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Abstract—This paper focuses on solving the adaptive con-
sensus tracking problem of uncertain nonlinear strict-feedback
multiagent systems with switching directed topology. From a
viewpoint of switched system, the neighborhood synchronization
error can be regarded as a nonlinear switching system and
the switching signal is caused by the change of the topology,
then an appropriate common Lyapunov function is constructed
for the whole multiagent system with switching topology. By
using the radial basis function neural networks (RBFNNs), the
unknown nonlinear functions are compensated during the back-
stepping design procedure. Especially, instead of the common
first-order filter in the conventional dynamic surface control
(CDSC) technique, a novel nonlinear observer is presented to
improve the control performance. A new common adaptive neural
consensus control protocol is proposed for such systems based on
the structure property of RBFNNs and the common Lyapunov
function method. The developed control scheme guarantees that
the consensus tracking errors between all followers’ outputs and
the output of leader can converge to a small neighborhood of
the origin in the presence of switching directed communication
topology. Finally, two illustrative examples are provided to show
the effectiveness of the proposed consensus control methodology.

Index Terms—nonlinear multiagent system, switching topology,
adaptive consensus control, neural network, dynamic surface
control

I. INTRODUCTION

In the past decade, the nonlinear multiagent system has been
one of the major concerns for researchers due to its wide appli-
cations in various fields such as unmanned air vehicles, mobile
robots, and biological systems [1]- [2]. As a fundamental issue
for the coordination of multiagent systems, consensus control
thus has become a hot topic of research. Most of the available
work focused on the first- or second-order multiagent systems
[3]- [4], but an increasing attention has been paid to nonlinear
multiagent systems with high-order dynamics since they are
more suitable to describe the real-life systems. In particular,
the well-known backstepping technique has been extended
to the distributed control design for nonlinear multiagent
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systems [5]- [6]. Nevertheless, the repeated differentiation of
virtual control functions easily gives rise to the problem of
“explosion of complexity” during the process of backstepping
design [7]. Thus, by including a first-order filtering of the
virtual control function at each step, the CDSC method was
presented to solve this problem and applied to many kinds of
nonlinear systems [8]- [9]. Furthermore, the dynamic surface
design was extended and applied to solving the distributed
control problems of nonlinear multiagent systems [10]- [13].
Whereas it is worth noting that the derivatives of virtual
control functions bounded by some unknown constants in the
compact sets are not compensated during the CDSC design
procedure, thus the control performance degrades inevitably
to some extent.

On the other hand, it is requisite to point out that most of
the previous results focus on multiagent systems with fixed
communication topologies [3]- [6], [10]- [13]. Nevertheless,
for practical multiagent systems, their interaction topologies
are often unreliable because of the limited sensing region of
sensors or the effect of obstacles. So far, many efforts have
been made in solving consensus problems under switching
topologies [14]- [22]. As mentioned in [14], the consensus of
first-order multiagent systems with undirected topology can
be achieved by “jointly connectivity” over a time interval. The
results in [14] were extended to the directed information topol-
ogy. By constraining the time interval between the consecutive
switching, i.e., dwell time, a number of multiagent systems
with switching topology were studied in [15]- [19] and some
effective control protocols were presented for such systems.
Besides, the cases of Markovian switching topologies have
been addressed for several classes of multiagent systems in
[20] and [21]. However, in the real world, the switching mech-
anism of communication topology may be usually unknown or
too complicate to be used in the consensus analysis and control
design, such that it is significant and challenging to investigate
the case of switching topology under arbitrary switching.
In [22], a common Lyapunov function is proposed to deal
with the consensus problem of linear multiagent system under
directed networks with switching topology. Unfortunately, no
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enough attention has been paid to the problem of adaptive
distributed control for uncertain nonlinear multiagent systems
with arbitrary switching communication topology.

With the preceding motivation, we are devoted to solv-
ing the adaptive consensus tracking problem of uncertain
nonlinear strict-feedback multiagent systems with switching
directed topology. Compared with the existing results, the
main contributions of this paper are threefold: (1) It is the
first time to effectively solve the consensus control problem of
high-order strict-feedback nonlinear multiagent systems in the
presence of switching topology. (2)A viewpoint of switched
nonlinear system is exploited to investigate the consensus con-
trol problem of nonlinear multiagent systems with switching
communication topology, and a common Lyapunov function
is constructed to overcome the difficulties arising from the
change of directed communication topology, such that the
restriction on the information of switching topology can be
greatly relaxed. (3)A novel nonlinear filter is presented to
replace the common first-order filter, and to improve the
performance of the CDSC design.

II. PROBLEM FORMULATION

A. Graph theory

A high-order nonlinear multi-agent system which is com-
posed of N+1 agents including leader labeled as 0 and follow-
ers labeled as 1, 2, . . . , N is considered in this paper. Actually,
with the change of interactions among the agents in the graph,
there must exist the switching communication topologies. In
order to depict the switching topologies, a finite family of all
possible topologies is defined as Ḡ = {Ḡ1, Ḡ2, . . . , Ḡq} and
the set of index is described as Q = {1, 2, . . . , q}. For any
k ∈ Q, σ(t) = k means the topology Ḡσ(t) (or Ḡk) is activated
at time t for the multiagent system, where the switching signal
σ(t) : [0,+∞) → Q is a right continuous piecewise constant
function. Ḡk = {V̄, Ēk} with V̄ = {0, 1, . . . , N} and Ek denot-
ing the communication among N followers and one leader. For
a directed graph Ḡk, the direct edge ekij = (j, i) ∈ Ek means
that agent i can get information from agent j, not vice versa.
Denote N k

