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Abstract—Probabilistic inference is a common and important
task in statistical machine learning. The recently proposed
Stein variational gradient descent (SVGD) is a generic Bayesian
inference method that has been shown to be successfully applied
in a wide range of contexts, especially in dealing with large
datasets, where existing probabilistic inference methods have
been known to be ineffective. In a large-scale data setting, SVGD
employs the mini-batch strategy but its mini-batch estimator
has large variance, hence compromising its estimation quality in
practice. To this end, we propose in this paper a generic SVGD-
based inference method that can significantly reduce the variance
of mini-batch estimator when working with large datasets. Our
experiments on 14 datasets show that the proposed method enjoys
substantial and consistent improvements compared with baseline
methods in binary classification task and its pseudo-online learn-
ing setting, and regression task. Furthermore, our framework is
generic and applicable to a wide range of probabilistic inference
problems such as in Bayesian neural networks and Markov
random fields.

Index Terms—Bayesian inference, variance reduction, statisti-
cal machine learning

I. INTRODUCTION

In statistical machine learning, a very common problem
is probabilistic inference with probability distributions that
are factorisable. For example, in probabilistic models such as
mixture models or latent Dirichlet allocation [1], it is desirable
to compute the posterior of the latent variables given observed
variables, and this posterior can be factorised into prior and
joint likelihood. Usually our target distributions are intractable,
thus an effective approximate inference is demanded.

Two popular approximate inference methods are Markov
chain Monte Carlo (MCMC) and variational inference (VI).
MCMC estimates the exact distribution via drawing samples.
In general, this method is slow due to the fact that we can only
draw a single sample at a time as the current sample depends
on the past sample. Recent work has tried to scale up MCMC
to work with large datasets which reduces the computational
cost in each iteration by estimating noisy gradients with sub-
samples of data [2], [3], [4] or selecting a subset of data
[5]. However, MCMC methods are challenging to evaluate
the convergence which hinders their applications in practice.
In contrast, VI can be efficiently accompanied by stochastic
gradient descent to train on large datasets [6], which is more
popular in practice. In VI, we find a member in a family of
distributions S that best approximates our target distribution.
Crucially, we need to consider the trade-off between accuracy
and computational complexity when designing S. Hence, one

often determines S in the problem-specific manner, which may
require domain expert knowledge and profound experience.

The authors of [7] partially lifted this burden by proposing
a general purpose Bayesian inference algorithm called Stein
variational gradient descent (SVGD). SVGD approximates
a target distribution P via drawing particles that are first
randomly sampled from an initial simple distribution Q0 and
then moved step by step towards P via simple invertible trans-
formations. Besides only requiring an unnormalised version
of the distribution P for moving particles, as stated by its
authors, SVGD can be considered ‘as a natural counterpart
of gradient descent for full Bayesian inference’ [7] which
enables gradually updating particles in an economical manner.
In particular, when the target distribution can be factorised
into a multiplication of many component distributions, SVGD
can update its particles in the stochastic manner using mini-
batches. However, by nature, this traditional mini-batch esti-
mator in the general context (i.e. not only when specifically
applied in SVGD) has high variance [8], [9].

Since MCMC and VI methods for large-scale datasets use
noisy gradients in their algorithm which can lead to the high
variance of the gradient estimate, the following papers have
been proposed to control the variance of the estimator for
MCMC [10], [11], [12] as well as VI [13], [14], [15]. However,
the variance reduction for SVGD is still an open problem.

In this paper, to address the high variance issue in mini-
batch estimator occurred in SVGD when the target distribution
is factorisable, we propose Stein variational gradient descent
with variance reduction (SVGD-VR), which can be regarded
as a substantial improvement to SVGD inspired by stochastic
variance reduced gradient (SVRG) [8]. Our method yields an
unbiased variance-reduced mini-batch estimator, which greatly
reduces the variance of the mini-batch estimator in SVGD.
As a consequence, we significantly improve SVGD in many
aspects: faster convergence, more stable training and more
robust to batch size.

In the binary classification task, besides outperforming and
being more stable than SVGD and SVRG with a standard
batch size (i.e. 128), we empirically observe that our proposed
SVGD-VR is very stable and achieves impressive predictive
performance even with tiny batch sizes (e.g. 1, 2, and 4). Thus,
to demonstrate the generalisation capability, we compare our
proposed SVGD-VR with SVGD and SVRG in the pseudo-
online binary classification inspired by the online learning
in [16], [17] (i.e. the extreme case with the batch size of
1). Additionally, the versatile applicability of SVGD-VR in
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practice is even more persuasive by the fact that it not only
outperforms but also yields more stable training than SVGD
on the regression task with Bayesian neural networks on 9
over 10 chosen datasets. Our code is available on GitHub1.

