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Abstract—Cosmic microwave background radiation (CMB) is
critical to the understanding of the early universe and precise
estimation of cosmological constants. Due to the contamination
of thermal dust noise in the galaxy, the CMB map that is an
image on the two-dimensional sphere has missing observations,
mainly concentrated on the equatorial region. The noise of
the CMB map has a significant impact on the estimation
precision for cosmological parameters. Inpainting the CMB map
can effectively reduce the uncertainty of parametric estimation.
In this paper, we propose a deep learning-based variational
autoencoder — CosmoVAE, to restoring the missing observations
of the CMB map. The input and output of CosmoVAE are
square images. To generate training, validation, and test data
sets, we segment the full-sky CMB map into many small images
by Cartesian projection. CosmoVAE assigns physical quantities to
the parameters of the VAE network by using Fourier coefficients,
which are sampled by the angular power spectrum of the
Gaussian random field as latent variables. CosmoVAE adopts
a new loss function to improve the learning performance of the
model, which consists of `1 reconstruction loss, Kullback-Leibler
divergence between the posterior distribution of encoder network
and the prior distribution of latent variables, perceptual loss, and
total-variation regularizer. The proposed model achieves state of
the art performance for Planck Commander 2018 CMB map
inpainting.

Index Terms—variational autoencoder, cosmic microwave back-
ground, inpainting, deep learning, convolutional neural networks,
uncertainty quantification, KL-divergence regularization, percep-
tual loss, total variation, angular power spectrum, VGG-16,
ImageNet.

I. INTRODUCTION

Cosmic Microwave Background (CMB) map details the
cooled remnant of the light or electromagnetic radiation caused
by the Big Bang in the early stages of the universe, which one
can still observe today [1]. The CMB is a valuable resource
containing information about how the early universe was
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Fig. 1. Planck 2018 Commander CMB Map. The zoomed-in picture is a
segmented image used as a test data in the CosmoVAE model, where the dark
red indicates the missing pixels to be restored.

formed. It is at a uniform temperature with small fluctuations
visible only with high precision telescopes. By measuring
and understanding fluctuations, cosmologists can learn the
origin of galaxies and explore the basic parameters of the Big
Bang theory. The CMB map is produced by map-marker using
component separation such as Commander [2], [3], NILC [4],
SEVEM [5] and SMICA [6]. Due to contamination of thermal
noise in the galaxy, the region near the equator of the map (here
the equator corresponds to the galaxy) has missing observations
for CMB. The left picture of Figure 1 shows the Planck 2018
Commander CMB map, where the noise near the equator is
apparent. The right panel of the picture shows the zoomed-in
image containing the missing observations at noisy pixels.

Estimating, or inpainting missing observations is a largely
unsolved problem in CMB research [7]. In this work, we
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propose a new inpainting method for restoring the missing
observations — CosmoVAE, stemming from a Bayesian deep
learning model. CosmoVAE is a variational autoencoder that
takes deep convolutional neural networks as encoder and
decoder and the whole model under the Bayesian inferential
framework. The CMB field can be considered as a realization
of the Gaussian random field on the two-dimensional unit
sphere [1], [8]. The CMB map in high resolution is a big data
set (for example, in resolution NSide = 2048, the data is stored
at more than 50 million HEALPix points [9]). We show that
this Bayes based deep learning model provides an efficient
approach for inpainting big CMB data.

II. LITERATURE REVIEW

CMB maps have been produced using the following four
approaches. NILC [4] is a linear combination which works
in the needlet domain. SEVEM [5] is a foreground template-
cleaning approach that works in the pixel domain to component
separation. SMICA [6] is a non-parametric approach using
spherical harmonics as basis. Commander [2], [3] is an
MCMC based map maker. In Commander, the CMB map
is viewed as a realization of a Gaussian random field which
can be generated by using the angular power spectrum C`. The
posterior density function of the power spectrum C` is estimated
by using Gibbs sampling. Also, one can use Blackwell-Rao
approximation for estimating the angular power spectrum [10].
The produced CMB map, however, has missing observations.
Most missing observations (mask regions) are concentrated
around the equatorial region due to thermal dust in the galaxy.
Inpainting the CMB map is expected to reduce the uncertainty
of the estimates for the cosmological parameters.