i = {j|ekij ∈ Ek} as the set of nodes with edges
coming to node i. Under the directed graph Ḡk, the leader’s
adjacency matrix is defined as Bk = diag{bk1 , bk2 , . . . , bkN}
with bki > 0 if the leader 0 ∈ N k

i and bki = 0 otherwise.
In order to describe the communication of the followers
separately, a subgraph of Ḡk is defined as Gk = {V, Ek},
where V = {1, . . . , N} denotes the set of N follower agents
and Ek is a set of edges which stands for the communication
between follower agents.Accordingly, the Laplacian matrix Lk
is defined as Lk = Dk −Ak, where Dk = diag{dk1 , . . . , dkN}
with dki =

∑
j∈Nk

i

akij and Ak = [akij ] ∈ RN×N defined as:

when ekij ∈ Ek , akij > 0; when ekij /∈ Ek, akij = 0.

B. Problem statement

Consider a nonlinear multiagent system consisting of a
leader labeled as 0 and N followers labeled as 1, 2, . . . , N , in

which the ith follower’s dynamics can be modeled as follows:
ẋi,m = gi,m(x̄i,m)xi,m+1 + fi,m(x̄i,m),

m = 1, . . . , ni − 1
ẋi,ni = gi,ni(x̄i,ni)ui + fi,ni(x̄i,ni)
yi = xi,1

(1)

where xi,m ∈ R,m = 1, 2, . . . , ni and yi ∈ R are the
states and the output of the ith agent, respectively; denote
x̄i,m = [xi,1, xi,2, . . . , xi,m]T ∈ Rm for m = 1, 2, . . . , ni and
let xi,ni+1 = ui. fi,m(x̄i,m) : Rm → R and gi,j : Rm → R
are unknown smooth functions. ui ∈ R is the control input
signal of the ith follower.

For the nonlinear multiagent systems (1) under switching
directed communication graphs, the control objective is to
design a distributed adaptive control protocol ui such that all
the outputs of followers yi can synchronize with the output
signal yr(t) of the leader within a certain error range. In other
words, the consensus tracking of the entire multiagent systems
can be achieved.

To attain the above control objective, some useful assump-
tions, definition and lemmas are introduced as follows.

Assumption 1. For ∀ m = 1, 2, . . . , ni, the signs of unknown
nonlinear functions gi,m(·), ∀i ∈ V are known, and there exist
unknown positive constants g∗i such that g∗i ≤ |gi,m(·)| <∞.
Without loss of generality, it is further assumed that g∗i ≤
gi,m(·) <∞.

Assumption 2. For the directed diagraph Ḡk, ∀k ∈ Q, the
ith follower can only receive its neighboring agents’ state
messages, and the directed graph Ḡk contains a spanning tree
with the leader designated as the root node.

Assumption 3. The leader’s output yr(t) and its derivatives
ẏr(t) and ÿr are continuous and bounded. Moreover, the output
of leader can be acquired by its neighboring agents only.

Definition 1 [23]. For the nonlinear multiagent systems (1)
under the directed switching topologies, the distributed con-
sensus tracking errors between the followers and the leader are
called to be cooperatively semiglobally uniformly ultimately
bounded (CSUUB) if for any yi(t0)−yr(t0) ∈ Ωi,0 with Ωi,0
being a given compact set, there exist constant ϵ > 0 and
time T (yi(t0)− yr(t0), ϵ), such that ∥y − yr∥2 ≤ ϵ holds for
∀t ≥ t0+T , where y = [y1, . . . , yN ]T and yr = [yr, . . . , yr]

T .
Lemma 1 [23]. For the directed diagraph Ḡk, ∀k ∈ Q and

the leader’s adjacency matrix Bk, if there exists any bki > 0,
then Lk +Bk is nonsingular.

Lemma 2 [23]. For multiagent systems with a direct-
ed diagraph Ḡk, ∀k ∈ Q, let z1 = [z1,1, z2,1, . . . , zN,1]

T ,
y = [y1, y2, . . . , yN ]T , and yr = [yr, yr, . . . , yr]

T , then
∥y − yr∥ ≤ ∥z1∥

σmin(Lk+Bk)
holds, where zi,1, i = 1, 2, . . . , N

will be defined later, and σmin(Lk + Bk) is the minimum
singular value of Lk +Bk.

Lemma 3 [24]. For any κ > 0 and any z ∈ R, the following
inequality 0 ≤ |z| − z tanh( zκ ) ≤ 0.2785κ holds.

