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Abstract—In the future, artificial learning agents are likely to
become increasingly widespread in our society. They will interact
with both other learning agents and humans in a variety of
complex settings including social dilemmas. We consider the
problem of how an external agent can promote cooperation
between artificial learners by distributing additional rewards
and punishments based on observing the learners’ actions. We
propose a rule for automatically learning how to create the
right incentives by considering the players’ anticipated parameter
updates. Using this learning rule leads to cooperation with
high social welfare in matrix games in which the agents would
otherwise learn to defect with high probability. We show that
the resulting cooperative outcome is stable in certain games
even if the planning agent is turned off after a given number
of episodes, while other games require ongoing intervention to
maintain mutual cooperation. However, even in the latter case,
the amount of necessary additional incentives decreases over time.

I. INTRODUCTION

Social dilemmas highlight conflicts between individual and
collective interests. Cooperation allows for better outcomes
for all participants, but individual participants are tempted to
increase their own payoff at the expense of others. Selfish
incentives can therefore destabilize the socially desirable
outcome of mutual cooperation and often lead to outcomes
that make everyone worse off [28].

Cooperation often emerges due to direct reciprocity [26] or
indirect reciprocity [18]. However, even if these mechanisms
are not sufficient on their own, humans are often able to
establish cooperation by changing the structure of the social
dilemma. This is often referred to as mechanism design. For
instance, institutions such as the police and the judicial system
incentivize humans to cooperate in the social dilemma of
peaceful coexistence, and have succeeded in dramatically
reducing rates of violence [20].

Studies of social dilemmas have traditionally focused on
the context of human agents [5], [11]. However, in the future,
artificial learning agents will likely be increasingly widespread
in our society, and be employed in a variety of economically
relevant tasks. In that case, they will interact both with
other artificial agents and humans in complex and partially
competitive settings.

This raises the question of how we can ensure that artificial
agents will learn to navigate the resulting social dilemmas
productively and safely. Failing to learn cooperative policies

would lead to socially inefficient or even disastrous outcomes.
In particular, the escalation of conflicts between artificial
agents (or between artificial agents and humans) may pose a
serious security risk in safety-critical systems. The behaviour
of artificial agents in cooperation problems is thus of both
theoretical and practical importance.

In this work, we will examine how mechanism design
can promote beneficial outcomes in social dilemmas among
artificial learners. We consider a setting with N agents in
a social dilemma and an additional planning agent that can
distribute (positive or negative) rewards to the players after
observing their actions, and aims to guide the learners to a
socially desirable outcome (as measured by the sum of rewards).

We derive a learning rule that allows the planning agent to
learn how to set the additional incentives by looking ahead at
how the agents will update their policy parameter in the next
learning step. We also extend the method to settings in which
the planning agent does not know what internal parameters
the other agents use and does not have direct access to the
opponents’ policy.

We evaluate the learning rule on several different matrix
game social dilemmas. The planning agent learns to success-
fully guide the learners to cooperation with high social welfare
in all games, while they learn to defect in the absence of a
planning agent. We show that the resulting cooperative outcome
is stable in certain games even if the planning agent is turned off
after a given number of episodes. In other games, cooperation
is unstable without continued intervention. However, even in
the latter case, we show that the amount of necessary additional
rewards decreases over time.

II. RELATED WORK

The study of social dilemmas has a long tradition in game
theory, theoretical social science, and biology. In particular,
there is a substantial body of literature that fruitfully employs
matrix games to study how stable mutual cooperation can
emerge [2]. Key mechanisms that can serve to stabilize the
socially preferred outcome of mutual cooperation include
direct reciprocity [26], indirect reciprocity [18], and norm
enforcement [1]. [3] examine how cooperation can be stabilized
via supplemental payments from an external party.

Our work is inspired by the field of mechanism design,
pioneered by [30], which aims to design economic mechanisms
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and institutions to achieve certain goals, most notably social
welfare or revenue maximization. [22] studies how informal
and formal incentives for cooperative behaviour can prevent a
tragedy of the commons. [16] considers a setting in which an
interested party can commit to non-negative monetary transfers,
and studies the conditions under which desirable outcomes can
be implemented with a given amount of payment. Mechanism
design has also been studied in the context of computerized
agents [29] and combined with machine learning techniques
[17].

