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Abstract—For existing models of abstractive summarization,
the paradigm of autoregressive decoder inherently prefers rely-
ing on former tokens and the prediction error will propagate
subsequently. To effectively eliminate the errors, we need a
way to remodeling dependency during text generation. In this
paper, we introduce MDSumma (as shorthand for Masked
Decoder for Summarization), which masks partial tokens in
decoder, aiming to alleviate the over-reliance on the antecedent.
Moreover, with further facilitating the flexibility and diversity
of textual representation, we employ a variational autoencoder
model, sampling continuous latent variables from the probability
distribution to explicitly model underlying semantics of the target
summaries. Our architecture gives good balance between encoder
contextual representation and decoder prediction, sidestepping
the gap between training and inference. Experimental results
on three benchmark datasets validate the effectiveness that our
proposed method significantly outperforms the existing state-of-
the-art approaches both on ROUGE and diversity scores.

Index Terms—text summarization, diversity, VAE, model fu-
sion

I. INTRODUCTION

Abstractive summarization aims to generate summaries that
express the central idea of original articles, with an encoder to
convert source sequence into continuous space representations,
from which the decoder generates target sequence. Exist-
ing decoders for abstractive summarization are autoregressive
sequence models based on deep neural networks, such as
RNNs, Wavenet and Transformer. However, they are trained
to predict next token given the previous ground truth one,
which is by feeding the generated token back at test time.
This process is very brittle because prediction extremely relies
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Fig. 1. Comparison for different architectures. Encoder and decoder are
all Transformer layers.

on the antecedent sequence and discrepancy comes from
the mismatch of different distributions, namely, words drawn
from data distribution in training and model distribution in
inference. As a result, for Seq2Seq and its offsprings, the
prediction error will propagate along the way. And we refer to
this discrepancy as exposure bias [1]. To effectively eliminate
the errors, we need a way to remodeling dependency during
text generation.

Masked and pretrained language model is an effective
way to alleviate the various task-specific problems, achiev-
ing great success in language understanding by transferring
knowledge from rich-resource pretraining task to low-resource
downstream tasks [2]. BERT [3] combines both word and
sentence representations in a single Transformer [4], pretrained
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on vast amounts of text, with masked language modeling
objectives. The mask task randomly masks some tokens and
predicts these missing ones from candidate pools. MASS [2]
employs masked sequence to sequence pre-training for lan-
guage generation, which can jointly train the masked encoder
and local autoregressive decoder to develop the capability of
representation extraction and language modeling, still keeping
the exposure bias. As shown in Figure 1, both of the BERT
and MASS are self-supervised with masked encoder to learn
from the intrinsic structure of raw data. In this paper, we
present masked decoder for abstractive summarization, which
masks partial tokens in decoder, aiming to alleviate over-
reliance on the antecedent, shown as Figure 1. Our MDSumma
extends textual representation and text generation by lever-
aging masked mechanism in decoder, forcing decoder rely
more on the source representation other than previous tokens,
encouraging to extract more useful information from encoder,
breaking the propagation of previous error.

Recent advances in abstractive summarization are driven
by the success of encoder-decoder framework [5] and atten-
tion mechanism [6]. These models commonly use maximum
likelihood estimation (MLE) principle for training, which are
more likely to generate the words with higher frequency in
the training corpus. In this way, the generated summaries
are in general curt and inflexible. However, we argue that
different people might generate different summaries from the
same source article according to the diversity of language. So,
compared to ‘computer summary’, the ‘human summary’ is
more readable without being restricted by fixed mode. So, we
aim to design a model which generates summaries not only
keeping in line with ground-truth but also reserving diversity.

In order to diversify the generated summaries, we propose a
conditional variational autoencoder (CVAE) based framework
for text summarization. This framework takes both the source
article and target summary to guide the model learning. The
source article is used as a conditional information to guide
the decoder. The target summary is represented by VAE
which learns the parameters of a probability distribution of the
summary, instead of encoding it into a vector. VAE introduces
a continuous latent variable sampled from the probability
distribution to explicitly model underlying semantics of the
target summary, which advances the flexibility and diversity
of textual representation. Due to VAE’s great capacity of
sampling, our model could generate more diverse summaries.
In this framework, the decoder may bypass the sampled
latent variable and focus solely on modeling the conditional
information. In order to enforce decoder modeling both the
conditional information and the latent variable equally, we use
a fusion mechanism, which make the decoder more robust.

