
Construct Convolutional Neural Networks Using
Low-yield Binary Memristor Crossbars

Sheng-Yang Sun, Hui Xu, Jiwei Li, Qingjiang Li, Hongqi Yu, Haijun Liu*
College of Electronic Science and Technology

National University of Defense Technology
Changsha 410073, Hunan, China

{sunshengyang13, xuhui, lijiwei10, liqingjiang, yhq, liuhaijun}@nudt.edu.cn

Abstract—Recent years, a number of multi-level memristor-
based neural networks have been proposed, these architectures
use multi-level memristors to complete analog vector-matrix
multiplication calculations which to improve computing effi-
ciency, and also increase power consumption and implementation
complexity. In addition, low yield of multi-level memristor
crossbars is still a major issue in memristor-based neuromorphic
computing. In this paper, we proposed a method which constructs
CNNs by using ternary neural networks on binary memristor
crossbars, and a training strategy which can hold on the high
neural network accuracy is utilized under low-yield conditions. To
demonstrate the performance of the training strategy, two neural
networks architectures are applied for simulation experiments.
Extensive experiments show that convolutional neural networks
can still obtain more than 95% accuracy even at 80% yield.

Index Terms—binary memristor, low-yield crossbars, convolu-
tional neural networks, neuromorphic computing

I. INTRODUCTION

Convolutional neural networks (CNNs) [1], [2], excellent
methods of deep learning applications to visual problems,
have attracted significant attention in recent years due to
its remarkable performance in computer vision tasks, such
as in image classification [3] [4] and object detection [5].
These advantages motivate interests to transplant deep CNNs
models to embedded terminals such as smart phones. However,
deep CNNs have an exploding number of synapses and use
high-precision weights such as 2N -bit which leads to the
complicated computations and much more power consumption
[6], [7].

Memristor [8], a low-consumption and non-volatile device,
has earned remarkable attention as synapses for embedded
neuromorphic processing [9]. The resistance of memristors
can be tuned to a specific level by applying voltages pulses,
so the device can store the parameter of neural networks.
Memristor crossbar arrays can quickly perform vector-matrix
multiplications which are costly calculation for neural net-
works [10]. Fig. 1 shows the basic structure of a memristor
crossbar array [11]. Some researches have shown that analog
vector-matrix multiplications with memristor crossbars can be
orders of magnitude that are more efficient than GPUs or CPUs
based computations [12].

Some memristor-based neural networks architectures have
been proposed [13] [14], these architectures use multi-level

*Corresponding author.

memristors to complete analog vector-matrix multiplication
calculations which to improve computing efficiency also in-
crease power consumption and implementation complexity [9].
On the other hand, manufacturing yield of multi-level devices
is still a major issue in memristor fabrication [15] [16], and the
device state usually can only be stable in a high resistance state
(HRS) or low resistance state (LRS) [17]. Therefore, using
binary memristor crossbars to implement neural networks is
particularly important to promote the practical application of
hardware CNNs.

Several non-full-precision neural networks have been stud-
ied nowadays [18]–[20], but only few papers [7] studied neural
networks on binary memristor crossbars. In this paper, we pro-
posed a method that constructs CNNs by using ternary neural
networks (TWNs) [21] on binary memristor crossbars, and a
training strategy which can hold on the accuracy is utilized
under low-yield conditions. To demonstrate the performance
of this method, we carry out the experiments on a three-layer
CNNs architecture [22] which proposed in our prior work.

This paper is organized as follows. Section II introduces the
proposed method and the specific training strategy. Section III
exhibits the experimental results. And the final Section IV
concludes this paper.