In this paper, an unknown nonlinear function f(Z) :
Rm → R on a compact set ΩZ can be estimated by an
RBFNN f̂(Z) = W ∗TΦ(Z), where Z ∈ ΩZ ∈ Rm is
the input vector, W = [w1, . . . , wl]

T ∈ Rl stands for



the weight vector with l > 1 being the number of N-
N nodes, and Φ(Z) = [Φ1(Z), . . . ,Φl(Z)]

T is the basis
function vector with Φi(Z) = exp[−(Z−µi)

T (Z−µi)
η2i

], i =

1, 2, . . . , l, in which µi ∈ Rm stands for the center of
the basis function, and ηi is called the width of the basis
function. Obviously, there exists an ideal constant weight
vector W , such that f(Z) = WTΦ(Z) + ε(Z), ∀Z ∈ ΩZ ,
where W := argminW∈Rl{supz∈ΩZ

∣∣f(Z)−W ∗TΦ(Z)
∣∣},

and ε(Z) is the approximation error satisfying ∥ε(Z)∥ ≤ ε∗

with ε∗ > 0 being a constant.
In order to facilitate the control design, an interesting

characteristic of RBFNN is given by the following lemma.
Lemma 4 [5]. Φ(Z̄q) = [Φ1(Z̄q),Φ2(Z̄q), . . . ,Φl(Z̄q)]

T is
the basis function vector of RBFNN. The input vector is Z̄q =
[Z1, Z2, . . . , Zq]

T , and for any positive integer p ≤ q, the
inequality

∥∥Φ(Z̄q)∥∥2 ≤
∥∥Φ(Z̄p)∥∥2 is established.

III. MAIN RESULT
A. Adaptive control design

In this section, the common Lyapunov function approach,
the RBFNN approximation technique and the dynamic surface
control method will be combined to develop a distributed adap-
tive neural control protocol for nonlinear multiagent system
with arbitrary switching communication topology. The overall
design procedure will include ni steps for ith follower (1). At
step m,m = 1, 2, . . . , ni−1, an intermediate control functions
αm will be constructed. In order to alleviate the computing
complexity caused by the repeated differentiations of αij
during the regular backstepping design, a novel nonlinear filter
will be proposed to obtain the filtered intermediate control
function si,j . Finally, the actual control protocol ui is obtained
at step ni.

Firstly, based on the communication topology Ḡk, ∀k ∈ Q,
the neighborhood synchronization error zi,1 is defined as

zi,1 =
N∑
j=1

akij(yi − yj) + bki (yi − yr), (2)

where akij is the element of the graph adjacency matrix Ak,
and bki represents the communication transfer weight between
ith agent and the leader.

For i = 1, . . . , N and j = 1, . . . , ni − 1, the adaptive DSC
design is begun with the following coordinate transformations

zi,j+1 = xi,j+1 − si,j , ei,j = si,j − αi,j , (3)

where αi,j is the intermediate control function to be developed
later, and si,j is the filtered intermediate control function by
passing αi,j through the following nonlinear filter

τi,j ṡi,j = −ei,j − τi,jM̂i,j tanh(
M̂i,jei,j
κi,j

), (4)

where τi,j > 0 is a time constant, κi,j > 0 is a design constant,
and M̂i,j is the estimate of unknown constant Mi,j to be given
later. The estimation error M̃i,j is defined as M̃i,j = M̂i,j −
Mi,j , and the adaptive law for M̂i,j is designed by

˙̂
Mi,j = −γi,jM̂i,j + χi,j |ei,j | , (5)

where γi,j and χi,j are positive adjusting parameters.
Step 1: Combining (1) - (3), the time derivative of zi,1 is

easily derived by

żi,1 = (

N∑
j=1

akij + bki )[gi,1(zi,2 + ei,1 + αi,1) + fi,1]

−
N∑
j=1

akij(gj,1xj,2 + fj,1)− bki ẏr. (6)

Motivated by the viewpoint in [25], the dynamics of zi,1 can
be seen as a switched nonlinear system which the switching
signal is caused by the change of communication topology.
Then the common Lyapunov function method can be extended
to explore it [26].

For any communication topology Ḡk, ∀k ∈ Q, construct the
Lyapunov function candidate Vi,1 as Vi,1 = 1

2z
2
i,1 +

c∗i g
∗
i

2λi,1
θ̃2i,1,

where λi,1 is a positive constant, and θ̃i,1 := θ̂i,1 − θi,1 with
θ̂i,1 being the estimated value of θi,1 = max

k∈Ω
{∥Wi,1,k∥2

c∗i g
∗
i

} and

c∗i := min
k∈Q

{
N∑
j=1

akij + bki }. Then the time derivative of Vi,1 is

obtained as V̇i,1 = zi,1żi,1 +
c∗i g

∗
i

λi,1
θ̃i,1

˙̂
θi,1.

An unknown nonlinear function is defined as f̄i,1 and can
be approximated by using RBFNNs WT

i,1,kΦi,1(Zi,1), i.e.

f̄i,1 = (
N∑
j=1

akij + bki )fi,1 −
N∑
j=1

akij(gj,1xj,2 + fj,1)− bki ẏr

= WT
i,1,kΦi,1(Zi,1) + εi,1,k(Zi,1), (7)

where Zi,1 =
[
x̄i,2, x̄j,2, b

k
i ẏr

]T (j ∈ N k
i ) is the input vector,

and the approximation error εi,1,k satisfies |εi,1,k(Zi,1)| ≤
ε∗i,1, ∀ k ∈ Q with ε∗i,1 > 0 being a constant.