Experiments are conducted on three large-scale corpus,
CNN/DM, XSum and ByteCup, to evaluate the efficiency of
our method. We not only use the traditional metric ROUGE
to evaluate the holistic performance, but also propose a new
metric to evaluate the diversity. Diversity is designed based
on entropy which measure the variety of words. It also
employs KL divergence to ensure the frequency distribution of

generated words follow the Zipf law. 1 Experimental results
show that our model achieves significant improvements both
on ROUGE and diversity, compared with several state of the
art methods. To sum up, our contributions are as follows:
• A novel masked decoder model is proposed to remodeling

the dependency and alleviate over-reliance on antecedent,
extracting more information from encoder, breaking the
propagation.

• A variational autoencoder module to advance the flexi-
bility and diversity.

• A new metric to evaluate the diversity of natural textual
representation.

• Extensive experiments on three datasets verify the effec-
tiveness of the proposed approach.

II. RELATED WORK

Text summarization is a task of automatically generating
a shorter version while remaining the main information and
the task has two paradigms: abstractive summarization and
extractive summarization. Abstractive summarization requires
text rewriting and may contain words not appeared in the
original text. Most recent generative models [12], [13] are
based on Seq2Seq and attention mechanism. However, the
generated summaries are liable to reproduce factual details
inaccurately and tend to repeat themselves. Pointer mech-
anism [11], GAN model [17], reinforcement learning [16]
and, bottom-up attention [18] are introduced to promote the
performance of the basic Seq2seq model. While the deep
semantic information is still hard to control through these
RNN-based generative approaches. MASS [2] and UniLM
[22] advance summarization by applying masked and deep
language model, reaching satisfied performance. For extractive
models, Hierarchical Transformer [23] and BERTSUMEXT
[19] are pre-trained with large unlabeled data with deep
unidirectional architectures, and achieve state-of-the-art per-
formance on CNN/DM with extractive method.

VAE [24] has shown strong capability for improving the
diversity of text generation tasks, such as machine translation
[25] and question generation [26]–[28]. Latent variable model
is a statistical model that seek to model the relationship of
observed variables with a set of unobserved, latent variables,
and can allow for modeling of more complex, generative
processes [29]. [26] addressed the diversity of generation in
question generation with variational attention, but doesn’t pay
attention to the subtle dependence between sampled latent
variable and summarization.

III. MODEL

A. Preliminary

Let X denotes an source text document . Let Y denotes the
corresponding summary, and the masked summary is Y ′. For
convenience, lowercase x and y is equivalent to X and Y .

1Zipf’s law states that Given some corpus of natural language utterances,
the frequency of any word is inversely proportional to its rank in the frequency
table.
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Fig. 2. Architecture of the MDSumma. For each pair (article, summary), we will compress the article and summary separately with two encoders, and
there only be one decoder for generation. For convenience of illustration, we omit attention mechanism from the architecture figure.

We separate our model with modules, as shown in Figure
2:

• Condition Encoder. This encoder encodes the source X
into a vector hx with pre-trained BERT.

• VAE Encoder. This encoder is composed of shared pre-
trained BERT and encodes the target Y into a vector hy .
We can get a gaussian distribution with µ(x) and Σ(x),
which is generated from hy . With the reparameterization
method, we can sample a vector ĥy from gaussian distri-
bution and make the back propagation work effectively.
We should have a restrain on the N (µ,Σ) with N (0, nI),
so we design another objective function.

• Fusion Model. This model encourages the decoder to
generate summaries based on both source vector hx and
sampled vector ĥy equally.

• Masked Decoder. The masked decoder randomly masks
some tokens and replace them with [MASK]. This de-
coder takes the mixed vector from fusion model, masked
sequence Ŷ and the attention-based h∗t (not shown in
architecture Figure 2). It employs Transformer decoder
and will generate the reconstructed target summary Y .

• Prior & Posterior Distributions. To restrain the state
space and accelerate the speed of convergence, we uti-
lize the prior distributions of X and Y<t, the posterior
distributions of hx and hy .

In training, the condition encoder and VAE encoder will
deliver source and target information to fusion model. Then the
mixed semantic vector emitted by fusion model is the initial
hidden state for decoder. While in the process of inference
and generation, there is no VAE encoder information in our
architecture. Under the effective guidance of posterior knowl-
edge distribution in training, hx can approximately access the

same semantic with hy when the posterior knowledge of target
sequence is not available.