𝐺","

𝐺$,"

𝐺%,"

𝐺",$

𝐺$,$

𝐺%,$

𝐺",%

𝐺$,%

𝐺%,%

𝑉"'

𝑹𝒔 𝑹𝒔 𝑹𝒔

𝑉"*

𝑉%'

𝑉$'

𝑉$* 𝑉%*

input𝑉'

output

𝑉* = 𝑉'𝐺𝑅-

𝑉*

𝑉"'

𝑉$'

𝑉%'

𝑉"*

𝑉$*

𝑉%*

𝑾𝟏,𝟏

synaptic networks
Pre-layer Post-layer

Fig. 1. A 3×3 memristor crossbar array demo. Mapping of a one-layer neural
network on the crossbar array, i.e. the input of pre-layer, adaptable synaptic
weights and weighted sum output of post-layer maps to the pulse input from
V I , memristor conductance and current output through V O [23].

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

II. LOW-YIELD BINARY MEMRISTOR CROSSBARS BASED
CONVOLUTIONAL NEURAL NETWORKS

A. Convolutional Neural Networks with Binary Memristors

Ternary weight networks (TWNs) [21] which seek to make a
balance between the binary precison counterparts and full pre-
cision counterparts are applied to obtain the synapse weights
of the neural network. TWNs constrain the weights to be
ternary-valued: -1, 0 and +1. Assuming a full precision weights
W f , and a ternary weights W t. The optimization issue can be
described as follows,

α̃, W̃ t = arg min
α,W t

J(α,W t) = ‖W f − αW t‖22 (1)

where α is a nonnegative scaling factor, W t
i ∈ {−1, 0,+1},

i = 1, 2, ..., n, here n is the number of parameters. With the
approximation αW t ≈ W f , the forward propagation can be
described as

Z = δ(X ∗W f) ≈ δ(X ∗ (αW t)) = δ((αX)⊕W t) (2)

where Z is the layer output, X is the layer input, δ is a
nonlinear activation function, ∗ indicates the vector-matrix
calculation or a convolutional operation, ⊕ indicates the
vector-matrix calculation or a convolutional operation without
multiplication.

In TWNs scheme, 2-bit storage space is needed for one
synapse weight. Therefore, we use two memristors to indicate
the positive and negative weights in the ternary weights matrix,
and use the differential output to represent the results of the
analog computation [22] [24].

Fig. 2 shows how to use a binary memristor crossbar to
indicate a ternary weights matrix. Here assuming W t is a 4×2
ternary weights matrix, a size of 4×4 memristor crossbars
is utilized for implementation. if the value of W t

i is -1, the
resistance of corresponding position R+ in crossbars would be
HRS, and the R− would be LRS. In contrast, the R+(LRS)
and R−(HRS) are utilized to represent the value of +1 in W t

i .
In addition, two HRS memristors are used to indicate the value
of zero.

=

HRS LRS

Ternary Weights Matrix

Binary Memristor Crossbars
𝑹" 𝑹# 𝑹" 𝑹#

Fig. 2. Diagram of using binary memristor crossbars to indicate a ternary
weights matrix.

𝑥"

𝑥#

𝑥$

…

…

𝑦"

𝑦&

𝑥"

𝑥#

𝑥$

…

…

𝑦"

𝑦&

high-yield crossbars low-yield crossbars

training

strategy

Fig. 3. The schematic of training strategy under low-yield memristor
crossbars. The red synapse corresponds to the damaged device in the low-
yield array, and the blue synapse represents the weight adjusted after using
the training strategy.

From the TWNs algorithm, we can know that a positive
threshold parameter ∆ is computed to determine the W t. And
the threshold ∆ can be approximated to

∆ ≈ 0.7

n

n∑
i=1

|Wi| (3)

where n is the size of weights set, and Wi is one of the
elements of weights set W . The resistance value in the
memristor crossbars can be determined by ∆, as shown in
Table I.

TABLE I
THE CORRESPONDING RESISTANCE OF THE VALUES IN THE MEMRISTOR

CROSSBARS.

Ternary-valued R+ R− Conditions
-1 HRS LRS Wi < −∆
0 HRS HRS |Wi| ≤ ∆

+1 LRS HRS Wi > ∆

The resistance of the devices in the array can be determined
through Table I. Therefore, binary memristors can be used to
implement the convolutional neural network architecture.