This paper is organised as follows. Section II introduces
background on SVGD and variance reduction methods. Sec-
tion III is dedicated to the details of our proposed method.
We report experimental results in Section IV and finally draw
conclusion and future developments in Section V.

II. RELATED BACKGROUND

A. Stein Variational Gradient Descent
Stein variational gradient descent (SVGD) [7] is a general

purpose method to approximate a target distribution p (θ) by
particles. We denote the approximate distribution as q (θ).
We want to represent the target distribution via a set of
samples θ1, . . . , θM . Initially, we draw M particles θ1, . . . , θM
from an initial distribution q0 (θ) that is usually a simple
and easy-to-sample one. In SVGD, the task of learning a
transformation T̃ that transports the initial distribution q0 to the
target distribution p is decomposed into learning a sequence
of simple invertible mappings T (1), . . . , T (L) (i.e. T̃ (θ) =

T (L)
(
T (L−1)

(
. . . T (1) (θ)

))
) wherein at each step the induced

distribution q[T ] is pushed closer to the target distribution in
terms of Kullback-Leibler (KL) divergence. The authors of
SVGD also proposed to use the perturbation of identity map-
ping as T (θ) = θ+εΦ (θ), where Φ (θ) is a smooth function in a
function class F and |ε| is a small number. When we consider
the function class F as a ball in the product space of reproduc-
ing kernel Hilbert space (RKHS) H associated with a kernel
k : Rd × Rd → R, i.e. F =

{
Φ ∈ Hdk : ‖Φ‖Hd

k
≤
√

S (q, p)
}

,
where S (q, p) is the kernelised Stein discrepency be-
tween two distributions p and q [18], we obtain the op-
timal perturbation at each time step as follows: Φ∗ (·) =
1
M

∑M
m=1 [k (θm, ·)∇θm log p (θm) +∇θmk (θm, ·)]. As we iter-

ate this transformation, the KL divergence between the ap-
proximate distribution and the target distribution gradually
decreases. We can see that this procedure can work regardless
of the choice of the initial approximate distribution q0. When
the number of particles is only 1, this algorithm reduces to
gradient ascent for maximum a posteriori (MAP) [19].

Dual forces: In the equation of Φ∗, the first term moves the
particles towards the areas with high probability density p (θ)
whilst the second term exerts the repulsive force that avoids
mode collapse.

SVGD has a wide range of applications such as Bayesian
logistic regression and Bayesian neural networks [7], restricted
Boltzmann machines and Gaussian process classification [20],
image denoising [21], moment matching [22], variational
autoencoder learning [23], automatic neural samplers [24],
distributed inference on continuous graphical models [25], and
Bayesian kernel learning for big data [19].

B. Variance Reduction Methods
Many optimisation problems can be formulated as

minθ F (θ), where F (θ) , 1
N

∑N
i=1 fi (θ). A simple yet suc-

1https://github.com/nhandam/svgd-variance-reduction

cessful approach is gradient descent (GD), in which we
update θ iteratively as θ(t+1) = θ(t) − ηt∇F

(
θ(t)
)

= θ(t) −
ηt
N

∑N
i=1∇fi

(
θ(t)
)

, with θ(t) and ηt denoting the values
of θ and the learning rate at tth update step respectively.
To work with large N , we may utilise mini-batch GD or
stochastic GD (SGD). In mini-batch GD, we approximate
∇F (θ) by 1

n

∑n
j=1∇fij (θ), where {i1, . . . , in} ⊂ {1, . . . , N}

with n � N . When n = 1, mini-batch GD becomes SGD.
Although mini-batch GD and SGD yield unbiased estimators,
they do introduce additional variance to the estimation [8],
[9]. Consequently, we often need to decay the learning rate to
achieve convergence.