We also draw on the rich literature on multi-agent reinforce-
ment learning. It is beyond the scope of this work to review all
relevant methods in multi-agent reinforcement learning, so we
refer the reader to existing surveys on the subject [4], [10], [27].
However, we note that most work in multi-agent reinforcement
learning considers coordination or communication problems in
the fully cooperative setting, where the agents share a common
goal [7], [19].

As an exception, [12] study the learned behaviour of
deep Q-networks in a fruit-gathering game and a Wolfpack
hunting game that represent sequential social dilemmas. [25]
successfully train agents to play Pong with either a fully
cooperative, a fully competitive, or a mixed cooperative-
competitive objective. [6] introduce a learning algorithm that
uses novel mechanisms for generating and acting on signals
to learn to cooperate with humans and with other machines in
iterated matrix games. Finally, [14] propose a centralized actor-
critic architecture that is applicable to both the fully cooperative
as well as the mixed cooperative-competitive setting.

However, these methods assume a given set of opponent
policies as given in that they do not take into account how
one’s actions affect the parameter updates on other agents.
In contrast, [8] introduce Learning with Opponent-Learning
Awareness (LOLA), an algorithm that explicitly attempts to
shape the opponent’s anticipated learning. The LOLA learning
rule includes an additional term that reflects the effect of the
agent’s policy on the parameter update of the other agents
and inspired the learning rule in this work. However, while
LOLA leads to emergent cooperation in an iterated Prisoner’s
dilemma, the aim of LOLA agents is to shape the opponent’s
learning to their own advantage, which does not always promote
cooperation.

III. BACKGROUND
A. Markov games

We consider partially observable Markov games [13] as a
multi-agent extension of Markov decision processes (MDPs).
An N -player Markov game M is defined by a set of states S ,
an observation function O : S × {1, . . . , N} → Rd specifying
each player’s d-dimensional view, a set of actions A1, . . . ,AN
for each player, a transition function T : S×A1×· · ·×AN →
P(S), where P(S) denotes the set of probability distributions
over S, and a reward function ri : S × A1 × · · · × AN → R
for each player. To choose actions, each player uses a policy
πi : Oi → P(Ai), where Oi = {oi | s ∈ S, oi = O(s, i)} is
the observation space of player i. Each player in a Markov

TABLE I
PAYOFF MATRIX OF A SYMMETRIC 2-PLAYER MATRIX GAME. A CELL OF
X,Y REPRESENTS A UTILITY OF X TO THE ROW PLAYER AND Y TO THE

COLUMN PLAYER.

C D
C R,R S, T
D T, S P, P

game aims to maximize its discounted expected return Ri =∑T
t=0 γ

trti , where γ is a discount factor and T is the time
horizon.

B. Policy gradient methods

Policy gradient methods [24] are a popular choice for a
variety of reinforcement learning tasks. Suppose the policy πθ
of an agent is parametrized by θ. Policy gradient methods aim
to maximize the objective J(θ) = Es∼pπθ ,a∼πθ [R] by updating
the agent’s policy steps in the direction of ∇θJ(θ).

Using the policy gradient theorem [23], we can write the
gradient as follows:

∇θJ(θ) = Es∼pπθ ,a∼πθ [∇θ log πθ(a|s) Qπθ (s, a)] (1)

where pπθ is the state distribution and Qπθ (s, a) = E[R|st =
s, at = a].

C. Matrix game social dilemmas

A matrix game is the special case of two-player perfectly
observable Markov games with |S| = 1, T = 1 and A1 =
A2 = {C,D}. That is, two actions are available to each player,
which we will interpret as cooperation and defection.

Table I shows the generic payoff structure of a (symmetric)
matrix game. Players can receive four possible rewards: R
(reward for mutual cooperation), P (punishment for mutual
defection), T (temptation of defecting against a cooperator),
and S (sucker outcome of cooperating against a defector).