With the help of (7) and Lemma 4, it is easy to obtain that

zi,1f̄i,1 ≤ |zi,1| (∥Wi,1,k∥ ∥Φi,1(Zi,1)∥+ |εi,1,k(Zi,1)|)
≤ |zi,1| (∥Wi,1,k∥ ∥Φi,1(ξi,1)∥+ |εi,1,k(Zi,1)|)
≤ 1

2h2
i,1
c∗i g

∗
i z

2
i,1θi,1Φ

T
i,1(ξi,1)Φi,1(ξi,1) +

1
2h

2
i,1

+
c∗i g

∗
i

2 z2i,1 +
ε∗2i,1

2c∗i g
∗
i
. (8)

where ξi,1 = xi,1, and hi,1 is a positive constant.
Choose the intermediate control function αi,1 as

αi,1 = − 1
2h2

i,1
zi,1θ̂i,1Φ

T
i,1(ξi,1)Φi,1(ξi,1)− (pi,1 +

1
2 )zi,1, (9)

where pi,1 is a positive design parameter.
The adaptive law of θ̂i,1 is given by

˙̂
θi,1 = −βi,1θ̂i,1 + λi,1

2h2
i,1
z2i,1Φ

T
i,1(ξi,1)Φi,1(ξi,1), (10)

where βi,1 > 0 is a design parameter. It is worth pointing out
that the initial value of θ̂i,1 is set to meet θ̂i,1(0) > 0 in order
that θ̂i,1 can be seen as a positive variable for all t ≥ 0.



Then, it follows (6)-(10) that

V̇i,1 ≤ −c∗i g∗i pi,1z2i,1 + (
N∑
j=1

akij + bki )gi,1zi,1(zi,2 + ei,1)

+ϖi,1 − βi,1c
∗
i g

∗
i

λi,1
θ̃i,1θ̂i,1, (11)

where ϖi,1 = 1
2h

2
i,1 +

1
2c∗i g

∗
i
ε∗2i,1.

Step m (2 ≤ m ≤ ni): According to (1), (3) and (4), it is
easy to obtain the dynamic system of zi,m as

żi,m = gi,m(zi,m+1 + ei,m + αi,m) + fi,m

+M̂i,m−1 tanh(
M̂i,m−1ei,m−1

κi,m−1
) +

ei,m−1

τi,m−1
. (12)

For any communication topology Ḡk, ∀k ∈ Q, define the
Lyapunov function candidate Vi,m as Vi,m = Vi,m−1+

1
2z

2
i,m.

Define the unknown nonlinear function f̄i,m as f̄i,2,k =

fi,2 + (
N∑
j=1

akij + bki )gi,1zi,1 + M̂i,1 tanh(
M̂i,1ei,1
κi,1

) +
ei,1
τi,1

and

f̄i,m,k = fi,m+gi,m−1zi,m−1+M̂i,m−1 tanh(
M̂i,m−1ei,m−1

κi,m−1
)+

ei,m−1

τi,m−1
−∆i,m(Zi,m) for m = 3, . . . , ni, where ∆i,m(Zi,m) is

a continuous function to be specified later. Reconstruct f̄i,m,k
by using RBFNNs WT

i,m,kΦi,m(Zi,m), then we have

f̄i,m,k = WT
i,m,kΦi,m(Zi,m) + εi,m,k(Zi,m), (13)

where Zi,2 = [xi,1, xi,2, zi,1, ei,1, M̂i,1]
T and

Zi,m = [x̄i,m, zi,m−1, ei,1, . . . , ei,m−1, θ̂i,2, M̂i,m−1]
T

for m = 3, . . . , ni. Moreover, the reconstruction error is
subject to |εi,m,k(Zi,m)| ≤ ε∗i,m with ε∗i,m being a positive
constant.

Choose the intermediated control function αi,m as

αi,m=− θ̂i,2zi,m
2h2

i,m
ΦTi,m(Zi,m)Φi,m(Zi,m)−(pi,m + 1

2 )zi,m, (14)

where hi,m and pi,m are positive design parameters.
By using (11)-(14), taking the derivation of Vi,m yields

V̇i,m≤−c∗i g∗i pi,1z2i,1−
m∑
j=2

g∗i pi,jz
2
i,j+(

N∑
j=1

akij + bki )gi,1ei,1zi,1

+
m∑
j=2

gi,jei,jzi,j + gi,mzi,mzi,m+1 − βi,1c
∗
i g

∗
i

λi,1
θ̃i,1θ̂i,1

+
g∗i
λi,2

θ̃i,2(
˙̂
θi,2 −

m∑
j=2

λi,2

2h2
i,j
z2i,jΦ

T
i,j(Zi,j)Φi,j(Zi,j))

+

ni∑
m=3

zi,m∆i,m(Zi,m) +ϖi,m, (15)

where ϖi,m = 1
2

m∑
j=1

h2i,j +
1

2c∗i g
∗
i
ε∗2i,1 +

1
2g∗i

m∑
j=2

ε∗2i,j .

So far, the inductive design steps are completed. Especially,
when m = ni, the actual control input for ith agent system
appears, i.e., ui = αi,ni , and zi,ni+1 = 0. Moreover, the
adaptive parameter θ̂i,2 is updated by

˙̂
θi,2 = −βi,2θ̂i,2 +

ni∑
j=2

λi,2

2h2
i,j
z2i,jΦ

T
i,j(Zi,j)Φi,j(Zi,j), (16)

where βi,2 is a positive design constant. Similar to the adaptive
parameter θ̂i,1, the initial value of θ̂i,2 is also set by θ̂i,2(0) > 0
such that θ̂i,2(t) > 0 holds for all t > 0.