Some methods have been proposed to reduce the variance
in the mini-batch gradient estimator such as stochastic aver-
age gradient (SAG) [26], stochastic dual coordinate ascent
(SDCA) [27], stochastic variance reduced gradient (SVRG)
[8], semi-stochastic gradient descent (S2GD) [28], and SAGA
[9]. A common benefit of variance reduction methods is that
the learning can still converge with relatively large learning
rate (refer to Section 2 in [8]), which means we can speed
up the training by using larger learning rates. As discussed in
[9], we can view some variance reduction methods under a
common umbrella as follows. First, mini-batch GD and SGD
are an application of Monte Carlo approximation. Suppose
that we have two correlated random variables X and Y with
the expectation of Y being able to be computed efficiently,
we want to approximate the expectation of X using Monte
Carlo method. We may use the estimator ωα for E [X]
defined as ωα , α (X − Y ) + E [Y ], where α ∈ [0, 1].
Then, we have E [ωα] = αE [X] + (1− α)E [Y ] and Var [ωα] =

α2 (Var [X] + Var [Y ]− 2 Cov [X,Y ]). When α = 1, the esti-
mator ωα is unbiased. When X and Y are highly correlated
(i.e. Cov [X,Y ] is large), the variance of the estimator ωα is
reduced. Using this framework, we can derive SAG, SAGA
and SVRG straightforwardly. At the tth update step, let X be
∇fj

(
θ(t)
)

, where j is randomly selected from {1, . . . , N}.
When Y is ∇fj

(
θ(t−1)

)
and α = 1

N
, we have the estimator

proposed in SAG. When Y is ∇fj
(
θ(t−1)

)
and α = 1, we

have the estimator proposed in SAGA. Finally, the estimator
in SVRG is achieved when Y is ∇fj

(
θ̃
)

and α = 1, where θ̃
is the value of θ at some previous update step.

Apparently SAG yields a biased estimator, whilst the esti-
mator in SVRG is unbiased and this method also has similar
convergence rate as SAG and SDCA for smooth and strongly
convex functions. S2GD has similar update scheme as SVRG
but different way to choose the inner loop iterations. SAGA
is considered as a midpoint between SAG and SVRG, having
better theoretical convergence rate and yielding unbiased es-
timator. An advantage of SVRG is memory-efficient because
we only need to store the average of all gradients evaluated at
the checkpoint , whereas we have to store an entire table of all
past gradients in SAG and SAGA. For an elegant optimisation
framework with not much demand on memory usage, inspired
by SVRG we develop our proposed Stein-based method in the
next section.



III. PROPOSED FRAMEWORK

A. General Framework
We start with depicting the problem of interest: approx-

imate a probability distribution that is factorisable p (θ) ∝∏N
i=1 pi (θ). This kind of distribution is very popular in statis-

tical machine learning. Now we apply SVGD to approximate
p (θ) via a set of particles {θi}Mi=1. First, we sample

{
θ
(0)
i

}M
i=1

from an initial simple distribution q0 (θ). Then, we iteratively
update the particles as:

Φ∗ (·) =
1

M

M∑
m=1

[
k
(
θ
(t)
m , ·

)
∇
θ
(t)
m

log p
(
θ
(t)
m

)
+∇

θ
(t)
m
k
(
θ
(t)
m , ·

)]
,

(1)

θ
(t+1)
i = θ

(t)
i + εtΦ

∗
(
θ
(t)
i

)
, where θ(t)i is θi at the update step t.

Usually the number N depends on the dataset size. When
working with large-scale datasets, the evaluation of ∇θ log p (θ)

in (1) will be computationally expensive because ∇θ log p (θ) =∑N
i=1∇θ log pi (θ) (the equality holds due to the fact that

∇θ log p (θ) and ∇θ log p̃ (θ) are equal, where p̃ (θ) is an unnor-
malised version of p (θ)). As empirically shown in [7], SVGD
worked well even with as few particles as M = 100 and when
they increased M to 250 the performance did not noticeably
improve, thus the bottleneck in SVGD when working with
large datasets is indeed the gradient ∇θ log p (θ). In SVGD,
the authors mitigated this issue straightforwardly by using
mini-batch gradients to approximate the full batch gradient as
∇θ log p (θ) ≈ N

n

∑n
j=1∇θ log pij (θ). Although unbiased, this

estimator has high variance [8].
Inspired by SVRG, we propose Stein variational gradient

descent with variance reduction (SVGD-VR) as a novel and
substantial improvement to SVGD. In particular, our proposed
framework aims to reduce the variance in the estimate of
∇θ log p (θ). It works as follows. We periodically keep a
snapshot of the particles {θi}Mi=1 denoted as

{
θ̃i
}M
i=1

. For
example, we set the period to be T iterations, then after
every T iterations we take a snapshot of the current values of
particles θ̃ and use this checkpoint to update θ in the next T
iterations. Precisely, we estimate the full batch gradient using
mini-batch gradients modified with the gradients evaluated at
the checkpoint θ̃i’s as follows:

∇θ log p (θ) ≈ N

n

n∑
j=1

(
∇θ log pij (θ)−∇θ̃ log pij

(
θ̃
))

+

N∑
i=1

∇θ̃ log pi
(
θ̃
)
. (2)

The full batch gradient evaluated at the checkpoint particles
θ̃ (i.e. the last term in (2)) is only computed once every T
iterations (which is a hyperparameter) so the computational
cost is less expensive than the full batch approach.