A matrix game is considered a social dilemma if the
following conditions hold [15]:

1) Mutual cooperation is preferable to mutual defection:
R > P

2) Mutual cooperation is preferable to being exploited: R >
S

3) Mutual cooperation is preferable to an equal probability
of unilateral defection by either player: R > T+S

2
4) The players have some reason to defect because exploit-

ing a cooperator is preferable to mutual cooperation
(T > R) or because mutual defection is preferable to
being exploited (P > S).

The last condition reflects the mixed incentive structure of
matrix game social dilemmas. We will refer to the motivation
to exploit a cooperator (quantified by T −R) as greed and to
the motivation to avoid being exploited by a defector (P − S)
as fear. As shown in Table II, we can use the presence or
absence of greed and fear to categorize matrix game social
dilemmas.



TABLE II
THE THREE CANONICAL EXAMPLES OF MATRIX GAME SOCIAL DILEMMAS
WITH DIFFERENT REASONS TO DEFECT. IN CHICKEN, AGENTS MAY DEFECT

OUT OF GREED, BUT NOT OUT OF FEAR. IN STAG HUNT, AGENTS CAN
NEVER GET MORE THAN THE REWARD OF MUTUAL COOPERATION BY

DEFECTING, BUT THEY MAY STILL DEFECT OUT OF FEAR OF A
NON-COOPERATIVE PARTNER. IN PRISONER’S DILEMMA (PD), AGENTS

ARE MOTIVATED BY BOTH GREED AND FEAR SIMULTANEOUSLY.

Chicken C D
C 3, 3 1, 4
D 4, 1 0, 0

Stag Hunt C D
C 4, 4 0, 3
D 3, 0 1, 1

PD C D
C 3, 3 0, 4
D 4, 0 1, 1

IV. METHODS

A. Amended Markov game including the planning agent

Suppose N agents play a Markov game described by S,
A1 . . .AN , r1, . . . , rn, O and T . We introduce a planning
agent that can hand out additional rewards and punishments to
the players and aims to use this to ensure the socially preferred
outcome of mutual cooperation.

To do this, the Markov game can be amended as follows.
We add another action set Ap ⊂ RN that represents which ad-
ditional rewards and punishments are available to the planning
agent. Based on its observation Op : S × {1, . . . , N} → Rd
and the other player’s actions a1, . . . , an, the planning agent
takes an action ap = (rp1 , . . . , r

p
N ) ∈ Ap ⊂ RN .1 The new

reward function of player i is r(tot)i = ri + rpi , i.e. the sum
of the original reward and the additional reward, and we
denote the corresponding value functions as V tot

i (θ1, . . . , θN ) =
Vi(θ1, . . . , θN ) + V pi (θ1, . . . , θN ). Finally, the transition func-
tion T formally receives ap as an additional argument, but does
not depend on it (T (s, a1, . . . , aN , ap) = T (s, a1, . . . , aN )).

B. The learning problem

Let θ1, . . . , θN and θp be parametrizations of the player’s
policies π1, . . . , πN and the planning agent’s policy πp.

The planning agent aims to maximize the total social welfare
V (θ1, . . . , θN ) :=

∑N
i=1 Vi(θ1, . . . , θN ), which is a natural

metric of how socially desirable an outcome is. Note that
without restrictions on the set of possible additional rewards
and punishments, i.e. Ap = RN , the planning agent can always
transform the game into a fully cooperative game by choosing
rpi =

∑N
j=1,j 6=i rj .

However, it is difficult to learn how to set the right incentives
using traditional reinforcement learning techniques. This is
because V (θ1, . . . , θN ) does not depend directly on θp. The
planning agent’s actions only affect V (θ1, . . . , θN ) indirectly
by changing the parameter updates of the learners. For this

1Technically, we could represent the dependence on the other player’s actions
by introducing an extra step after the regular step in which the planning agent
chooses additional rewards and punishments. However, for simplicity, we will
discard this and treat the player’s actions and the planning action as a single
step. Formally, we can justify this by letting the planning agent specify its
action for every possible combination of player actions.

reason, it is vital to explicitly take into account how the other
agents’ learning changes in response to additional incentives.