There are several existing methods for CMB map inpainting.
For example, Planck consortium [11] uses Gaussian constrained
realization to replace the high-foreground regions. One can also
use Gaussian process regression for CMB image inpainting,
which estimates the covariance function for the image pixels
and then interpolates the missing pixels [12], [13]. Although
traditional statistical methods are computational easy, they
are computationally expensive and difficult to scale up for
the large-sized data set of CMB. According to Gruetjen et
al. [14], inpainting is an alternative way to construct accurate
cut-sky CMB estimators. Gruetjen showed that one could apply
inpainting to the problem of unbiased estimation of the power
spectrum, which utilizes the linearity of inpainting to construct
analytically debiased power spectrum estimates from inpainted
maps.

Recently, with deep learning, inpainting methods have signif-
icantly improved reconstruction results by learning semantics
from large scale data sets. These methods typically use different
kinds of convolutional neural networks as mapping functions
from masked images to inpainted images end-to-end. Context
encoder [15] is the first algorithm that uses a deep learning
approach to reconstruct masked images. It utilizes the auto-
encoder architecture and convolutional neural network with
reconstruction and adversarial loss for inpainting. It can achieve
surprisingly good performance for restoring an image with a

square mask region. Yang et al. [16] takes the result from
context encoders as input and then propagates the texture
information from non-mask regions to fill the mask regions as
post-processing. Yu et al. [17] proposed an end-to-end image
inpainting model with global and local discriminators to ensure
the color and texture consistency of generated regions with
surroundings. This method has no limitation on the location
of mask regions, but the mask shape needs to be rectangular.
Since the real CMB mask region is irregular, this method is not
suitable. To achieve better inpainting performance for irregular
masks, partial convolution [18] was proposed by Liu et al.,
where the convolution operation can skip the missing pixels
and only use valid pixels. This specified convolution operation
can appropriately process irregular masks and would not lead
to artifacts such as color discrepancy and blurriness. With the
combination of reconstruction loss, perceptual loss [19], and
total variation loss as penalty term [20], the model achieves
state-of-the-art image inpainting results on large data sets such
as human faces and landscapes.

Researchers have proposed many generative probabilistic
models based on neural networks in the past decade. Variational
autoencoder (VAE) [21] is one of the most popular approaches.
With a well-trained VAE model, we can generate various kinds
of images by the sampling latent variables with a specific
distribution (e.g., Gaussian distribution). In many cases, one
is interested in training the generative models conditional on
the image features such as labels and characteristics of the
human face. Sohn et al. [22] proposed conditional variational
autoencoder whose input observations modulate the prior on
Gaussian latent variables, which then generate the outputs
by the decoder. After training, it produces output images by
controlling the latent variables. Ivanov et al. [23] modified the
conditional VAE and proposed a variational autoencoder with
arbitrary conditioning (VAEAC) model. VAEAC can learn the
features from non-missing pixels and predict the missing pixels
values. Ivanov et al. used this method to inpaint four different
data sets, which achieved state of the art performance.

Our network architecture adopts the auto-encoder architec-
ture, which is widely used in representation learning and image
inpainting. We use variational Bayesian approximation to obtain
the evidence lower bound (ELBO) of the likelihood of the
reconstructed image. The ELBO will be used to form our
loss function. In addition, we use skip-connection to build a
sufficiently deep network and add perceptual loss to the loss
function. We also replace the partial convolution layer [18]
with the vanilla layer, which is more appropriate for CMB
image inpainting tasks.

III. COSMOVAE FOR CMB

Our proposed model, as illustrated in Figure 2, is based on
the variational autoencoders (VAE) [21], where the encoder and
decoder combine the convolutional neural networks (CNNs) and
multilayer perceptron (MLP). This modified VAE also uses skip
connection between the encoder and decoder, which builds a U-
Net-like architecture [18] in order to guarantee optimal transfer
of spatial information from input to the output image. The basic



autoencoder compresses the high-dimensional input x (i.e., the
segmented image of CMB map) to a low-dimensional latent
variable z, and then decompresses z back to high-dimensional
output y, and the input x and output y should be the same. In
the CosmoVAE, the encoder takes the image with a missing
region and produces a latent feature representation; the latent
features are used by the decoder to produce the missing image.
In the training stage, the generated image is compared with
the ground truth, where the loss function is composed of the
negative variational lower bound, perceptual loss, and a total
variation regularizer. A well-trained model can rebuild the mask
regions of the CMB map.