There are two efficient ways to implement the variance
reduction technique in our framework. First, we store the
checkpoint particles θ̃ and the full batch gradient evaluated at
these particles

∑N
i=1∇θ̃ log pi

(
θ̃
)

, and we only update these
values every T iterations. Second, we store all stochastic
gradients evaluated at the checkpoint ∇θ̃ log pi

(
θ̃
)

for all
i ∈ {1, . . . , N} as well as their sum. The first way is more
memory-efficient because M is usually very small compared
to N , whereas the second way is more time-efficient because

Algorithm 1 Learning procedure of SVGD-VR for posterior
inference.
Input: Dataset D, prior p (θ), likelihood p (D | θ), initial
particles θ(0) drawn from q0 (θ), number of update iterations
L, number of variance reduction updates T , batch size n,
particle update rate ε ∈ [−η0, η0], kernel k (·, ·).
Output: Particles {θm}Mm=1 that approximate the target
posterior p (θ | D).

1: for l = 1, . . . , L do
2: θi ← θ

(l)
i , i = 1, . . . ,M .

3: µi ←
∑N
j=1∇θi log p (yj | xj , θi) , i = 1, . . . ,M .

4: θ̃
(0)
i ← θi, i = 1, . . . ,M .

5: for t = 1, . . . , T do
6: Randomly pick {jk}nk=1 ⊂ {1, . . . , N}.
7: ρ

(t−1)
i ← ∇

θ̃
(t−1)
i

log p
(
θ̃
(t−1)
i

)
+

N
n

∑n
k=1∇θ̃(t−1)

i

log p
(
yjk | xjk , θ̃

(t−1)
i

)
−

N
n

∑n
k=1∇θi log p (yjk | xjk , θi) + µi, i = 1, . . . ,M.

8: Φ∗
(
θ̃
(t−1)
i

)
←

1
M

∑M
m=1

[
k
(
θ̃
(t−1)
m , θ̃

(t−1)
i

)
ρ
(t−1)
m +∇

θ̃
(t−1)
m

k
(
θ̃
(t−1)
m , θ̃

(t−1)
i

)]
,

i = 1, . . . ,M.

9: θ̃
(t)
i ← θ̃

(t−1)
i + εl,tΦ

∗
(
θ̃
(t−1)
i

)
, i = 1, . . . ,M .

10: end for
11: θ

(l)
i ← θ̃

(T )
i , i = 1, . . . ,M .

12: end for
13: return θ

(L)
i , i = 1, . . . ,M .

we do not need to re-compute the mini-batch gradients eval-
uated at the checkpoint θ̃ within every T update iterations. In
all of our experiments in Section IV, we follow the first way.

B. Posterior Inference
To make our discussion more transparent, we consider a

very particular case of the target distribution that is a posterior
distribution, and our problem becomes Bayesian inference of
the posterior (see Algorithm 1). Let D =

{
(xi, yi) |Ni=1

}
be the

dataset of observations and θ be the concatenation of all latent
variables, then p (θ) is the prior, p (D | θ) is the likelihood,
and the posterior p (θ | D) is our target distribution. Assume
that the observations (x1, y1) , . . . , (xN , yN ) are conditionally
independent given the latent variables θ, the first gradient
term in (1) is derived as: ∇θ log p (θ | D) = ∇θ log p (θ) +∑N
i=1∇θ log p (yi | xi, θ) . Following the idea in (2), our pro-

posed unbiased variance-reduced mini-batch estimator for the
second term in the equation above is:

N

n

n∑
j=1

(
∇θ log p

(
yij | xij , θ

)
−∇θ̃ log p

(
yij | xij , θ̃

))
+

N∑
i=1

∇θ̃ log p
(
yi | xi, θ̃

)
.