This can be achieved by considering the next learning step
of each player (cf. [8]). We assume that the learners update
their parameters by simple gradient ascent:

∆θi = ηi∇iV tot
i (θ1, . . . , θN )

= ηi(∇iVi(θ1, . . . , θN ) +∇iV pi (θ1, . . . , θN ))
(2)

where ηi is step size of player i and ∇i := ∇θi is the gradient
with respect to parameters θi.

Instead of optimizing V (θ1, . . . , θN ), the planning agent
looks ahead one step and maximizes V (θ1 + ∆θ1, . . . , θN +
∆θN ). Assuming that the parameter updates ∆θi are small, a
first-order Taylor expansion yields

V (θ1 + ∆θ1, . . . , θN + ∆θN ) ≈

≈ V (θ1, . . . , θN ) +

N∑
i=1

(∆θi)
T∇iV (θ1, . . . , θN )

(3)

We use a simple rule of the form ∆θp = ηp∇pV (θ1 +
∆θ1, . . . , θN + ∆θN ) to update the planning agent’s policy,
where ηp is the learning step size of the planning agent.
Exploiting the fact that V (θ1, . . . , θN ) does not depend directly
on θp, i.e.∇pV (θ1, . . . , θN ) = 0, we can calculate the gradient:

∇pV (θ1 + ∆θ1, . . . , θN + ∆θN ) ≈

≈
N∑
i=1

∇p(∆θi)T∇iV (θ1, . . . , θN )

=

N∑
i=1

ηi(∇p∇iV tot
i (θ1, . . . , θN ))T∇iV (θ1, . . . , θN )

=

N∑
i=1

ηi(∇p∇iV pi (θ1, . . . , θN ))T∇iV (θ1, . . . , θN )

(4)

since ∇iVi(θ1, . . . , θN ) does not depend on θp either.

C. Policy gradient approximation

If the planning agent does not have access to the ex-
act gradients of V pi (θ1, . . . , θN ) and V (θ1, . . . , θN ), we
use policy gradients as an approximation. Let τ =
(s0,a

0, a0p, r
0 . . . , sT ,a

T, aTp , r
T) be a state-action trajectory

of horizon T +1, where at = (at1, . . . , a
t
N ), rt = (rt1, . . . , r

t
N ),

and atp = (rt1,p, . . . , r
t
N,p) are the actions taken and re-

wards received in time step t. Then, the episodic return
R0
i (τ) =

∑T
t=0 γ

trti and R0
i,p(τ) =

∑T
t=0 γ

trti,p approxi-
mate Vi(θ1, . . . , θN ) and V pi (θ1, . . . , θN ), respectively. Simi-
larly, R0(τ) =

∑N
i=0R

0
i (τ) approximates the social welfare

V (θ1, . . . , θN ).
We can now calculate the gradients using the policy gradient

theorem:

∇iVi(θ1, . . . , θN ) ≈ ∇iE[R0
i (τ)]

= E[∇i log πi(τ)R0
i (τ)]

(5)

The other gradients ∇iV (θ1, . . . , θN ) and
∇p∇iV pi (θ1, . . . , θN ) can be approximated in the same



way. This yields the following rule for the parameter update
of the planning agent:

∆θp = ηp

N∑
i=1

ηi
(
E
[
∇p log πp(τ)∇i log πi(τ)R0

i,p(τ)
])T

·E
[
∇i log πi(τ)R0(τ)

]
(6)

D. Opponent modeling

Equations 4 and 6 assume that the planning agent has access
to each agent’s internal policy parameters and gradients. This
is a restrictive assumption. In particular, agents may have
an incentive to conceal their inner workings in adversarial
settings. However, if the assumption is not fulfilled, we can
instead model the opponents’ policies using parameter vectors
θ̂1, . . . , θ̂N and infer the value of these parameters from the
player’s actions [21]. A simple approach is to use a maximum
likelihood estimate based on the observed trajectory:

θ̂i = arg max
θ
′
i

T∑
t=0

log πθ′i
(ait|st). (7)

Given this, we can substitute θ̂i for θi in equation 4.