B. Consensus analysis

From equations (3)-(4) and for j = 1, . . . , ni − 1, the
dynamics of boundary layer errors are given by

ėi,j = − ei,j
τi,j

− M̂i,j tanh(
M̂i,jei,j
κi,j

)− α̇i,j , (17)

where α̇i,1 =
∂αi,1

∂xi,1
ẋi,1 +

∂αi,1

∂θ̂i,1

˙̂
θi,1 +

∂αi,1

∂zi,1
żi,1 +

∂αi,1

∂ẏr
ÿr,

and α̇i,j =
j∑

m=1

∂αi,j

∂xi,m
ẋi,m +

∂αi,j

∂zi,j
żi,j +

∂αi,j

∂zi,j−1
żi,j−1 +

j∑
m=2

∂αi,j

∂ei,m−1
ėi,m−1 +

∂αi,j

∂θ̂i,2

˙̂
θi,2 +

∂αi,j

∂M̂i,j−1

˙̂
Mi,j−1.

For the ith multiagent subsystem in any topology Ḡk,
consider the common Lyapunov function candidate Vi as

Vi = Vi,ni +
1
2

ni−1∑
m=1

e2i,m + 1
2

ni−1∑
m=1

1
χi,m

M̃2
i,m.

By using the inequalities −θ̃i,q θ̂i,q ≤ − 1
2 θ̃

2
i,q +

1
2θ

2
i,q with

q = 1, 2, we have

−βi,1c
∗
i g

∗
i

λi,1
θ̃i,1θ̂i,1 ≤ −βi,1c

∗
i g

∗
i

2λi,1
θ̃2i,1 +

βi,1c
∗
i g

∗
i

2λi,1
θ2i,1, (18)

−βi,2g
∗
i

λi,2
θ̃i,2θ̂i,2 ≤ −βi,2g

∗
i

2λi,2
θ̃2i,2 +

βi,2g
∗
i

2λi,2
θ2i,2. (19)

Note that ˙̂
θi,2 is relevant to the error variables

zi,2, zi,3, . . . , zi,ni , and is also related to the state variables
xi,2, xi,3, . . . , xi,ni

, thus the term ei,m−1
∂αi,m−1

∂θ̂i,2

˙̂
θi,2 should

be handled in a different way from the common DSC design
[10]- [13]. By using the fact that 0 < ΦTi,mΦi,m ≤ li,m with
li,m being the number of NN’s nodes, it is easy to obtain that

−
ni∑
m=3

ei,m−1
∂αi,m−1

∂θ̂i,2

˙̂
θi,2

≤ −
ni∑
m=3

ei,m−1
∂αi,m−1

∂θ̂i,2
[−βi,2θ̂i,2

+
m−1∑
j=2

λi,2

2h2
i,j
z2i,jΦ

T
i,j(Zi,j)Φi,j(Zi,j)]

+

ni∑
m=3

λi,2

2h2
i,m
li,mz

2
i,m

m∑
j=3

|ei,j−1
∂αi,j−1

∂θ̂i,2
|. (20)

Thus, for m = 3, . . . , ni, define the function ∆i,m(Zi,m)

as ∆i,m(Zi,m) = − λi,2

2h2
i,m
li,mzi,m

m∑
j=3

|ei,j−1
∂αi,j−1

∂θ̂i,2
| such that

ni∑
m=3

[zi,m∆i,m(Zi,m)− ei,m−1
∂αi,m−1

∂θ̂i,2

˙̂
θi,2] ≤ 0.

Moreover, designate some continuous functions as Bi,1 =

−α̇i,1 + (
N∑
j=1

akij + bki )gi,1zi,1 and Bi,m = −
m∑
j=1

∂αi,m

∂xi,j
ẋi,j −

∂αi,m

∂zi,m
żi,m− ∂αi,m

∂zi,m−1
żi,m−1−

m∑
j=1

∂αi,m

∂ei,j
ėi,j− ∂αi,m

∂M̂i,j−1

˙̂
Mi,j−1+

gi,mzi,m +
∂αi,m

∂θ̂i,2
[βi,2θ̂i,2 −

m∑
j=2

λi,2

2h2
i,j
z2i,jΦ

T
i,j(Zi,j)Φi,j(Zi,j)].



Obviously, for m = 1, 2, . . . , ni − 1 and ∀k ∈ Q, the con-
tinuous functions |Bi,m| acquire their maximums Mi,m on the

compact sets Ωi,m,k := { 1
2

m+1∑
j=1

z2i,j +
1
2

m∑
j=1

e2i,j +
c∗i g

∗
i

2λi,1
θ̃2i,1 +

g∗i
2λi,2

θ̃2i,2 +
1
2

m∑
j=1

1
χi,j

M̃2
i,j +

∑
j∈Nk

i
( 12z

2
j,2 +

1
2z

2
j,3 +

1
2e

2
j,1 +

1
2e

2
j,2 +

1
2χj,1

M̃2
j,1 +

1
2χj,2

M̃2
j,2 +

c∗j g
∗
j

2λj,1
θ̃2j,1 +

g∗j
2λj,2

θ̃2j,1) ≤ r0}
and Ω0 = {y2r + ẏ2r + ÿ2r ≤ Br} with Br being a positive
constant, i.e., it is obtained that |Bi,m| ≤ Mi,m with Mi,m

being estimated by M̂i,m for m = 1, 2, . . . , ni − 1. Then, the
following inequality is easily established

ei,mBi,m ≤ |ei,m|Mi,m = |ei,m| (M̂i,m − M̃i,m). (21)