IV. EXPERIMENTAL RESULTS

A. Binary Classification with Bayesian Logistic Regression

In this section, we conduct binary classification experiments
on four datasets downloaded from LIBSVM repository2: a9a,

2https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/



w8a, cod-rna, and covertype. Two selected baseline methods
are SVGD and SVRG. We employ two models: Bayesian
logistic regression (BLR) and logistic regression (LR). Our
proposed SVGD-VR and the baseline SVGD are applied to
BLR, whilst the remaining baseline SVRG is applied to LR.
For convenience, we might refer colloquially to this training
setting as ‘non-online’. To demonstrate the strong generalisa-
tion capability of SVGD-VR, we further conduct experiments
in the pseudo-online learning setting. Our implementation is
in Python with reference to the code of the authors of SVGD.

1) Model specifications: In both SVGD and SVGD-VR,
we follow the generative model described in [7] to use the
following BLR:

α ∼ Gamma (a, b) , w ∼ N
(
0, diag

(
α−1, . . . , α−1)) ,

p (y = 1 | x,w) =
1

1 + e−wTx
.

We apply SVGD and SVGD-VR to approximate the posterior
of weights w given dataset D = {(x1, y1) , . . . , (xN , yN )}. In our
experiments, we always fix the hyperparameters of the gamma
distribution as a = 1, b = 0.01, batch size as 128, number
of variance-reduced updates (i.e. variable T in Algorithm 1)
as 128, number of particles w as 100. We apply RMSProp
strategy with momentum factor fixed at 0.9 to compute the
update terms for the particles. In LR, as in [8], we use
stochastic gradient descent combined with SVRG technique
and denote this model as SVRG. The batch size and number
of variance-reduced updates are the same as BLR models.

2) Non-online binary classification: In both BLR and LR,
we perform 10-fold cross validation to tune the step size
(or learning rate) from the values

{
2−1, 2−2, . . . , 2−9

}
. Upon

obtaining the best step size or learning rate, we train and
test the models for 100 times, then compute the mean and
standard deviation of the accuracy. To illustrate the training
progress, we periodically evaluate the interim performance
of the models on test set during training besides recording
the final performance at the epoch whose accuracy in cross-
validation has been found as the best. We train the models for
100 epochs on cod-rna, whereas we train them for 20 epochs
on the remaining datasets. Furthermore, as the long training of
BLR proceeded on cod-rna, the standard deviations tended to
increase, so we apply exponential decay scheme for the step
size with the decay factor of 2−14. For the other datasets, step
size decay is not demanded.

First, we consider the variance reduction effect, which
means we will show that compared to SVGD our proposed
SVGD-VR does reduce the variance of the mini-batch esti-
mation. In each experiment, whenever we approximate a full
batch gradient of log p̃ (θ | D) by a mini-batch gradient (via
either traditional approach as in SVGD or variance reduction
approach as in SVGD-VR), we compute the standard deviation
of the approximation. Then, we calculate the Euclidean norm
of each standard deviation to represent this quantity by a single
value. Finally, we compute the ratio of the corresponding
norms of standard deviations in SVGD-VR and SVGD pe-
riodically during training (i.e. norm of standard deviation of
estimated gradient in SVGD-VR divided by norm of standard
deviation of estimated gradient in SVGD), and plot the results
in Fig. 1. We can see that our proposed SVGD-VR effectively
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Figure 1: The ratio of Euclidean norms of standard deviation of
gradient estimators used in SVGD-VR and SVGD as training
progresses in binary classification.

Dataset SVGD SVRG SVGD-VR

a9a 84.62± 0.08 82.84± 0.45 84.90 ± 0.07

w8a 98.51± 0.03 97.02± 0.12 98.78 ± 0.02

cod-rna 94.55± 0.39 92.57± 0.15 95.06 ± 0.14

covertype 75.53± 0.15 74.07± 0.31 75.66 ± 0.03

Table I: Accuracy (%) of non-online binary classification.

reduces the variance of the gradient estimation and this effect
is more apparent as the training progresses. For example, on
a9a, at the very first iteration, the ratio is equal to 23.07%. In
the first 5 epochs, it drops significantly and eventually reaches
0.25% after 20 epochs.

Second, we compute the accuracy of binary classification
and report the results in Fig. 2 and Table I. Note that the results
in Fig. 2 are only a part of our training that is best for visualisa-
tion purpose, whilst numerical results in Table I are reported at
the optimal epochs (previously found in cross-validation). As
illustrated in Fig. 2, our proposed SVGD-VR clearly converges
faster than the baseline methods. The two Stein methods (i.e.
SVGD and SVGD-VR) also improve the stability of training
(i.e. reducing the standard deviation of accuracy) compared to
SVRG, and among the two Stein methods our proposed one is
more stable with smaller accuracy standard deviation in most
cases. Finally, at convergence, our SVGD-VR outperforms the
other methods in the sense that it yields higher accuracy mean
and lower accuracy standard deviation on all chosen datasets
as shown in Table I.