B. Conditional Variational Autoencoder

VAE assumes that it is easier to optimize parametric distri-
bution pθ(y, z) defined over the words of a sequence y, as well
as a latent representation z. It is therefore possible to sample y
from the distribution p(y|z), since the latent variable follows
a certain distribution instead of being a deterministic value.
So, the decoder is able to generate summary via sampling.

In our task, we hope the the source articles could provide a
guidance for VAE generators. So, we make the original article
serve as a condition for the generation of summary in p(y|z, c),
where c is the source tokens x, to restrain the semantic latent
vector z emitted by VAE encoder. In this way, VAE is able
to generate summary from a fine-grained setting which can
further enforce generation and diversity.

The log-likelihood of y can be written as follows, with
introducing a conditional latent distribution qφ(z|y, c):

ln pθ(y|c) =
∑
z

qφ(z|y, c) ln pθ(y|c)

=
∑
z

qφ(z|y, c) ln
pθ(z, y|c)
qφ(z|y, c)

qφ(z|y, c)
pθ(z|y, c)

=
∑
z

qφ(z|y, c) ln
pθ(z, y|c)
qφ(z|y, c)

+KL(qφ(z|y, c)||pθ(z|y, c))

(1)

where KL is Kullback-Leibler divergence, which is used to
measure the proximity between qφ(z|y, c) and pθ(z|y, c)



Since KL-divergence is non-negative, the low-bound of
ln pθ(y|c) is the first part of Equation 1, aliased as L. So
we can directly maximize L, which is shown as below:

∑
z

qφ(z|y, c) ln
pθ(z, y|c)
qφ(z|y, c)

=
∑
z

qφ(z|y, c) ln
pθ(z|c)pθ(y|z, c)

qφ(z|y, c)
=−KL(qφ(z|y, c)||pθ(z|c))

+ Ez∼qφ(z|y,c)[ln pθ(y|z, c)]
=−KL(qφ(z|y, c)||pθ(z|c)

+
1

N

N∑
i=1

ln(pθ(y|zi, c)

(2)

where pθ(z|c) is a prior distribution over the latent space,
typically the same as N (0, nI). The expectation over the
model distribution qφ(z|y, c) is approximated with N samples
zi ∼ qφ(z|y, c). In the testing stage, zi is directly sampled
from the learned latent space.

The KL-divergence of gaussian distributions, such as
qφ(z|y, c) ∼ N (µ1, σ1) and pθ(z|c) ∼ N (0, σ2), can be
calculated as below:∫

qφ log qφdx = −1

2
(1 + log 2πσ2

1)∫
qφ log pθdx =

1

2
log(2πσ2

2) +
σ2
1 + µ2

1

2σ2
2

(3)

KL(p, q) =
1

2

(
− log

σ2
1

σ2
2

+
σ2
1 + µ2

1

σ2
2

− 1

)
(4)

where σ2 is used to manage diversity and we can sample z
from a probability distribution with larger variance, such as
N (0, 2I).

The final objective function of CVAE model is shown as
follows:

losscvae =− 1

N

N∑
i=1

ln(pθ(y|zi, c)

+KL(qφ(z|y, c)||pθ(z|c)
(5)

where θ and φ are parameters corresponding to each model.
The variational bound breaks into two terms: the data
Maximum-Likelihood Loss (MLLoss) and the Kullback-
Leibler divergence loss (KLDivLoss).

C. Masked Decoder Model

We introduce a novel masked mechanism for decoder in
this section. Given a summary y, we randomly mask 15%
of all tokens and the modified version of summary is ŷ. We
replace each masked token by a special symbol [MASK], and
the length of masked summary is not changed. MDSumma
predict the token yi by taking the masked sequence ŷ<i. We
also use the log likelihood as the objective function:

L(θ; (X ,Y)) =
∑

(x,y)∈(X ,Y)

log pθ(y|x)

pθ(y|x) =

n∏
i=1

pθ(y
i|ŷ<i, x)

(6)

With the masked ŷ<i, x and unmasked tokens ŷ′<i are
crucial for the prediction, which will alleviate the over-reliance
on the previous token.

D. Fusion Model

Unlike the standard Seq2Seq for text summarization, where
the initial semantic information for decoder is fully specified
by the source sequence, the sampled latent variable is signifi-
cant for generation. However, the subtle dependencies between
sampled latent variable and summarization are hard to model.