A. Statistical Interpretation in VAE

Let us consider the joint probability distributions of three
random variables ((X,Z,Y) ∈ X × Z × Y), where X ={
x(i)
}N
i=1

is the input masked CMB maps, Z is the vector
of latent variables and Y is the vector corresponding to
the reconstructed CMB map. We use neural networks for
probabilistic encoder (Qφ) and decoder (Pθ). To be precise,
the probabilistic encoder is defined as qφ(z|x) where pφ(z) =∫
X qφ(z|x)p(x)dx for all z ∈ Z , φ denotes the parameters of

the neural network. And the probabilistic decoder is given by
pθ(y|z), with θ the parameters of the decoder network, and

pθ(y) :=

∫
Z
pθ(y|z)p(z)dz ∀y ∈ Y.

The marginal log-likelihood of output y is given by log pθ(y) =∑N
i=1 log pθ(y

(i)), for i = 1, . . . , N training samples, which
can be expressed as variational lower bound and used as a
surrogate objective function where:

log pθ

(
y(i)
)
≥ Ez

[
log pθ

(
y(i)|z

)]
(1)

−DKL

(
qφ

(
·|x(i)

)
‖p(·)

)
= L

(
y(i), x(i), θ, φ

)
.

The variational lower bound consists of negative reconstruc-
tion loss and Kullback-Leibler divergence DKL between the
approximated posterior qφ(z|x) of the encoder network and
the prior p(z) of the latent variable.

By dual principle, maximizing log-likelihood function
log pθ

(
y(i)
)

is equivalent to minimizing the negative lower
bound L

(
y(i), x(i), θ, φ

)
(with respect to the parameters θ and

φ). We thus need to find the gradient of the marginal likelihood
- this can be achieved via standard Monte Carlo approximation
for the expectation term. In order to reduce the variance in the
gradient estimator, we use the reparameterization trick [21].

B. Prior Specification for the Latent Variables

The KL-divergence term in the variational lower bound in
(1) can be interpreted as regularization for the parameters θ
and φ, encouraging the approximate posterior qφ(z|x) to be
close to the prior p(z). The posterior distribution qφ(z|x) can
be estimated by probabilistic encoder but the prior distribution
remains to be determined.

As CMB is a Gaussian random field and the temperature
quantity can be expressed in Fourier series:

T (p̂) = TCMB[1 + Θ(p̂)],

where Θ(p̂) is the temperature anisotropy in the direction p̂
which can be expanded with Fourier coefficients a`m:

Θ(p̂) =

∞∑
`=0

∑̀
m=−`

a`mY`m(p̂).

A Gaussian random field is fully determined by its mean and
variance. The a`m follows a zero-mean Gaussian with variance
C`, where C` is the CMB angular power spectrum. Here, we
assume that our latent variable Z is given by the angular power
spectrum C`. And the generative field is connected with the
latent variable by a`m → T → X and a`m ∼ N (0, C`). The
KL-divergence term DKL

(
qφ
(
a`m|x(i)

)
‖N (0, C`)

)
, is now

with a`m ∼ N (0, C`), the divergence between the posterior
distribution qφ(a`m|x) and the prior distribution N (0, C`). By
doing this, we now assign physical meaning to the VAE model;
that is, the latent variable is the angular power spectrum of
the learned field, and the angular power spectrum samples the
Fourier coefficients of the generative field.

C. Loss Function

The overall loss function to train the model is defined as:

L = λ1Lrec + λ2DKL + λ3Lperceptual + λ4LTV.

with appropriate weights λi for each term. Here the weights λi
are hyper-parameters, tuned artificially. The λ1Lrec + λ2DKL

is the negative variational lower bound which consists of the
reconstruction loss and the KL-divergence regularization, the
Lperceptual is the perceptual loss [19], and the LTV is the total
variation loss [20].

a) Reconstruction Loss: We use a binary mask M which
is 0 for pixel outside the masked region and 1 for pixel inside
the masked region. For the network prediction ŷ and the ground
truth y, the reconstruction loss is then

Lrec =
1

N
‖(1−M)� (ŷ − y)‖1 +

1

N
‖M � (ŷ − y)‖1 ,

where N denotes normalization constant (where N = C∗H∗W
and C,H,W are the channel size, and the height and width
of image).

b) Regularization: The regularization term is the KL-
divergence between posterior distribution qφ(a`m|x) and the
prior distribution. The latent variable a`m ∼ N (0, C`m), then,
DKL

(
qφ
(
a`m|x(i)

)
‖N (0, C`m)

)
can be solved analytically

by

DKL =
1

2

N∑
i=1

− log σ2
i,1 − logC2

`m − 1 +
σ2
i,1 + µ2

i,1

C2
`m

,

where qφ (a`m|x) ∼ N
(
µ1, σ

2
1

)
is the approximated posterior

distribution of the encoder network.