From Lemma 3, we have

M̂i,m |ei,m| ≤ M̂i,mei,m tanh(
M̂i,mei,m
κi,m

) + 0.2785κi,m. (22)

Combining (16)-(22) easily gives

V̇i ≤ −ψiVi + ζi, (23)

where ψi= min
j=1,...,ni−1

{2c∗i g∗i pi,1, 2g∗i pi,j+1, βi,1, βi,2,
2
τi,j

, γi,j}

and ζi = 1
2

ni∑
j=1

h2i,j +
1

2c∗i g
∗
i
ε∗2i,1 +

1
2g∗i

ni∑
j=2

ε∗2i,j +
βi,1c

∗
i g

∗
i

2λi,1
θ2i,1 +

βi,2g
∗
i

2λi,2
θ2i,2 +

1
2

ni−1∑
m=1

γi,m
χi,m

M2
i,m + 0.2785

ni−1∑
m=1

κi,m.

For all the whole multiagent systems with any communi-
cation topology Ḡk, k ∈ Q, designate the common Lyapunov

function candidate V as V =
N∑
i=1

Vi. Then, from (23), taking

the derivative of V yields

V̇ ≤ −ψV + ζ, (24)

where ψ = min
i=1,2,...,N

ψi and ζ =
N∑
i=1

ζi.

Using the similar arguments in [11] - [13], for a given
constant r0 > 0, if V = r0 and ψ > ζ

r0
, then V̇ ≤ 0.

Accordingly, if V (0) ≤ r0, then V (t) ≤ r0, ∀ t ≥ 0, which
also means that (24) holds for all t ≥ 0 and V (0) ≤ r0.
Multiplying both sides of (24) by eψt and integrating them
over [0, t] gives

0 ≤ V (t) ≤ ζ

ψ
+ [V (0)− ζ

ψ
]e−ψt, (25)

which also implies that V (t) ≤ ζ
ψ , t→ ∞.

In view of the definition of V and (25), we have

∥z1∥2 ≤ 2V (t) ≤ 2ζ

ψ
, t→ ∞. (26)

where z1 = [z1,1, z2,1, . . . , zN,1]
T .

The values of the parameters pi,1, pi,j , βi,1, βi,2, χi,j
can be chosen large, and the values of the parameters
λi,1, λi,2, γi,j , hi,j , τi,j can be adjusted small, such that for a
given small constant ϵ > 0, the following inequality is satisfied

ζ

ψ
≤ ϵ

2
min
k∈Q

{σmin(Lk +Bk)}. (27)

By applying (26)-(27) and Lemma 2, the tracking error
vector satisfies ∥y − yr∥2 ≤ ϵ, t → ∞, which also indicates
that the tracking errors yi − yr(i = 1, . . . , N) are CSUUB in
any communication topology Ḡk, k ∈ Q.

At this stage, the following theorem is presented to sum-
marize the main result.

Theorem 1. Consider the uncertain strict-feedback nonlinear
multiagent systems (1) with switching communication topol-
ogy satisfying Assumptions 1-3, if the distributed adaptive
neural control protocols (9),(14) together with the nonlinear
filters (4), (5) and the parameter adaptive laws (10), (16) are
utilized, then, for any initial condition satisfying V (0) ≤ r0
and θ̂i,j(0) > 0(j = 1, 2), all signals in the closed-loop system
are uniformly ultimately bounded and the consensus tracking
errors can remain in a small neighborhood of the origin.

Remark 1. From a practical viewpoint, a restriction that the
initial values should meet V (0) ≤ r0 is imposed on all the
variables. Nevertheless, it is requisite to note that r0 can be
chosen enough large, thus this restriction is quite relaxed and
the forgoing condition ψ > ζ

r0
could be easily fulfilled.

Remark 2. Note that the repeated differentiations of in-
termediate control functions must result in the problem of
“explosion of complexity” during the traditional backstepping
design, the conventional DSC (CDSC) method often introduce
the common first-order filter to solve the problem [10]- [13].
However, the effects of unknown nonlinear functions Bi,j(·)
arising from the dynamics of boundary layer errors are not
compensated during the CDSC technique, which usually cause
the degradation of consensus tracking performance. During
the modified DSC (MDSC) method in this paper, some novel
nonlinear filters (4) and the adjusting laws (5) are included
to compensate for the unknown bounds Mi,j of nonlinear
functions Bi,j(·).

IV. SIMULATION STUDIES

In order to verify the effectiveness of the preceding theo-
retical results, two simulation examples are presented in this
section. The first example is a numerical example, and the
second one is a practical example which can further show the
applicability of the proposed control protocol.

Example 1. The uncertain nonlinear multiagent systems con-
sisting of five followers and one leader, where the dynamics
of the ith(i = 1, 2, . . . , 5) follower is given by ẋi,1 = gi,1(xi,1)xi,2 + fi,1(xi,1)

ẋi,2 = gi,2(xi,1, xi,2)ui + fi,2(xi,1, xi,2)
yi = xi,1

(28)

where g1,1 = 3 + 0.5 sin(x1,1), f1,1 = 0.1x1,1 sin(x1,1),
g1,2 = 2+0.5 sin(x1,1)+ sin(x1,2),f1,2 = 0.5x1,1 sin(x1,1)+
0.5 cos(x1,2); g2,1 = 2 + cos(x2,1), f2,1 = 1.5x2,1, g2,2 =
2.5+0.5 cos(x2,1)−sin(x2,2), f2,2 = x2,1+0.7x2,2 cos(x2,2);
g3,1 = 1.7 + 0.4 sin(x3,1), f3,1 = 0.5x3,1 cos(x3,1), g3,2 =
3+ 1

x2
3,1+1

+cos(x3,2), f3,2 = x3,1+0.5x3,2 cos(x3,2); g4,1 =

2+cos(x4,1), f4,1 = 0.5x4,1 cos(x4,1), g4,2 = 1.5+sin(x4,1+
x4,2), f4,2 = x4,1 sin(x4,1) + cos(x4,2); g5,1 = 3+ cos(x5,1),



f5,1 = 0.2x5,1, g5,2 = 2.5 + cos(x5,1) + 0.3 cos(x5,2), and
f5,2 = 0.7x5,2 sin(x5,1).