Inspired by [7], we design a fusion mechanism to concate-
nate the compressed vector by condition encoder and the latent
vector sampled by VAE encoder, as shown in Figure 2. The
fusion model will learn a gate mechanism to leverage these
two latent vectors for decoding during training.

α = σ(W [hx, ĥy] + b)

h′x = α⊗ hx
ĥ′y = α⊗ ĥy

(7)

where W, b are parameters learned in the training process.

E. Prior & Posterior Distributions

In the text summarization task, the source sequence has
similar word distribution and semantic information with target
sequence. The training of fusion-based CVAE model is time
consuming, so we employ some distributions to guide the
generation and accelerate convergence.

a) Prior Distributions: The semantic latent vector is
restricted with a prior distribution by KLDivLoss. When
predicting the target word yt at time step t, the summary
should obey the prior distributions from source sequence x
and target sequence y1, y2, ..., yt−1.

In fact, most words in the generated summary have appeared
in the source article. So, we can merge a prior distribution ψ
of source sequence to decoder, which will make the generator
prefer to generate the words in source article. We can get a
binary vector as prior distribution ψ with a fix dimension of
V , i.e., the size of vocabulary.

ψ = (ψ1, ψ2, ..., ψV ) (8)

Here, if the ith word in vocabulary appears in the source
sequence x, ψi = 1; otherwise, ψi = 0.

When predicting the word wt at time step t, we also make
use of the prior distribution of target sequence [y∗1 , y

∗
2 , ..., y

∗
t−1]

to deliver more information to the decoder. But we can’t
apply that information by the same way as source sequence.
The prior distribution of the target words is changing over
time, which will occupy large memory of GPU to update. So



we merge the prior distribution of the target sequence into
attention, similar to the mechanism of Coverage [8].

The final formula of prior distributions is as follows:

eti = vT tanh(Whhi +Wsst +Wcct + b)

αt = softmax(et)

h∗t =
∑
i

αtihi

st = RNN(st−1, yt−1)

yt = V [st, h
∗
t ] + b

ŷt = v ⊗ψ
Pvocab = softmax(yt + ŷt)

(9)

where ct =
∑t−1
j=0 α

j , which is the sum of all previous
attention distributions and v is the learnable vector parameter.

b) Posterior Distribution: The output of condition en-
coder is a hidden state vector hx. The VAE encoder takes
ground-truth summary as input, and compress it into a hidden
representation vector hy . There is a posterior probability
between hx and hy . To achieve this, we define objective
function on both source sequence and ground-truth target se-
quence during the training phase. We can implement assistant
supervisor by minimizing the distance between hx and hy .

lossdis =
1

H
||hx − hy||2 (10)

where H is the size of hidden layer.
However, the target sequence is only available in training.

Therefore, in test process, the prior distribution of condition
encoder is proposed to precisely approximate the posterior
knowledge distribution. For this purpose, we train the prior
knowledge distribution using the posterior knowledge distri-
bution as a guidance.

F. Loss Function

Our model consists of several parts, so there are three
objective functions. During training, the variational bound
breaks into two terms: the data maximum-likelihood and the
KL divergence, see the Equation 5. The sum of all these parts
is the final loss function:

loss = MLLoss+KLDivLoss+MSE

= λ1losscvae + λ2lossdis
(11)

where λ1 and λ2 are hyper-parameters to balance these loss
for the whole model. In experiments, we set them all to 1

2 .

IV. EXPERIMENTS

A. Dataset

We evaluate our model on three benchmark datasets, namely
CNN/DailyMail news highlights dataset [9], XSum [10] and
ByteCup 2018. The description of our dataset is shown in
Table I.

a) CNN/DailyMail: contains online news articles, paired
with multi-sentence summaries. We used the standard splits of
Hermann et al. [9] for training, validation and test. We han-
dle non-anonymized version of data with Stanford CoreNLP
toolkit and pre-process the dataset following See et al. [11].

b) XSum: contains news articles accompanied with one
sentence summary, answering the question “What is this article
about?”. It is highly abstractive and input documents are
truncated to 512 tokens.

c) Byte Cup 2018: Another dataset we use is derived
from the ”Byte Cup 2018 International Machine Learning
Contest” 2. The competition provides 1,300,000 pairs of article
and summary, shown in Table I. We split this dataset into the
training, validation and testing set as follows:

B. Baselines

Lead-3: This model directly chooses the first three sen-
tences from a document as its summary. Because in English,
the core information of an article is always at the beginning.
So, this model could achieve a high ROUGE score.