Fig. 2. Pictorial representation of the variational autoencoder model. The encoder and decoder, which are connected by channel-wise
latent variables, have U-net architecture. The encoder and decoder are deep convolutional neural networks, each with six blocks and three
fully-connected layers.

c) Perceptual Loss: Perceptual loss was first proposed in
[19] to preserve image contents in style transfer and is now
widely used for image inpainting. The perceptual loss computes
the `1 loss of high-level feature maps between the predicted
image and ground truth:

Lperceptual =

N−1∑
n=0

∥∥Ψŷ
n −Ψy

n

∥∥
1
,

where Ψ is the activation map of the pth selected layer which
lies in a higher level feature space in ImageNet-pretrained
VGG-16 [24]. We use Pool-1, Pool-2 and Pool-3 layers of
VGG-16 for our loss.

d) Total Variation Loss: The final term for the loss is the
total variation loss as a smoothing penalty:

LTV =
∑

(i,j)∈P, (i,j+1)∈P

∥∥ŷi,j+1 − ŷi,j
∥∥
1

Nhole

+
∑

(i,j)∈P, (i+1,j)∈P

∥∥ŷi+1,j − ŷi,j
∥∥
1

Nhole
,

where P is the region of 1-pixel dilation of the mask region
and Nhole is the number of pixels in the mask region [20].

IV. EXPERIMENTAL RESULTS

A. Generating Training and Test Data Sets

In the context of CMB map inpainting, preparing training
sets has two challenges: the original map is not flat (it resides
more naturally on a sphere), and there is only a single CMB
map that we can use for training. We can solve the problems by
projecting the spherical CMB map to the plane by Cartesian
Projection. In order to have a sufficient number of data sets,
we segment the whole map with around 50 million pixels
into thousands of small images with 400×400 pixels. This
is a reasonable approach as we assume the CMB field as
an isotropic random field on the two-dimensional sphere. The
resulting small images will be random fields on the plane, which
can be assumed independent and identically distributed. We
can then treat each small image of the CMB map independently
as training data for the deep learning model.

a) Image data set: The data of CMB maps are stored
at the HEALPix points on the unit sphere [9]1. In the
experiments, we use Planck 2018 Commander CMB map
with NSide = 2048 (and 50, 331, 648 points), downloaded from
Planck Legacy Archive2. To generate small images cropped
from the original map, we project the original map to a large
flat 2D image using Cartesian Projection of healpy (Python)
package [25]. We equally space the points on the projected
CMB map, and for each point which then becomes the center
of the small image, we take the rectangle whose latitudinal
and longitudinal angles ranging from −5◦ to 5◦ and −10◦ to
10◦ from the center. The spherical CMB full-sky map is then
segmented into 4,042 small flat images, each with resolution
400× 400. The 772 among all small images contain missing
regions and will constitute the test data set, and the remaining
clean 3,320 images will be the training set.

b) Mask data set: The generative method of mask data
set is similar with training data set. We use Planck 2018
Component Separation Inpainting Common mask in Intensity,
downloaded from Planck Legacy Archive2, see Figure 3. The
spherical mask map is divided with the same size and same
centres as the full-sky CMB map, and segmented into 4, 042
small flat mask images. Each mask image corresponds to a
CMB image in the training data set, and will be used in masking
the missing pixels in training and test. There are 772 masks
having missing pixels, and we randomly select them during
the training process.