B. Training under Low-yield Memristor Crossbars

The mini-batch stochastic gradient descent (SGD) method
is used to train the neural network, and the ternary-valued
weights are not used during the parameters update but during
the forward and backward propagations [25] [26]. To reduce
the complexity of hardware implementation, batch normaliza-
tion (BN) is not used for training [27].

Although the memristor state can be tuned to HRS or LRS,
the device may be damaged by aggressive programming and
testing cycles [23]. The single-bit failure (SBF) means that a
memristor device frozen at LRS or HRS [28], and high SBF
rate (low-yield) would degrade the neural networks accuracy
remarkably.

Aiming at the issue of improving the accuracy of the
neural networks under low-yield conditions, we considered
the position of the damaged device in the crossbars during
training.

𝑊","

𝑊$,"

𝑊%×%,"

𝑊",$

𝑊$,$

𝑊%×%,$

𝑉"(

𝑹𝒔 𝑹𝒔 𝑹𝒔

𝑉+(

𝑉$(

Kernel #1

… ……

𝟏 𝟏

𝟐 𝟐

𝟑 𝟑

𝟏𝟏 𝟏𝟏

𝟑𝟎 𝟑𝟎

3𝟏 3𝟏

78𝟒 𝟕𝟖𝟒

HRS
Weight

𝑊","

𝑊$,"

𝑊"33,"

𝑊",$

𝑊$,$

𝑊"33,$

𝑉"(

𝑹𝒔 𝑹𝒔 𝑹𝒔

𝑉+(

𝑉$(
…
…
…

… ……

…

…
…

…

Vo
lta

ge
 G

en
er

at
or

A
ct

iv
at

io
n

an
d

M
ax

-P
oo

lin
g

Network Outputs

Image Field

Fig. 4. The implementation of memristor-based convolutional neural networks
in the crossbar array.

𝑊","

𝑊$,"

𝑊%&',"

𝑊",$

𝑊$,$

𝑊%&',$

𝑊",$('&

𝑊$,$('&

𝑊%&',$('&

𝑉"*

𝑹𝒔 𝑹𝒔 𝑹𝒔

𝑉"-

𝑉.*

𝑉$*

𝑉$- 𝑉$('&-

…
…
…

… … …

W1
784 × 2048

Memristor Crossbar Array

𝑊","

𝑊$,"

𝑊"($',"

𝑊",$

𝑊$,$

𝑊"($',$

𝑊",$(

𝑊$,$(

𝑊"($',$(

𝑉"*

𝑹𝒔 𝑹𝒔 𝑹𝒔

𝑉"-

𝑉.*

𝑉$*

𝑉$- 𝑉$(-

…
…
…

… … …

W2
1024 × 20

Memristor Crossbar Array

…

…

…

…

Activation

Activation

Fig. 5. The implementation of memristor-based multi-layer perceptron in the
crossbar array.

Known as described above, two memristors in crossbars are
utilized to denote a synapse of neural network, so we analyze
it in three cases below.

HRS-LRS: This combined approach is defined in this paper
as the “HL” model, meaning that R+ is set to HRS and R−

is tuned to LRS. If the device at the R+ is frozen at HRS
and the device at the R− can be tuned, or the device at R−

is frozen at LRS and the device at R+ can be tuned, then we
set to “HL” mode.

HRS-HRS or LRS-LRS: Both devices state are HRS or
LRS is defined as “HH” or “LL” mode. This mode will be
applied if both the devices at R+ and R− are frozen at HRS
or LRS.

LRS-HRS: One of the device at R+ is set to LRS and the
other at R− is set to HRS, this combined method is defined as
the “LH” mode. In contrast to the “HL” model, if the device
at the R+ is frozen at LRS and the device at the R− can be

tuned, or the device at the R− is frozen at HRS and the device
at the R+ can be tuned, the “LH” mode is set.