E. Cost of additional rewards

In real-world examples, it may be costly to distribute addi-
tional rewards or punishment. We can model this cost by chang-
ing the planning agent’s objective to V (θ1 + ∆θ1, . . . , θN +
∆θN )−α||V p(θ1, . . . , θN ; θp)||2, where α is a cost parameter
and V p = (V p1 , . . . , V

p
N ). The modified update rule is (using

equation 4)

∆θp = ηp


N∑
i=1

ηi(∇p∇iV
p
i (θ1, . . . , θN ))T∇iV (θ1, . . . , θN )

−α∇p||V p(θ1, . . . , θN ; θp)||2


(8)

V. EXPERIMENTAL SETUP

In our experiments, we consider N = 2 learning agents
playing a matrix game social dilemma (MGSD) as outlined in
section III-C. The learners are simple agents with a single policy
parameter θ that controls the probability of cooperation and
defection: P (C) = exp(θ)

1+exp(θ) , P (D) = 1
1+exp(θ) . The agents

use a centralized critic [14] to learn their value function.
The agents play 4000 episodes of a matrix game social

dilemma. We fix the payoffs R = 3 and P = 1, which allows
us to describe the game using the level of greed and fear. We
will consider three canonical matrix game social dilemmas as
shown in Table III.

The planning agent’s policy is parametrized by a single layer
neural network. We limit the maximum amount of additional
rewards or punishments (i.e. we restrict Ap to vectors that
satisfy maxNi=1 |r

p
i | ≤ c for a given constant c). Unless specified

otherwise, we use a step size of 0.01 for both the planning
agent and the learners, use cost regularisation (Equation 8)
with a cost parameter of 0.0002, set the maximum reward to 3,
and use the exact value function. In some experiments, we also

TABLE III
LEVELS OF FEAR AND GREED AND RESULTING TEMPTATION (T ) AND

SUCKER (S) PAYOFFS IN THREE MATRIX GAMES. NOTE THAT THE LEVEL OF
GREED IN CHICKEN HAS TO BE SMALLER THAN 1 BECAUSE IT IS

OTHERWISE NOT A SOCIAL DILEMMA (R > T+S
2

IS NOT FULFILLED).

Game Greed Fear T S
Prisoner’s Dilemma 1 1 4 0

Chicken 0.5 -1 3.5 2
Stag Hunt -1 1 2 0

require that the planning agent can only redistribute rewards,
but cannot change the total sum of rewards (i.e. Ap is restricted
to vectors that satisfy

∑N
i=1 r

p
i = 0). We refer to this as the

revenue-neutral setting.

VI. RESULTS

In this section, we summarize the experimental results.2 We
aim to answer the following questions:
• Does the introduction of the planning agent succeed in

promoting significantly higher levels of cooperation?
• What qualitative conclusions can be drawn about the

amount of additional incentives needed to learn and
maintain cooperation?

• In which cases is it possible to achieve cooperation even
when the planning agent is only active for a limited
timespan?

• How does a restriction to revenue-neutrality affect the
effectiveness of mechanism design?

Figure 1a illustrates that the players learn to cooperate with
high probability if the planning agent is present, resulting in
the socially preferred outcome of stable mutual cooperation.
Thus the planning agent successfully learns how to distribute
additional rewards to guide the players to a better outcome.

Figure 1b shows how the planning agent rewards or punishes
the player conditional on each of the four possible outcomes.
At first, the planning agent learns to reward cooperation, which
creates a sufficient incentive to cause the players to learn to
cooperate. In Figure 1c we show how this changes the level
of fear and greed in the modified game. The levels of greed
and fear soon drop below zero, which means that the modified
game is no longer a social dilemma.