3) Pseudo-online binary classification: In the pseudo-
online learning setting, we update each model using an in-
coming data point at a time (i.e. the batch size is 1). Before
updating a model, we predict the label of the incoming data
point using the current model and record the accumulative ac-
curacy. However, this setting is pseudo-online because we still
have access to the full dataset at the outset. Each experiment
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Figure 2: Results of non-online binary classification. The
shaded area around each line represents the standard deviation
of the accuracy. In each sub-figure, the left cyan vertical line
indicates the iteration at which SVGD-VR obtains 95% of its
accuracy reported in Table I, whilst the right cyan vertical
line indicates the iteration at which SVGD achieves similar
performance. SVRG is not able to reach this accuracy within
our visualisation window in any of these sub-figures.

Dataset SVGD SVRG SVGD-VR

a9a 81.44± 0.07 81.69± 0.69 84.45 ± 0.05

w8a 96.72± 0.02 96.00± 0.30 98.56 ± 0.02

cod-rna 92.61± 0.03 91.86± 0.12 95.05 ± 0.01

covertype 71.70± 0.03 73.47± 0.15 75.53 ± 0.02

Table II: Accuracy (%) of pseudo-online binary classification.

is run 10 times, then the mean and standard deviation of the
accuracy are recorded.

The results are shown in Fig. 3 and Table II. In these
experiments, we achieve similar behaviours to non-online
learning ones above when comparing 3 methods, i.e. our
proposed SVGD-VR apparently improves the learning with
faster convergence, higher accuracy mean and lower accuracy
standard deviation. However, the difference between SVGD-
VR and the baseline methods in Table II is more significant
than that in Table I, which intuitively emphasises the superior
generalisation ability of SVGD-VR compared with SVGD and
SVRG.

B. Regression with Bayesian Neural Networks

In this section, we conduct regression experiments on 10
datasets downloaded from OpenML and UCI Machine Learn-
ing Repository3 (kin8nm, yacht hydrodynamics, housing,
energy efficiency, concrete compressive strength, wine quality
red, combined cycle power plant, condition based maintenance
of naval propulsion plants, physicochemical properties of
protein tertiary structure, and year prediction MSD) with

3https://www.openml.org/d/189; https://archive.ics.uci.edu/
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Figure 3: Results of pseudo-online binary classification. The
shaded area around each line represents the standard deviation
of accuracy.

Bayesian neural network (BNN) whose posterior inference is
done by SVGD-VR and SVGD. Using the code of the authors
of SVGD as a reference, we utilise TensorFlow [29] in our
implementation.

1) Model specifications: Our BNN architecture is based on
the settings presented in [30], [7]. In particular, let the dataset
be D = {(xn, yn)}Nn=1, where N is the total number of data
points, xn ∈ Rd is a feature vector and yn ∈ R is a response
variable. We might also denote the dataset as D = (X,Y ),
where X is an N × d matrix consisting of all feature vectors
xn, and Y is a vector consisting of all response variables yn.
Let fW (·) be a neural network parameterised by the weights
W, we assume that each response variable is computed as
yn = fW (xn) + en, where en is a noise variable drawn from
the Gaussian distribution N

(
0, γ−1

)
. In our experiments, the

network has one hidden layer and uses ReLU as the activation
function. Each element ofW follows the Gaussian distribution
N
(
0, λ−1

)
. Finally, we assume that γ and λ both follow the

same gamma distribution, i.e. Gamma (a0, b0). In total, the set
of our learnable parameters is θ , {W, γ, λ}, and SVGD and
SVGD-VR will learn a set of particles θ̂ that best mimics the
posterior p (θ | D) = p (W, γ, λ | D).
The likelihood of parameters θ given the dataset D is:

p (Y | X,W, γ) =

N∏
n=1

N
(
yn | fW (xn) , γ−1) .

The priors of W, γ and λ are respectively:

p (W | λ) =
∏
i

N
(
wi | 0, λ−1)

p (γ) = Gamma (γ | a0, b0)

p (λ) = Gamma (λ | a0, b0) .

Then, the posterior of parameters θ given the dataset D is:

p (W, γ, λ | D) ∝ p (Y | X,W, γ) p (W | λ) p (γ) p (λ) .