Attention-Based Seq2Seq(ABS): This is a common archi-
tecture of encoder and decoder, applied by many NLP tasks
[12], [13].

SummaRuNNer: A recurrent neural network based on
sequence model for extractive summarization of document
with sentence-level extractive labels [14].

Pointer-Generator(PGC): This model can deal well with
out-of-vocabulary problem and repeated words [11].

Unified Model(Unified): This model combines the strength
of extractive and abstractive summarization with word-level
and sentence-level attentions [15].

DeepRL: This model introduces reinforcement learning into
text summarization and make summary more readable [16].

GAN: This model applies generative adversarial network in
abstractive text summarization [17].

Bottom-Up: They use a data-efficient content selector as
a bottom-up attention step to constrain the model to likely
phrases and a two step process achieves significant improve-
ments on ROUGE [18].

MASS: Mass is inspired by BERT and it can jointly train
decoder and encoder to develop the capability of representation
extraction and language modeling [2].

BERTSUMABS & BERTSUMEXTABS: BERTSUM in-
troduce a novel document-level encoder based on BERT,
then stacking several layers and decoder for extractive and
abstractive summarization [19].

C. Definition of Diversity

We aim to design a model which generates summaries not
only keeping in line with the ground-truth but also reserving
the diversity.

Diversity is designed based on entropy which measures the
variety of words. The larger the entropy of generated words,
the larger diversity the model has. Besides, we consider that

2https://biendata.com/competition/bytecup2018/data/



Datasets # docs (train / val / test) avg.doc length avg.summary length
words sentences words sentences

CNN 90,266 / 1,220 / 1,093 760.50 33.98 45.70 3.59
DailyMail 196,96 / 12,148 / 10.397 653.33 29.33 54.65 3.86
XSum 204,045 / 11,332 / 3,452 431.07 19.77 23.26 1.00
Byte Cup 2018 1022,176 / 10,523 / 10,581 654.89 30.25 11.90 1.00

TABLE I
DATA STATISTICS: CNN/DAILY MAIL, XSUM, BYTE CUP DATASETS, PROCESSED BY STANFORD CORENLP

the generated words should follow the Zipf law, which is
a well known linguistics law. Zipf declares that a few very
high-frequency words account the most tokens. So, we design
a penalty term to measure the gap between the statistics of
generated words and Zipf, which is measured by the KL
divergence. The Diversity is formalized as follows.

H(X) =
∑
wi∈X

pwi log2 pwi

Div(X) = H(X)−KL(Pw||Qzipf )

(12)

where pwi = count(wi)∑N
j=1 count(wj)

. The words with low count(wi),
especially less than 5, would be ignored.

D. Implementation Details

We utilize the pre-trained BERT3 for sentence encoder
and fine-tune them in training process. Our code is base
on BERTSUMABS 4. Following the recommended settings
of BERT [3], we set a maximum sentence length of 128
tokens and total length of 512 tokens. We train the model
for 100,000 steps with batch size of 16 on four Nvidia Tesla
V100 GPUs. Adam with β1 = 0.9, β2 = 0.999 is used as
optimizer. Learning rate schedule follows with warming-up
on first 10,000 steps using the strategies in Transformer [4].
The dropout rates in all layers are 0.1. The common evaluation
metric used for summarization are F1 of ROUGE-1, ROUGE-
2, ROUGE-L5, which are computed based on overlapping
lexical units between generated summaries and golden ones.

The Generative strength of our model is associated with
different sampling schemes of latent variable z. We try to use
different σ2 for the prior distribution pθ(z|c) ∼ N (0, σ2) in
KLDivLoss, such as σ2 = {0.5I, I, 1.5I, 2I, 3I}. In exper-
iments, we set σ2 with I and we find that σ2 with larger
or smaller value will cause model unstable and worse rouge
score.

V. RESULTS

A. Evaluation of ROUGE

In experiments, we use the common metrics ROUGE-1,
ROUGE-2, ROUGE-L, which are computed based on overlap-
ping lexical units between generated summaries and golden
ones. We compare the performance between our model and
different kinds of comparative methods.