The communication graphs of all the agents including five
followers and one leader are shown as Fig.1, and Fig. 2
describes the change among four communication topologies.
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Fig. 1. Three communication diagraphs Ḡ1 − Ḡ4 for Example 1.
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Fig. 2. The switching mechanism for Example 1.

In this simulation, the output signals of five followers are
forced to follow the leader’s output signal yr = sin(t) +
sin(0.5t). For RBFNNs and i = 1, 2, . . . , 5, Φi,1(ξi,1) contain
32 neurons with center evenly located in [−3, 3]× [−3, 3] ,and
the width set by 1. Φi,2(Zi,2) contain 35 neurons with center
evenly located in [−3, 3]× [−3, 3]× [−3, 3]× [−3, 3]× [−3, 3]
and the widths set by 1.

Moreover, the design parameters are chosen as follows:
β1,1 = 17, λ1,1 = 0.1, h1,1 = 0.05, p1,1 = 7, τ1,1 = 0.006,
κ1,1 = 0.04, γ1,1 = 0.01, χ1,1 = 50, β1,2 = 13, λ1,2 = 0.05,
h1,2 = 0.05, p1,2 = 10; β2,1 = 13, λ2,1 = 0.6, h2,1 = 0.6,
p2,1 = 10, τ2,1 = 0.002, κ2,1 = 0.05, γ2,1 = 0.1, χ2,1 = 60,
β2,2 = 15, λ2,2 = 0.6, h2,2 = 0.05, p2,2 = 5; β3,1 = 17,
λ3,1 = 0.6, h3,1 = 0.5, p3,1 = 3, τ3,1 = 0.005, κ3,1 = 0.04,
γ3,1 = 0.1, χ3,1 = 60, β3,2 = 16, λ3,2 = 0.7, h3,2 = 0.07,
p3,2 = 20; β4,1 = 13, λ4,1 = 0.8, h4,1 = 0.05, p4,1 = 10,
τ4,1 = 0.005, κ4,1 = 0.04, γ4,1 = 0.15, χ4,1 = 50, β4,2 = 6,
λ4,2 = 0.8, h4,2 = 0.05, p4,2 = 3; β5,1 = 10, λ5,1 = 1.7,
h5,1 = 0.5, p5,1 = 5, τ5,1 = 0.005, κ5,1 = 0.04, γ5,1 = 0.2,
χ5,1 = 55, β5,2 = 13, λ5,2 = 0.8, h5,2 = 0.04, p5,2 = 6.

The initial states are chosen as x1,1(0) = 0.1, x1,2(0) =
0.2;x2,1(0) = 0.15, x2,2(0) = 0.1; x3,1(0) = 0.1,x3,2(0) =
0.05; x4,1(0) = 0.2, x4,2(0) = 0.15;x5,1(0) = 0.05, x5,2(0) =

0.1. For the adaptive parameters,the initial values are set by
θ̂1,1(0) = 1.5, M̂1,1(0) = 2, θ̂1,2(0) = 2; θ̂2,1(0) = 2.2,
M̂2,1(0) = 1.7, θ̂2,2(0) = 2.5; θ̂3,1(0) = 1.3, M̂3,1(0) = 1.5,
θ̂3,2(0) = 1.5; θ̂4,1(0) = 1.7, M̂4,1(0) = 1.5, θ̂4,2(0) = 1;
θ̂5,1(0) = 1, M̂5,1(0) = 1.3, θ̂5,2(0) = 0.8.

The simulation results are shown in Figs.3-6. The outputs
of followers and leader are depicted in Fig. 3. Fig. 4 gives
the control input signals of five followers. The boundedness
of adaptive parameters θ̂i,1 and θ̂i,2 are demonstrated in Fig.
5 and Fig. 6, respectively.
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Fig. 3. Consensus tracking outputs for Example 1.
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Example 2. In this section, a group of one-link manipulators
is provided to verify the applicability of the proposed control
protocol. The dynamics of the system can be described by [13]{

Diq̈i +Biq̇i +Ni sin(qi) = Ii
Miİi = −HiIi −Km,iq̇i + Vi

(29)

where qi, q̇i, q̈i, Ii and Vi denote the angular position, velocity,
acceleration, motor current and input voltage, respectively. Let
xi,1 = qi, xi,2 = q̇i, xi,3 = q̈i and control input ui = Vi, then
the equation (29) can be expressed as follows

ẋi,1 = xi,2
ẋi,2 = gi,2xi,3 + fi,2(x̄i,2)
ẋi,3 = gi,3ui + fi,3(x̄i,3)
yi = xi,1

(30)

where gi,2 = 1/Di, fi,2 = [−Ni sin(xi,1)−Bixi,2]/Di, gi,3 =
1/Mi, and fi,3 = (−Km,ixi,2 −Hixi,3)/Mi, i = 1, 2, 3. The
parameters are chosen as Di = 1, Bi = 1, Ni = 10, Mi =
0.05, Hi = 0.5 and Km,i = 10.