Note that rewarding cooperation is less costly than punishing
defection if (and only if) cooperation is the less common action.
After the player learns to cooperate with high probability, the
planning agent learns that it is now less costly to punish
defection and consequently stops handing out additional
rewards in the case of mutual cooperation outcome. As shown
in Figure 1d, the amount of necessary additional rewards
converges to 0 over time as defection becomes increasingly
rare.

Table IV summarizes the results of all three canonical social
dilemmas. Without adaptive mechanism design, the learners
fail to achieve mutual cooperation in all cases. By contrast, if

2Source code available at https://github.com/tobiasbaumann1/Adaptive
Mechanism Design



(a) Probability of cooperation (b) Additional rewards for player 1

(c) Fear and greed in the modified game (d) Cumulative additional rewards

Fig. 1. Mechanism design over 4000 episodes of a Prisoner’s Dilemma. The initial probability of cooperation is 0.25 for each player. Shown is (a) the
probability of cooperation over time, (b) the additional reward for the first player in each of the four possible outcomes, (c) the resulting levels of fear and
greed including additional rewards, and (d) the cumulative amount of distributed rewards.

the planning agent is turned on, the learners learn to cooperate
with high probability, resulting in a significantly higher level
of social welfare.

The three games differ, however, in whether the cooperative
outcome obtained through mechanism design is stable even
when the planning agent is turned off. Without additional
incentives, mutual cooperation is not a Nash equilibrium in
the Prisoner’s Dilemma and in Chicken [9], which is why one
or both players learn to defect again after the planning agent
is turned off. These games thus require continued (but only
occasional) intervention to maintain cooperation. By contrast,
mutual cooperation is a stable equilibrium in Stag Hunt [9].
As shown in Table IV, this means that long-term cooperation
in Stag Hunt can be achieved even if the planning agent is
only active over a limited timespan (and thus at limited cost).

Table V compares the performance of different variants
of the learning rule. Interestingly, restricting the possible
planning actions to redistribution leads to lower probabilities
of cooperation in Prisoner’s Dilemma and Stag Hunt, but not
in Chicken. We hypothesize that this is because in Chicken,
mutual defection is not in the individual interest of the players
anyway. This means that the main task for the planning agent
is to prevent (C,D) or (D,C) outcomes, which can be easily

TABLE IV
COMPARISON OF THE RESULTING LEVELS OF COOPERATION AFTER 4000

EPISODES, A) WITHOUT MECHANISM DESIGN, B) WITH MECHANISM
DESIGN, AND C) WHEN TURNING OFF THE PLANNING AGENT AFTER 4000
EPISODES AND RUNNING ANOTHER 4000 EPISODES. EACH CELL SHOWS

THE MEAN AND STANDARD DEVIATION OF TEN TRAINING RUNS. P (C,C)
IS THE PROBABILITY OF MUTUAL COOPERATION AT THE END OF TRAINING

AND V IS THE EXPECTED SOCIAL WELFARE THAT RESULTS FROM THE
PLAYERS’ FINAL ACTION PROBABILITIES. THE INITIAL PROBABILITY OF

COOPERATION IS 0.25 FOR EACH PLAYER.

Prisoner’s
Dilemma Chicken Stag Hunt

Greed 1 0.5 -1
Fear 1 -1 1

No
mech.
design

P (C,C)
0.004%
±0.001%

3.7%
±1.3%

0.004%
±0.002%

V
2.024
±0.003

5.44
±0.01

2.00
±0.00

With
mech.
design

P (C,C)
98.7%
±0.1%

99.0%
±0.1%

99.1%
±0.1%

V
5.975
±0.002

5.995
±0.001

5.964
±0.005

Turning
off

P (C,C)
0.48%
±0.4%

53.8%
±29.4%

99.6%
±0.0%

V
2.60
±0.69

5.728
±0.174

5.986
±0.002



TABLE V
RESULTING LEVELS OF COOPERATION AND AVERAGE ADDITIONAL

REWARDS (AAR) PER ROUND FOR DIFFERENT VARIANTS OF THE LEARNING
RULE. THE VARIANTS DIFFER IN WHETHER THEY USE THE EXACT VALUE

FUNCTION (EQUATION 4) OR AN ESTIMATE (EQUATION 6) AND IN
WHETHER THE SETTING IS REVENUE-NEUTRAL OR UNRESTRICTED.