It can be known from the above three modes that the
synaptic weight value at which SBF occurs can be described
by Eq. 4.

W̃ t∗
i =

−1 “HL” mode
0 “HH” or “LL” mode
+1 “LH” mode

(4)

During the training of the neural networks, the W̃ t∗
i is not

affected by weights updates, only used during the forward and
backward propagations.

Fig. 3 shows a demo that uses the training strategy un-
der low-yield crossbars conditions. As shown in the figure,
supposed that the devices that implement the red synapse is
abnormal, for example, for a weight value of -1, the resistance
at the R+ position is fixed at HRS, for the “+1” synapse, the
resistance at R− is frozen at LRS. After applying training
method, the weights of “-1”(HRS-LRS) and “+1”(LRS-HRS)
are fixed to “0”(HRS-HRS).

III. EXPERIMENTS

A. Experimental Settings

Experiments in this study are conducted using a computer
with 16GB DDR4, Intel Xeon E7 (2.6 GHz), and a NVIDIA
Titan XP graphics card. This work is implemented with the
caffe [29] open-source library to train the ternary weight
networks. Experiments are conducted with Monte-Carlo sim-
ulation method in Python.

1) Memristor Model: Experiments are executed based on
the Pt/HfO2 : Cu/Cu devices, which was proposed in
our previous work [30]. The LRS and HRS of the device
are approximately 103 and 105 Ω, respectively. During the
set(0→1.8V) and reset(0→-2V) process, a stable HRS/LRS
ratio of 100 can be obtained.

2) Neural Networks Architecture: A three-layer CNNs ar-
chitecture [22] which includes five 9×9 convolution kernels
and 2×2 max-pooling is implemented in our simulations. As
Fig. 4 shown, a 28×28 gray image from MNIST dataset [31]
which consists of 60,000 handwritten images for the training
and 10,000 images for the testing is converted to voltage
vector to the crossbar array. Five convolution kernels are
mapped into a 784×4000 array, and each kernel performs 400
convolution computations, so there are 4,000 outputs including
negative and nonnegative weights. And the absolute activation
function is applied between the convolutional layer and the
max-pooling layer. In the same way, the fully connected layer
is mapped into a 100×20 crossbar array. It is worth noting
that we replaced the non-convolutional regions in the array
with HRS.

In addition, a 784×1024×10 multi-layer perceptron (MLP)
is applied in our simulations. Fig. 5 demonstrates the MLP
implementation on two memristor crossbars. The matrix W1

which consists of 802,816 synapses is mapped to a 784×2048
array. Similarly, matrix W2 is mapped to a 1024×20 crossbar

array, and the output of the first array is fed into the second
array after activated by absolute activation function (Abs).

3) Training Details: We use the L2 regularization method,
learning rate scaling procedure and optimization method (SGD
with momentum) except any pre-processing approach and data
augmentation. The detailed parameter settings are as follows.

TABLE II
NEURAL NETWORKS PARAMETERS SETTING FOR TRAINING.

Parameters Value
weight decay 1e-4

mini-batch size 128
initial learning rate 0.01
training iterations 30,000

momentum 0.9

4) Device Defects Generation Method: Device defects gen-
eration includes variations and SBF in our simulations. The
device is frozen at HRS with a probability of 50% and the
probability of 50% at LRS when the simulated device occurs
a SBF issue.

Devices variations is also in our consideration. The devices
variation mainly includes two types: parametric variation [32]
and switching variation [33]. The imperfect fabrication such
as line-edge roughness, random dopants and oxide thickness
causes the parametric variation. The switching variation is
caused because of driving circuit during the reading or writing
cycles, and small programmed pulses would lead to a large
variation of memristor resistance. When the device occurs
variation, the resistance has changed from Rij to R̃ij , it can
be described as follows:

R̃ij ← Rij · eθij ; θij ∼ N(0, σ2) (5)

where the θij represents the resistance variation, which follows
the lognormal distribution [34], and the parameter σ denotes
the extent of the variation in our simulation.