Consider the multiagent system with three followers de-
scribed as (30) and one leader, the distributed adaptive neu-
ral control protocols proposed in section III are adopted
for each follower to synchronize with the leader’s output
yr =

π
2 sin(t) + cos(0.5t). In the simulation, there exist three

different communication topologies which change as the time.
The topology graphs are shown in Fig.7, and the switching
mechanism among them is exhibited in Fig.8.
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Fig. 7. Three communication diagraphs Ḡ1 − Ḡ3 for Example 2.
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Fig. 8. The switching mechanism for Example 2.

For RBFNNs and i = 1, 2, 3, Φi,1(ξi,1) contain 3 neurons
with center evenly located in [−3, 3]. Φi,2(Zi,2) contain 35

neurons with center located in [−3, 3] × [−3, 3] × [−3, 3] ×
[−3, 3] × [−3, 3] evenly.Φi,3(Zi,3) contain 38 neurons with
center located in [−3, 3]×[−3, 3]×[−3, 3]×[−3, 3]×[−3, 3]×
[−3, 3]× [−3, 3]× [−3, 3] evenly. All the width set by 1.

The design parameters are chosen as follows: β1,1 = 1.7,
λ1,1 = 0.3, h1,1 = 0.5, p1,1 = 15, τ1,1 = 0.036, κ1,1 = 0.04,

γ1,1 = 0.2, χ1,1 = 50, h1,2 = 0.5, p1,2 = 9, τ1,2 = 0.036,
κ1,2 = 0.04, γ1,2 = 0.1, χ1,2 = 55, β1,2 = 1.3, λ1,2 = 0.5,
h1,3 = 0.7, p1,3 = 7; β2,1 = 1.3, λ2,1 = 0.6, h2,1 = 0.6,
p2,1 = 12, τ2,1 = 0.036, κ2,1 = 0.04, γ2,1 = 0.15, χ2,1 = 60,
h2,2 = 0.5, p2,2 = 5, τ2,2 = 0.036, κ2,2 = 0.04, γ2,2 = 0.1,
χ2,2 = 54, β2,2 = 1.6, λ2,2 = 0.1, h2,3 = 0.7, p2,3 = 5;
β3,1 = 2, λ3,1 = 0.6, h3,1 = 0.4, p3,1 = 13, τ3,1 = 0.036,
κ3,1 = 0.04, γ3,1 = 0.1, χ3,1 = 65, h3,2 = 0.08, p3,2 = 10,
τ3,2 = 0.036, κ3,2 = 0.04, γ3,2 = 0.2, χ3,2 = 60, β3,2 = 1.7,
λ3,2 = 0.4, h3,3 = 0.7, and p3,3 = 10. All the initial values
are given by x1,1(0) = 0.1, x1,2(0) = 0.2, x1,3(0) = 0.1;
x2,1(0) = 0.1, x2,2(0) = 0.05, x2,3(0) = 0.14; x3,1(0) = 0.1,
x3,2(0) = 0.07, x3,3(0) = 0.13 ; θ̂1,1(0) = 0.1, M̂1,1(0) = 1,
M̂1,2(0) = 2.1, θ̂1,2(0) = 0.3; θ̂2,1(0) = 0.2, M̂2,1(0) = 1.5,
M̂2,2(0) = 1.6, θ̂2,2(0) = 0.2; θ̂3,1(0) = 0.15, M̂3,1(0) = 2.3,
M̂3,2(0) = 2, and θ̂3,2(0) = 0.15.

Figs.9-13 give the simulation results. Fig.9 illustrates the
outputs yi(i = 1, 2, 3) of followers and the output yr of
leader,which implies that the satisfactory consensus track-
ing performance can be achieved by the proposed control
scheme. Fig.10 depicts the distributed control input signals
for three followers. Finally, the trajectories of adaptive pa-
rameters θ̂i,j , i = 1, 2, 3, j = 1, 2 are kept bounded as seen

in Figs.11 and 12. Let E(t) =
√∑3

i=1 (yi − yr)2 denote
the consensus tracking error of system (30) with switching
communication topology. Fig.13 shows the comparison with
the CDSC scheme, which indicates that the consensus tracking
performance can be improved by the modified DSC (MDSC)
method.
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Fig. 9. Consensus tracking outputs for Example 2.
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Fig. 11. Adaptive parameters θ̂i,1 of three followers for Example 2.
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Fig. 12. Adaptive parameters θ̂i,2 of three followers for Example 2.
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V. CONCLUSIONS

This paper solved the problem of adaptive neural consensus
control for uncertain strict-feedback nonlinear multiagent sys-
tems with the switching directed topology. The given design
methodology has the following characteristics: (1) The switch-
ing mechanism of communication topology need not be known
in prior; (2) The common Lyapunov function is constructed
to develop a novel distributed adaptive neural control protocol
for the arbitrary switching communication topology; (3) A
new nonlinear observer is proposed to improve the convention
DSC design method. Our future work will explore the adaptive
output feedback control for nonlinear multiagent systems with
the switching communication topology.
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