In all experiments, we fix the step size ε = 0.001, a0 = 1 and
b0 = 0.1 as in [7]. For other settings, we set the batch size as
128 (and 1024 for year), number of hidden units as 64 (and
128 for protein and year), number of SVGD updates as 2048



Dataset Ratio of Standard Deviations
Minimum Median Maximum

yacht 4.38% 13.50% 38.54%

housing 7.86% 24.81% 33.60%

energy 4.95% 14.21% 27.63%

concrete 4.91% 9.61% 17.04%

wine 5.44% 15.62% 29.43%

kin8nm 2.99% 4.01% 13.01%

power 3.19% 4.97% 24.28%

naval 6.10% 22.49% 51.62%

Table III: Statistics of the average ratios of norm of standard
deviation of gradient estimators in SVGD-VR and SVGD in
regression with Bayesian neural networks.

(and 4096 for year), number of variance-reduced updates as 8,
number of particles as 32. Note that in our proposed SVGD-
VR, the number of SVGD updates and the number of variance-
reduced updates are respectively L and T in Algorithm 1.

2) Variance reduction effect: We now conduct experiments
to compare the variances of the mini-batch gradient estimators
in SVGD and our proposed SVGD-VR. In particular, we
train both models in regression task on eight datasets. In
each experiment, whenever we approximate a full gradient of
log p̃ (θ | D) by a mini-batch gradient (via either traditional
approach as in SVGD or variance reduction approach as
in SVGD-VR) we compute the standard deviation of the
approximation. As each gradient of log p̃ (θ | D) is a vector,
its standard deviation is also a vector, thus we calculate the
Euclidean norm of its standard deviation to represent this
quantity by a single value. Finally, we compute the ratio of
the corresponding norms of standard deviations in SVGD-VR
and SVGD periodically during training (i.e. norm of standard
deviation of estimated gradient in SVGD-VR divided by norm
of standard deviation of estimated gradient in SVGD). In
Table III, we report the minimum, maximum and median
values of the ratios across all training iterations in each
dataset. We can see that as expected our proposed SVGD-VR
effectively reduces the variance of the gradient estimation on
all eight chosen datasets. The variance reduction effect is most
prominent on concrete, kin8nm, and power datasets since the
norm of standard deviation of the estimated gradient in SVGD-
VR is less than 10% of the norm of standard deviation of the
estimated gradient in SVGD for at least half of the training
time (i.e. the medians are all less than 10% on these datasets).
In the entire training on all eight datasets, our proposed SVGD-
VR in the worst case scenario can still reduce about half of
the norm of the standard deviation of the estimated gradient
(i.e. maximum value of 51.62% on naval).

Note that these experiments are computationally expensive
because we need to compute the full batch gradient and all
possible mini-batch gradients. Thus, we did not utilise the two
largest datasets (i.e. protein and year) in these experiments.

3) Regression performance comparison: In this part, we
present the experiments to compare the regression performance
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Figure 4: Root-mean-square error evaluated on the test set
during training on 10 chosen datasets. The shaded area around
each line represents the standard deviation of the root-mean-
square error.

of the BNN employed with our proposed SVGD-VR and with
the baseline SVGD via two metrics: average root-mean-square
error (RMSE) of the test prediction and average log-likelihood
given the test data. To compute the average performance, for
year we repeat each experiment 20 times, whilst the number
of trials on the remaining nine datasets is 50 (note that in [7]
the authors only ran once on year, five times on protein, and
20 times on the remaining datasets). To illustrate the training
progress, we periodically evaluate the interim performance of
the models on the test set during training (see Fig. 4 and Fig.
5) besides recording the final performance after the training
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Figure 5: Log-likelihood evaluated on the test set during
training on 10 chosen datasets. The shaded area around each
line represents the standard deviation of the log-likelihood.

has finished (see Tables IV and V). Note that in Fig. 4 and Fig.
5, for fair comparison, we do take into account the fact that
in SVGD-VR there are T variance-reduced iterations inside
each SVGD update. The x-axes in these figures represent the
SVGD update iterations in the baseline SVGD method. That
means, suppose that an interim performance of SVGD-VR is
evaluated after lth SVGD update iteration and tth variance-
reduced iteration, that point is plotted with the horizontal
coordinate of (l × T + t). This conversion guarantees that
both models are fed with the same amount of training data
points at any point of comparison. It is worth pointing out
that the results in Fig. 4 and Fig. 5 are only a part of the
training that is best for visualisation, whilst numerical results