B. Simulation Results

Fig. 6 shows the MNIST dataset recognition accuracy with
varying the yield of crossbar arrays from 80% to 98%. The
2%-20% SBF errors in crossbar arrays (yield from 80% to
98%) were randomly generated which means that the positions
of the damaged devices in the array generated randomly.
Twenty experiments are executed in each yield, and the ac-
curacy of each corresponding point is the average recognition
rate. The blue line in the figure indicates the accuracy of the
CNNs without any defects, which can reach 98.08%. The red
line in the figure represents the recognition rate of the CNNs
after using the training strategy, compared with the accuracy
without the training strategy indicated by the yellow line. It
can be seen from the figure that the lower the yield, the
lower the network recognition rate without the training strategy
is. And at 80% array yield, the accuracy is only 52.32%.
After adopting the training strategy, the recognition rate of
the network can still remain above 96% in the range of 80%
to 98% yield. For example, at 90% yield, the network without

80 82 84 86 88 90 92 94 96 98
 Yield of Crossbars (%)

50

55

60

65

70

75

80

85

90

95

100

 A
cc

ur
ac

y
(%

)

 CNNs using TWNs without device defects

 CNNs using TWNs with training strategy

 CNNs using TWNs without training strategy

accuracy improved 23%

80 82 84 86 88
 Yield of Crossbars (%)

96.8

97

97.2

97.4

97.6

97.8

98

98.2

98.4

 A
cc

ur
ac

y
(%

)

Fig. 6. MNIST recognition accuracy of CNNs using TWNs algorithm with
varying the yield of crossbars from 80% to 98%.

the training strategy can only achieve 74.18% accuracy, and
after using the training strategy, the accuracy of network can
reach 97.17%, and the recognition rate improves nearly 23%.

We executed device variations experiments on MLP and the
three-layer CNNs architectures. The yield of the array is fixed
at 90%, and the performance of the network is shown in Table
III.

TABLE III
MNIST DATASET ACCURACY COMPARISON OF DIFFERENT

ARCHITECTURE WITH THE PARAMETER σ OF VARIATION. (90%
YIELD)

Methods
Accuracy(%) Parameter(σ)

0.6 0.8 1.0 1.2

MLP using TWNs without strategy 64.48 62.73 58.33 53.93
MLP using TWNs with strategy 93.89 92.75 91.62 90.71
CNNs using TWNs without strategy 73.68 71.25 68.91 63.59
CNNs using TWNs with strategy 96.72 95.17 94.02 92.16

As can be seen from the data, the recognition rate of
the neural networks decreases as the variation of the device
increases. In the worst case, the lowest recognition rate of
MLP and CNNs without training strategy is only 53.93% and
63.59%, respectively. After adopting the training strategy, the
recognition rate of MLP and CNNs has been significantly
improved. For example, when σ = 0.8, the recognition
rate of MLP without training strategy is only 62.73%, and
the recognition rate can achieve 92.75% after using training
strategy. Similarly, when σ = 1.0, the recognition rate of
CNNs using the training strategy can reach 94.02%, which is
up to 25.11% compared with the 68.91% accuracy while the
training strategy is not used. By using the training strategy,
when the device fluctuates greatly (σ = 1.2), the recognition
rates of MLP and CNNs can achieve 90.71% and 92.16%
respectively, indicating that the training strategy works well.

IV. CONCLUSION

In this paper, a training strategy is proposed for constructing
convolutional neural networks with low-yield binary memris-
tor crossbars. By considering the position of the damaged
device in the training process, the synaptic weight in the
neural network is fixed to ensure the recognition rate. Two
neural networks architectures are mapped into two memristor
crossbar arrays for experiments. From the simulation results
above, it can be seen that the recognition rate of the neural
network can still reach a high recognition rate after using
the training strategy under low-yield crossbars, and CNNs
can still obtain more than 95% accuracy even at 80% yield.
Considering the device variations, MLP and CNNs can still
maintain accuracy of more than 90%. For future work, we
consider to evaluate the power consumption of the CNNs using
low-yield binary memristor crossbars.

