44 27.74 22.05
YAKE 19.73 16.51 12.73
SeqPointer 35.40 31.88 24.55
GraphPointer 36.18 32.42 26.38
BERT 38.66 34.32 27.57
SciKABERT 39.51 35.47 29.20

TABLE IV
THE PERFORMANCE OF DIFFERENT MODELS ON KE.

B. Evaluation on Keyword Extraction

To evaluate the efficiency of our model on KE, we select
four generative methods and seven extractive ones as baselines.
• Generative Methods. Comparative generative methods

include CNN, CopyCNN [27] RNN and CopyRNN [4].
These approaches could identify keyphrases that do not
appear in the text and copy mechanism is vital for
keywords generation.

• Extractive Methods. Comparative extractive methods in-
clude TF-IDF [14], TextRank [15], PositionRank [16] ,
YAKE [28], SeqPointer and GraphPointer [2]. The former
four approaches are unsupervised method. TF-IDF and
YAKE utilize text statistical features to select the most
important keywords. TextRank and PositionRank are
graph-based method and identify keywords from words
graph. While end-to-end neural approaches have attracted
more attention in recent studies, and SeqPointer and
GraphPointer are the most promising ones among them.
Besides, BERT achieves ground-breaking performance on
multiple NLP tasks and we compare our model with it in
experiments.

Table IV shows the results of comparative keyword extrac-
tion methods including generative methods in the top block
and extractive ones in the bottom block. On our dataset,
PositionRank outperforms other unsupervised models, for that
it is designed for scholarly documents. The CopyCNN and



CopyRNN with copy mechanism significantly improved the
performance base on RNN model, and SeqPointer with pointer
network gets further promotion. For that copy or pointer
mechanism can extract keywords exactly. GraphPointer com-
bines the graph and pointer mechanism and outperforms other
supervised approaches. All BERT-based models outperform
previous models by a substantial margin, especially for our
SciKABERT. It demonstrates that our task-oriented LM en-
hancing and multi-task method are essential for downstream
tasks.

C. Ablation Studies

1) Classifier Layer: We experiment with three kinds of
classifier layer in our model: Linear Layer, RNN Layer and
Transformer Layer. We evaluate these classifiers using F-
measures F@3, F@5 for KE and Rouge-1, Rouge-L for
AE. As illustrated in Table V, SciKABERT with Transformer
classifier achieved the best performance on four metrics, and
Linear is the worst one.

SciKABERT (%) F1@3 F1@5 R-1 R-L

+Linear 38.93 34.82 48.28 45.38
+RNN 39.28 35.36 48.97 46.27
+Transformer 39.51 35.47 49.34 46.55

TABLE V
RESULTS OF DIFFERENT CLASSIFIERS FOR EXTRACTION TASK

2) Training Mechanism: This section shows the contribu-
tion of different components of SciKABERT, including key-
word masking (KM), key sentence prediction (KSP), scientific
LM, task-oriented LM and multi-task. The results are shown
in Table VI. For keyword extraction, task-oriented LM is
most important and the second one is KM, for the reason
that keywords masking task improved the representations of
keywords. For abstract extraction, multi-task learning plays an
important role and task-oriented LM is the second one, for the
reason that KE help AE to grasp subjects exactly. We can also
learn about that KSP is most useless in our model.

D. Effect of Training Steps Number

In this section, we analyze the influence of different factors
for the performance. Figure 3 gives the score curves of three
models: the BERT, SciKABERT without task-oriented LM and
SciKABERT. As shown in the figure, we evaluate the model
every 1,000 steps during training. Keyword extraction gets

Models (%) F1@3 F1@5 R-1 R-L

SciKABERT 39.51 35.47 49.34 46.55
w/o Multi-Task 39.23 35.03 48.32 45.43
w/o Task LM 39.07 34.58 48.59 45.69
w/o Scientific LM 39.38 35.26 49.03 46.25
w/o KM 39.10 34.94 49.17 46.24
w/o KSP 39.45 35.31 49.29 46.44

TABLE VI
RESULTS OF ABLATION STUDIES FOR SCIKABERT

Fig. 3. Trends of F1@5 score for KE and Rouge-1 score for AE on the
validate set with different training step

stable after 25,000 steps, while it is 10,000 steps for abstract
extraction, which is because that sentence-level objectives are
information-rich to distinguish. The SciKABERT achieves best
performance all the time except for the beginning, for the
reason that our multi-task unified objective will spend some
time to get the right state.

VI. CONCLUSION

This paper proposes a multi-task learning framework to
extract keywords and abstract of scientific articles simultane-
ously. This framework consists of three stages: pre-training
a scientific LM, enhancing the LM for specific tasks and
fine-tuning the multi-task model. Beyond the traditional pre-
training and fine-tuning phases, in order to enhance the
language representation for AE and KE, we use two tasks
keyword masking and key sentence prediction before the fine-
tuning phase. Besides, to overcome data scarcity problem,
we develop and release a high-quality annotated corpus for
scientific papers with keywords and abstract. We conduct
comparative experiments on this dataset, and experimental
results show that our multi-task learning framework achieves
the state-of-the-art performance. Although the LM enhancing
mechanism is able to promote the performance of our multi-
task model, there are many restrictions to the input text and it
is hard to balance the separated loss functions in the unified
objective. In the future work, we will pay more attention to
these problems.
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