Dataset Average Test RMSE Percentage of
SVGD SVGD-VR Improvement

yacht 0.871± 0.065 0.769 ± 0.027 11.71%

housing 2.394 ± 0.050 2.408± 0.032 −0.58%

energy 1.391± 0.027 1.284 ± 0.012 7.69%

concrete 5.734± 0.063 5.304 ± 0.044 7.50%

wine 0.624± 0.002 0.599 ± 0.003 4.01%

kin8nm 0.118± 0.001 0.085 ± 0.000 27.97%

power 4.391± 0.017 4.309 ± 0.005 1.87%

naval 0.006± 0.000 0.004 ± 0.000 33.33%

protein 2.054± 0.043 2.004 ± 0.022 2.43%

year 9.320± 0.049 8.915 ± 0.026 4.35%

Table IV: Root-mean-square error in regression with Bayesian
neural network on 10 chosen datasets.

Dataset Average Test Log-Likelihood Percentage of
SVGD SVGD-VR Improvement

yacht −1.401± 0.076 −1.259 ± 0.027 10.14%

housing −2.489 ± 0.008 −2.492± 0.007 −0.12%

energy −1.746± 0.019 −1.666 ± 0.010 4.58%

concrete −3.158± 0.011 −3.072 ± 0.009 2.72%

wine −0.946± 0.004 −0.901 ± 0.005 4.76%

kin8nm 0.724± 0.009 1.044 ± 0.005 44.20%

power −2.906± 0.004 −2.888 ± 0.001 0.62%

naval 3.714± 0.018 4.104 ± 0.021 10.50%

protein −2.146± 0.016 −2.121 ± 0.011 1.16%

year −3.634± 0.005 −3.591 ± 0.006 1.18%

Table V: Log-likelihood in regression with Bayesian neural
network on 10 chosen datasets.

in Tables IV and V are reported after the training has finished.
From Fig. 4 and Fig. 5, we can see that on all 10 datasets

our proposed SVGD-VR yields faster convergence with re-
spect to the update iteration. Except for housing, SVGD-
VR maintains its leading performance as training progresses.
On some datasets (such as yacht, energy, concrete, power,
protein), more stable training is also observed in SVGD-VR
with the standard deviation of RMSE or log-likelihood being
consistently smaller than that of SVGD.

In Tables IV and V, regarding the mean values, our proposed
SVGD-VR clearly outperforms the baseline SVGD on 9
over 10 chosen datasets. When one takes into account the
standard deviation (which is somehow related to the stability
of the performance of a model after trained), SVGD-VR again
outperforms SVGD on 8 over 10 datasets. The last columns
in these tables show the percentage of improvement, which
is computed as the difference of the mean scores of SVGD-
VR and SVGD divided by the mean score of SVGD. This
method quantifies the relative performance boost when using
our proposed SVGD-VR compared with the baseline SVGD.



Except for housing, considering the RMSE our SVGD-VR en-
hances the performance up to 33.33% and not less than 1.87%,
and when it comes to log-likelihood the performance boost
is in the range of 0.62% to 44.20%. Particularly, on yacht,
kin8nm and naval datasets, the proposed model enhances the
performance by more than 10% in both evaluation metrics.
Finally, on housing (the only dataset on which SVGD-VR
underperforms the baseline SVGD in our experiments), our
SVGD-VR drops the performance by only small fractions of
0.58% (RMSE) and 0.12% (log-likelihood).

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a generic Bayesian infer-
ence method grounded in SVGD to approximate a probabilistic
distribution via samples. Our key contribution is the success
in mitigating the limitation of SVGD when working with
large datasets by introducing a method to tame the variance
of the mini-batch gradient estimator. In particular, we have
proposed a simple yet effective way to derive an unbiased
variance-reduced mini-batch gradient estimator for the term
related to the distribution evaluated on the full dataset. Our
method is inspired by SVGD and SVRG, and it also enjoys
their advantages. Hence, our model is an effective framework
for generic probabilistic inference with large-scale datasets.
Furthermore, our model provides faster convergence, more
stable training, and more robust nature to the batch size (it
works well even with batch size of 1).

Via experiments on 14 datasets, we have empirically demon-
strated the merits of our approach in the context of binary
classification problem and its pseudo-online learning setting
with Bayesian logistic regression, and regression problem with
Bayesian neural network. Lastly, the proposed method is a
generic methodology for probabilistic inference and applicable
to a much wider set of problems such as joint distribution
inference in Markov random fields or Bayesian networks.
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