ACKNOWLEDGMENT

This work is supported by National Natural Science Foun-
dation of China under grant 61471377, 61604177, 61704191
and 61804181.

REFERENCES

[1] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 1–9.

[2] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu,
X. Wang, G. Wang, J. Cai et al., “Recent advances in convolutional
neural networks,” Pattern Recognition, vol. 77, pp. 354–377, 2018.

[3] L. Mou, P. Ghamisi, and X. X. Zhu, “Deep recurrent neural networks for
hyperspectral image classification,” IEEE Transactions on Geoscience
and Remote Sensing, vol. 55, no. 7, pp. 3639–3655, 2017.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[5] J. Bernal, K. Kushibar, D. S. Asfaw, S. Valverde, A. Oliver, R. Martı́,
and X. Lladó, “Deep convolutional neural networks for brain image
analysis on magnetic resonance imaging: a review,” Artificial intelligence
in medicine, vol. 95, pp. 64–81, 2019.

[6] S.-Y. Sun, H. Xu, J. Li, Q. Li, and H. Liu, “Cascaded architecture for
memristor crossbar array based larger-scale neuromorphic computing,”
IEEE Access, vol. 7, pp. 61 679–61 688, 2019.

[7] K. Van Pham, T. Van Nguyen, S. B. Tran, H. Nam, M. J. Lee, B. J. Choi,
S. N. Truong, and K. Min, “Memristor binarized neural networks,” J.
Semicond. Technol. Sci, vol. 18, no. 5, pp. 568–588, 2018.

[8] L. Chua, “Memristor-the missing circuit element,” IEEE Transactions
on circuit theory, vol. 18, no. 5, pp. 507–519, 1971.

[9] S.-Y. Sun, H. Xu, J. Li, H. Liu, and Q. Li, “Cascaded neural network
for memristor based neuromorphic computing,” in 2019 International
Joint Conference on Neural Networks (IJCNN). IEEE, 2019, pp. 1–6.

[10] L. Xia, T. Tang, W. Huangfu, M. Cheng, X. Yin, B. Li, Y. Wang, and
H. Yang, “Switched by input: Power efficient structure for rram-based
convolutional neural network,” in Proceedings of the 53rd Annual Design
Automation Conference, 2016, pp. 1–6.

[11] S. Yu, “Neuro-inspired computing with emerging nonvolatile memorys,”
Proceedings of the IEEE, vol. 106, no. 2, pp. 260–285, 2018.

[12] M. Hu, J. P. Strachan, Z. Li, E. M. Grafals, N. Davila, C. Graves,
S. Lam, N. Ge, J. J. Yang, and R. S. Williams, “Dot-product engine
for neuromorphic computing: Programming 1t1m crossbar to accelerate
matrix-vector multiplication,” in Proceedings of the 53rd annual design
automation conference. ACM, 2016, p. 19.

[13] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Stra-
chan, M. Hu, R. S. Williams, and V. Srikumar, “Isaac: A convolutional
neural network accelerator with in-situ analog arithmetic in crossbars,”
ACM SIGARCH Computer Architecture News, vol. 44, no. 3, pp. 14–26,
2016.

[14] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and
Y. Xie, “Prime: A novel processing-in-memory architecture for neural
network computation in reram-based main memory,” in ACM SIGARCH
Computer Architecture News, vol. 44, no. 3. IEEE Press, 2016, pp. 27–
39.

[15] C. Soell, M. Reichenbach, J. Roeber, A. Hagelauer, R. Weigel, and
D. Fey, “Case study on memristor-based multilevel memories,” Interna-
tional Journal of Circuit Theory and Applications, vol. 46, no. 1, pp.
99–112, 2018.

[16] X. Zhu, C. Wu, Y. Tang, J. Wu, and X. Yi, “Multi-level programming of
memristor in nanocrossbar,” IEICE Electronics Express, vol. 10, no. 5,
pp. 20 130 013–20 130 013, 2013.