B. Network Architecture and Training

Our proposed model is implemented in Keras3. The network
architecture is a U-net-like network. The encoder and decoder
have architectures that contain six blocks and three fully
connected layers. The encoder network has architecture 64-
128-256-512-512-512, and the decoder network architecture
is 512-512-512-256-128-64. The latent variable is channel-
wise with 2,507 component parameters, which corresponds to

1http://healpix.sf.net
2https://pla.esac.esa.int/#maps
3https://github.com/keras-team/keras

http://healpix.sf.net
https://pla.esac.esa.int/#maps
https://github.com/keras-team/keras


Fig. 3. Planck 2018 Component Separation Inpainting Common mask in
Intensity. It is a binary map enciphered with 0 and 1 for clean and noisy pixels.
The whole mask map is segmented into 4,042 small images in accord with
the small images of CMB full-sky map, each with 400×400 pixels. They are
used for masking the full-sky images in training and test.

angular power spectrum C` with ` up to 2,507. (There are
thus the 6,290,064 Fourier coefficients which approximately
represent the learned field.) The encoder output samples the
latent variable. The whole network is trained using 3,320
400×400 images with batch size four and maximal epoch
1,000. The model is optimized using Adam optimizer with the
parameters: learning rate 0.0002 and β1 = 0.5. In the training
stage, we use the best-fit ΛCDM CMB TT power spectra from
the Planck PR3 baseline4 as C`.

The experiment is carried out in Google Colab Nvidia Tesla
K80 with 2496 CUDA cores, compute 3.7, 12GB GDDR5
VRAM. With no pre-trained weights, it roughly takes 6 hours
to achieve convergence. Here the batch size is chosen to adapt
to the memory allowed in Colab. If memory is sufficiently
large, one can speed up the training by increasing the batch
size.

C. Test Results

To evaluate our model’s capacity for CMB image inpainting
and evaluate the method’s performance, we apply real masks on
small CMB images with unknown pixel values in the mask. As
illustrated in Figure 4, the result of CosmoVAE is visually close
to the ground truth image. Quantitatively, the mean square error
(MSE), mean absolute error (MAE), and peak signal-to-noise
ratio (PSNR) over the masked pixels are 0.0055, 0.134 and
23.989 respectively, which reveals the excellent performance
of the model.

Once we have trained the CosmoVAE, we can use it to
predict the missing pixels of each small CMB image in the
test data set. Figure 5 shows five examples of the predicted
results by CosmoVAE. We compare our inpainted results
with Planck 2018 results [11]. The left-most plot shows the
inpainted CMB image of Planck 2018 results [11]. The second
column shows the original (un-inpainted) CMB image with an
irregular missing region, which is the actual input of the trained
CosmoVAE. The third column panel shows the corresponding

4https://pla.esac.esa.int/#cosmology

(a) Ground Truth (b) Masked Image (c) CosmoVAE Predicted

Fig. 4. Comparison of predicted results of the proposed models with ground
truth. Our models can leverage the surrounding textures and structures and
consequently generate lifelike images with no blurriness in the masked area.
The mean square error (MSE), mean absolute error (MAE), and peak signal-
to-noise ratio (PSNR) are around 0.0055, 0.0134, and 23.989.

predicted images, where the network restores the missing region.
As we can observe, the trained CosmoVAE can inpaint CMB
images with irregular mask regions, even if the mask area is
big, and when there are multiple mask regions. The predicted
results are evident as compared with the Planck 2018 results.
CosmoVAE thus provides a useful inpainting model for the
CMB map.

D. Uncertainty Quantification

One can interpret the CosmoVAE as a probability model in a
similar way to that of AEVB [21]. More concretely, denote the
encoder neural networks model mapping input x to a stochastic
latent variable z (see Figure 2) by the conditional probability
pθ(z|x), where θ denotes the parameters of the encoder network.
Similarly, denote the decoder neural networks model mapping
z to the output x, as pφ(x|z) and φ denote the weights and
biases of the decoder network.

In the Bayesian inferential context, p(z|x) is the posterior
distribution obtained from the prior and likelihood combination
where p(z|x) ∝ pφ(x|z)p(z), and pφ(x|z) is the likelihood
(the ”generative” model or, the decoder), and p(z) is the prior.
In the variational inference framework, a distribution qλ(z|x)
can be used to approximate this intractable posterior p(z|x).

If we take the latent variable z as a N (0, 1) variate and
the relationship between x and z is given by the encoder
network with parameter θ. Then taking qλ(z|x) to be a Normal
distribution with parameters λ = (µ(θ), σ(θ)), minimising the
Kullback-Leibler divergence between qλ(z|x) and the true
posterior p(z|x) is now the same as minimising the loss
functions with respect to θ and φ, where different loss functions
L(x) broadly correspond to the noise distribution we assume
for x. In the CosmoVAE, the parameters θ depend on the
input x1 and φ depend on x2, where the components of
x = (x1, x2) ≡ ((1 −M) � x,M � x) are respectively the
pixels outside and inside the masked regions.