3https://github.com/huggingface/transformers
4https://github.com/nlpyang/PreSumm
5https://github.com/andersjo/pyrouge

Table 2 presents the ROUGE and Diversity scores of each
model. Our MDSumma performs the best and significantly
outperforms all baseline models on three datasets, demon-
strating that masked decoder can model suitable dependency
between encoder and previous generated sequence, bridging
the gap between autoregressive training and inference. For
more in-depth performance analysis, we note that MDSumma
without CVAE performs well on almost all ROUGE metrics
except for ROUGE-L in XSum, while MDSumma with CVAE
is more diverse. That because CVAE samples continuous latent
variables from the probability distribution to model underlying
semantics of the target summaries, leading to various similar
summaries. In contrast to CNN/DM, XSum is more difficult
to handle with these model trained from scratch, for there
is a large margin between corresponding ROUGE scores.
While these models with pre-training process will learn about
more knowledge, which is transferred and benefit on the
summarization task, especially for XSum datasets. RNN-based
approaches perform worse than Transformer variations, the
only comparable result are Bottom-Up on CNN/DM, where
data are highly extractive, indicating that attention mechanism
even bidirectional encoder representations in transformer and
its offsprings are mainstream in the future. The fundamen-
tal TransformerABS achieves satisfactory results on three
datasets, but it is clearly inferior to other pre-trained models.
This is likely due to the fact that training on extensive corpus
is import for natural language process.

B. Evaluation of Diversity

As mentioned above, we use diversity to measure the
flexibility of the summarization models. From Table 2, we can
find that: (i) the extractive summarization methods perform
worst in diversity, because they directly select words and
phrases from the original articles; (ii) the basic sequence to
sequence model with attention mechanism (ABS) achieves
good performance in diversity, while using GAN and RL
framework reduces the diversity of basic model; (iii) CVAE
performs better than the extractive methods and other abstrac-
tive methods, which proved the effectiveness of the CVAE
framework.

We aim to design a model which generates summaries not
only keeping in line with the ground-truth but also reserving
the diversity. MDSumma with CVAE achieves the best and
there is obvious boundary between VAE-base and non-VAE
methods, for the reason that the popular choice is the max-
imum likelihood estimation and it likely to generate words



Models (%) CNN/DM XSum ByteCup
R-1 R-2 R-L Div R-1 R-2 R-L Div R-1 R-2 R-L Div

Lead-3 40.34 17.70 36.57 6.20 - - - - - - - -
TextRank 40.20 17.56 36.44 6.18 - - - - - - - -
SummaRuNNer 38.66 16.11 34.77 6.14 - - - - - - - -

ABS 35.46 13.30 32.65 6.41 28.42 8.77 22.48 6.42 36.02 18.81 33.35 6.39
PGC 39.53 17.28 36.38 6.38 28.10 8.02 21.72 6.37 39.13 21.20 35.68 6.48
Unified 40.19 17.67 36.68 6.39 29.67 9.34 22.92 6.47 40.86 21.57 35.88 6.40
DeepRL 39.76 15.82 36.90 6.29 28.53 9.07 22.66 6.28 40.03 21.82 36.03 6.53
GAN 39.92 17.65 36.71 6.33 28.74 9.12 22.83 6.31 39.44 21.31 35.83 6.34
Bottom-Up 41.22 18.68 38.34 6.28 30.21 11.36 24.59 6.38 41.22 22.93 37.64 6.58
MASS 42.12 19.50 39.01 6.30 35.88 15.14 28.86 6.45 43.25 23.98 40.23 6.43
BERTSUMABS 41.72 19.39 38.76 6.33 38.76 16.33 31.15 6.40 43.14 23.72 39.91 6.50
BERTSUMEXTABS 42.13 19.60 39.18 6.40 38.81 16.50 31.27 6.45 44.33 24.88 40.68 6.47

MDSumma (w/o CVAE) 42.53 19.82 39.33 6.31 39.14 16.94 31.42 6.47 44.54 24.97 40.83 6.51
MDSumma 42.47 19.84 39.27 6.54 39.03 16.83 31.45 6.58 44.41 24.83 40.78 6.69

TABLE II
EVALUATION OF COMPARATIVE METHODS ON THREE DATASETS: ROUGE AND DIVERSITY SCORES. TOP PART IS EXTRACTIVE MODELS, MIDDLE

PART IS ABSTRACTIVE MODELS AND THE BOTTOM IS OUR MODELS. EXTRACTIVE APPROACHES ARE NOT SUITABLE FOR XSUM AND BYTECUP
DATASETS. THE DIV SCORE IS CALCULATED ON GENERATION RESULT WITH THE BEST ROUGE SCORE.
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Fig. 3. First 50K iterations of Rouge-1 F1 scores on CNN/DM.

with higher frequency. That demonstrates the effectiveness of
latent variables. The more lower diversity score is, the more
inflexible for generated summaries. And our MDSumma with
CVAE is the most readable in all models.