[17] S. N. Truong, S. Shin, S.-D. Byeon, J. Song, H.-S. Mo, and K.-S. Min,
“Comparative study on statistical-variation tolerance between comple-
mentary crossbar and twin crossbar of binary nano-scale memristors for
pattern recognition,” Nanoscale research letters, vol. 10, no. 1, p. 405,
2015.

[18] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Ben-
gio, “Binarized neural networks: Training deep neural networks with
weights and activations constrained to +1 or -1,” arXiv preprint
arXiv:1602.02830, 2016.

[19] S.-Y. Sun, J. Li, Z. Li, H. Liu, H. Liu, and Q. Li, “Quaternary synapses
network for memristor-based spiking convolutional neural networks,”
IEICE Electronics Express, pp. 16–20 190 004, 2019.

[20] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized neural networks: Training neural networks with low pre-
cision weights and activations,” The Journal of Machine Learning
Research, vol. 18, no. 1, pp. 6869–6898, 2017.

[21] F. Li, B. Zhang, and B. Liu, “Ternary weight networks,” arXiv preprint
arXiv:1605.04711, 2016.

[22] S.-Y. Sun, Z. Li, J. Li, H. Liu, H. Liu, and Q. Li, “A memristor-based
convolutional neural network with full parallelization architecture,”
IEICE Electronics Express, pp. 16–20 181 034, 2019.

[23] S.-Y. Sun, H. Xu, J. Li, Z. Li, Y. Sun, Q. Li, and H. Liu, “Cases study of
inputs split based calibration method for rram crossbar,” IEEE Access,
vol. 7, pp. 141 792–141 800, 2019.

[24] S. Sun, J. Li, Z. Li, H. Liu, Q. Li, and H. Xu, “Low-consumption
neuromorphic memristor architecture based on convolutional neural
networks,” in 2018 International Joint Conference on Neural Networks
(IJCNN), July 2018, pp. 1–6.

[25] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training
deep neural networks with binary weights during propagations,” in
Advances in neural information processing systems, 2015, pp. 3123–
3131.

[26] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net:
Imagenet classification using binary convolutional neural networks,” in
European conference on computer vision. Springer, 2016, pp. 525–542.

[27] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015.

[28] C. Liu, M. Hu, J. P. Strachan, and H. Li, “Rescuing memristor-based
neuromorphic design with high defects,” in 2017 54th ACM/EDAC/IEEE
Design Automation Conference (DAC). IEEE, 2017, pp. 1–6.

[29] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” arXiv preprint arXiv:1408.5093, 2014.

[30] S. Liu, W. Wang, Q. Li, X. Zhao, N. Li, H. Xu, Q. Liu, and M. Liu,
“Highly improved resistive switching performances of the self-doped
pt/hfo 2: Cu/cu devices by atomic layer deposition,” SCIENCE CHINA
Physics, Mechanics & Astronomy, vol. 59, no. 12, p. 127311, 2016.

[31] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner et al., “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[32] D. Niu, Y. Chen, C. Xu, and Y. Xie, “Impact of process variations on
emerging memristor,” in Proceedings of the 47th Design Automation
Conference. ACM, 2010, pp. 877–882.

[33] S. Yu, Y. Wu, and H. S. P. Wong, “Investigating the switching dynamics
and multilevel capability of bipolar metal oxide resistive switching
memory,” Applied Physics Letters, vol. 98, no. 10, p. 2237, 2011.

[34] S. R. Lee, Y.-B. Kim, M. Chang, K. M. Kim, C. B. Lee, J. H. Hur, G.-
S. Park, D. Lee, M.-J. Lee, C. J. Kim et al., “Multi-level switching of
triple-layered TaOx RRAM with excellent reliability for storage class
memory,” in 2012 Symposium on VLSI Technology (VLSIT). IEEE,
2012, pp. 71–72.