Having a posterior distribution allows us to obtain uncer-
tainty estimation. To do this, consider the posterior predictive
distribution of x2, where

p(x2|x1) =

∫
p(x2|z)p(z|x1)dz,

where p(z|x1) = qλ(z|x) is simply the posterior distribution
obtained from the variational approximation, using training

https://pla.esac.esa.int/#cosmology


Fig. 5. Comparison of the results of our CosmoVAE model and Planck
2018 Commander. The left image is Planck 2018 Commander results. The
middle is the contaminated image after cropping. The right image is the
inpainted image. The CosmoVAE has good performance in predicting the
missing observations in various mask regions.

data x, and p(x2|z) is the generative model, and when a
discriminator model is added to p(x2|z), we can sample x2
and retain images for which the discriminator has computed as
true. The variability in the pixels of the ”true” images provides
us with the uncertainty measure.

Figure 6 shows the uncertainty in the CosmoVAE predictor.
The second column is the CMB image with the missing region
masked. The fourth column shows the standard deviation of the
inpainted images of the trained-CosmoVAE at each missing
pixel over 100 different realizations of the latent variable.
Compared with the Planck 2018 result in the first column for
the same image segment from the full-sky CMB map, the
CosmoVAE inpainted image has the same image quality. The
Std Dev. for each image is very small, and the location where
the Std Dev. is significant in the square image is a fractional
part of the mask region. Thus, the uncertainty of CosmoVAE

Fig. 6. A closer look at the test result for two images of the Planck 2018
Commander CMB map. The left column plots the inpainted image from
Planck 2018 results. The second column plots the original image with the
irregular missing region. The third column plot shows the predicted image by
CosmoVAE. The right-most column plots the standard deviation of the test
outputs for the same sample using 100 trained models.

is controllable and has little effect on the predicted image.

V. CONCLUSION AND FUTURE PLAN

Statistical challenges to processing the CMB data is one of
the biggest challenges in the analysis of CMB data. In this work,
we reconstruct the cosmic microwave background radiation
(CMB) map by using a modified variational autoencoder (VAE)
as our baseline model. We cut the full-sky CMB map into many
small images in order to generate our image and mask datasets,
and then in training to inpaint the missing area with arbitrary
mask shapes. To enhance the performance, we combine our
neural network with the angular power spectrum, which can
generate the Fourier coefficients of the Gaussian random field.
Furthermore, we modified the original VAE loss function by
adding in the perceptual loss and the total-variation regularizer.
This new VAE model assigns cosmological meaning to the
parameters of the network and achieves a state of the art
performance for CMB map inpainting.

To better complete image inpainting task and for cosmology
study, one needs to reconstruct the full-sky CMB map from all
small inpainted CMB images. We can use the inpainted full-sky
CMB map to estimate cosmological parameters such as the
angular power spectrum C`, which can be computed directly by
the healpy package. The inpainting of the CMB map will help
reduce the uncertainty in the parametric estimation. By Olivier
et al. [26], any method which is based on the marginal log-
likelihood, including VAE, necessarily leads to the blurriness
of output due to the gap between true negative log-likelihood
and the upper bound (ELBO). We can further modify our
loss function to improve the quality of reconstructed images
by replacing the KL-divergence with GAN or WGAN (more
stable) as regularizer. Our model can also be a baseline model
for the reconstruction of other random fields (besides the CMB
field). We will probe these problems in our future work.

Acknowledgments: Some of the results in this paper have
been derived using the HEALPix [9] package.
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and C. R. Lawrence, “Joint Bayesian component separation and CMB
power spectrum estimation,” ApJ, vol. 676, pp. 10–32, 2008.

[4] J. Delabrouille, J.-F. Cardoso, M. Le Jeune, M. Betoule, G. Fay, and
F. Guilloux, “A full sky, low foreground, high resolution CMB map from
WMAP,” A&A, vol. 493, pp. 835–857, 2009.

[5] R. Fernández-Cobos, P. Vielva, R. B. Barreiro, and E. Martı́nez-
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