Besides, we give some summary cases generated by differ-
ent models, as shown in Table III. We can find that, for each
source article, our model could generate various summaries
without weakening the accuracy. There is another simple
way to get diverse generations, top-K sampling. While, top-K
samplings share identical encoder context, and in generation
process, the suboptimal choice of current word will accelerate
more error for the rest of the sequence prediction, or syntax
errors emit when replace token directly.

C. Avoiding collapsing to prior

We usually observe KL collapsing in VAE, with strong
generators learn to ignore latent representation, and the ap-
proximate posterior “collapses” to the prior. That means the
posterior is independent of the data [20]. There are two
techniques to alleviate the collapsing: KL annealing and target

Source article (truncated): built at a cost of # 1 billion, new
broadcasting house is the jewel in the crown of the bbc and the setting
for its self-mocking satire w1a. (...) new broadcasting house is home
to three 24-hour news channels, nine radio networks and 6,000 staff.
Reference: new broadcasting house in central london took a decade
to build. it was opened by the queen in 2013 at least # over budget.
but the bbc has now admitted it ’occasionally’ runs out of meeting
rooms.
MDSumma 1: new broadcasting house in central london covers half
a million square feet, took a decade to build and was opened by the
queen in 2013. bbc has admitted it ’occasionally’ runs out of meeting
rooms and spent # on booking external spaces nearby during the last
financial year.
MDSumma 2: new broadcasting house in central london covers half
a million square feet , took a decade to build and was opened by
the queen in 2013 – four years behind schedule and at least # 55
million over budget. bbc has been criticised by spending watchdog
the national audit office over the running costs of new broadcasting
house.
MDSumma 3: new broadcasting house in central london covers half
a million square feet, took a decade to build and opened by the queen
in 2013 – four years behind schedule and at least # 55 million over
budget. the bbc has admitted it ’occasionally’ runs out of meeting
rooms and spent # on booking external spaces nearby during the last
financial year.
ABS: built at a cost of # billion, new broadcasting house is the jewel
in the crown of the bbc. but in a development that could have come
straight out of the sitcom, it has been revealed that the corporation
is paying tens of thousands of pounds of taxpayers money to book
meetings in nearby buildings because the headquarters lacks space.
PGC: new broadcasting house in central london covers half a million
square feet. bbc has admitted it ’occasionally’ runs out of meeting
rooms and spent # 55 million over budget.

TABLE III
THE GENERATION DIVERSITY: A TEST EXAMPLE OF CNN/DM:

The green fonts, red fonts and cyan fonts show the diversity of our model.
Our model can generate summaries with different phrase in the period of
generation because of the non-deterministic latent semantic vector, while other
models are settled and boring.

word dropout. KL annealing consists in incorporating the
KL term into objective gradually, thus allowing the posterior
to move away from prior more freely at early stages of
training [21]. Target word dropout is randomly masking words
generated previously, and we have the same mechanism in
masked decoder. In our model, the annealing steps is 50,000,
and the validation KL(qφ(z|y, c)‖pθ(z|c) is 1.37, indicating



that approximate posterior is different from prior at then end
of training.

D. Evaluation of Convergence

We experiment the convergence acceleration of prior and
posterior distributions. As shown in Figure 3, MDSumma can
accelerate the convergence further with these distributions.
Here we only consider the prior & posterior limitation in the
start of training process, which can help to find the direction
of gradient descent quickly. Figure 3 shows the first 50,000
iterations, with reaching the highest performance of MD-
Summa, but not the other. The training curve of MDSumma
module shows that our approach significantly improves basic
abstractive methods.

VI. CONCLUSIONS

In order to enhance textual representation for abstractive
summarization, this proposes a masked decoder to alleviate
the propagation of prediction error and remodeling dependency
during text generation, a conditional variational autoencoder to
facilitate the flexibility and diversity of textual representation.
With the prior & posterior distributions, we accelerate the
process of summarization in training process. Experiments on
CNN/DM, XSum and ByteCup datasets show the effectiveness
of our model on ROUGE and Diversity. In the future work, we
will further try to breaking the propagation of previous error
efficiently.
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