Prisoner’s
Dilemma Chicken Stag Hunt

Greed 1 0.5 -1
Fear 1 -1 1

Exact V

P (C,C)
98.7%
±0.1%

99.0%
±0.1%

99.1%
±0.1%

AAR 0.77
±0.21

0.41
±0.02

0.45
±0.02

Exact V
Revenue-neutral

P (C,C)
91.4%
±1.0%

98.9%
±0.1%

69.2%
±45.3%

AAR 0.61
±0.04

0.31
±0.02

0.19
±0.11

Estimated V

P (C,C)
61.3%
±20.0%

52.2%
±18.6%

96.0%
±1.2%

AAR 3.31
±0.63

2.65
±0.31

4.89
±0.39

achieved by redistribution. By contrast, these outcomes are
fairly unattractive (in terms of individual interests) in Stag
Hunt, so the most effective intervention is to make (D,D)
less attractive and (C,C) more attractive, which is not feasible
by pure redistribution. Consequently, mechanism design by
redistribution works best in Chicken and worst in Stag Hunt.

Using an estimate of the value function leads to inferior
performance on all three games, both in terms of the resulting
probability of mutual cooperation and with respect to the
amount of distributed additional results. However, the effect is
by far least pronounced in Stag Hunt. This may be because
mutual cooperation is an equilibrium in Stag Hunt, which means
that a beneficial outcome can more easily arise even if the
incentive structure created by the planning agent is imperfect.

Finally, we note that the presented approach is also applicable
to settings with more than two players.3 We consider a multi-
player Prisoner’s Dilemma with N = 10 agents.4 Figure 2a
illustrates that, just as in the case of N = 2, the players learn
to cooperate with high probability if the planning agent is
present. By contrast, without mechanism design, the players
(unsurprisingly) converge to the socially undesirable outcome
of mutual defection. This shows that the presented approach
for learning how to distribute additional rewards scales easily
to multi-agent social dilemmas.

3Source code available in a separate repository at https://github.com/
tobiasbaumann1/Mechanism Design Multi-Player

4The payoffs are as follows: 3 if all players cooperate, 1 if all players defect,
4 if you are the only to defect, 0 if you are the only to cooperate. Payoffs of
intermediate outcomes, where some fraction of players cooperate, are obtained
by linear interpolation.

VII. CONCLUSIONS AND FUTURE WORK

We have presented a method for learning how to create
the right incentives to ensure cooperation between artificial
learners. Empirically, we have shown that a planning agent
that uses the proposed learning rule is able to successfully
guide the learners to the socially preferred outcome of mutual
cooperation in several different matrix game social dilemmas,
while they learn to defect with high probability in the absence
of a planning agent. The resulting cooperative outcome is stable
in certain games even if the planning agent is turned off after a
given number of episodes, while other games require continued
(but increasingly rare) intervention to maintain cooperation. We
also showed that restricting the planning agent to redistribution
leads to worse performance in Stag Hunt, but not in Chicken.

In the future, we would like to explore the limitations of
adaptive mechanism design in more complex environments,
particularly in games with more than two players, without
full observability of the players’ actions, and using opponent
modeling (cf. Equation 7). Future work could also consider
settings in which the planning agent aims to ensure cooperation
by altering the dynamics of the environment or the players’
action set (e.g. by introducing mechanisms that allow players
to better punish defectors or reward cooperators).

Finally, under the assumption that artificial learners will
play vital roles in future society, it is worthwhile to develop
policy recommendations that would facilitate mechanism design
for these agents (and the humans they interact with), thus
contributing to a cooperative outcome in potential social
dilemmas. For instance, it would be helpful if the agents were
set up in a way that makes their intentions as transparent as
possible and allows for simple ways to distribute additional
rewards and punishments without incurring large costs.
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