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Abstract—Given a deep neural network image classification

model that we treat as a black box, and an unlabeled evaluation

dataset, we develop an efficient strategy by which the classifier

can be evaluated. Randomly sampling and labeling instances from

an unlabeled evaluation dataset allows traditional performance

measures like accuracy, precision, and recall to be estimated.

However, random sampling may miss rare errors for which the

model is highly confident in its prediction, but wrong. These high-

confidence errors can represent costly mistakes, and therefore

should be explicitly searched for. Past works have developed

search techniques to find classification errors above a specified

confidence threshold, but ignore the fact that errors should be

expected at confidence levels anywhere below 100%. In this

work, we investigate the problem of finding errors at rates

greater than expected given model confidence. Additionally, we

propose a query-efficient and novel search technique that is

guided by adversarial perturbations to find these mistakes in

black box models. Through rigorous empirical experimentation,

we demonstrate that our Adversarial Distance search discovers

high-confidence errors at a rate greater than expected given

model confidence.

Index Terms—Deep learning, Computer vision, Classification,

Evaluation strategies

I. INTRODUCTION

Given a deep neural network image classification model
that we treat as a black box, and an unlabeled evaluation
dataset, it is necessary to have an efficient strategy to evaluate
the classifier. For example, if a physician is teamed with
some black-box diagnostic tool, it would be prudent for the
physician to evaluate the tool before utilizing it in practice.
A desirable evaluation procedure should be respectful of the
physician’s time and effort, but help reveal the strengths and
weaknesses of the model.

One strategy to evaluate a black box model with an unla-
beled evaluation dataset is to randomly sample and label in-
stances from the dataset, and estimate traditional performance
measures like accuracy, precision, and recall. Another strategy
is to sample low confidence predictions to discover areas
where the model is prone to error. However, these strategies
may miss errors for which the model is highly confident in
its prediction, but wrong. These high-confidence errors can
represent costly mistakes (e.g misdiagnosis), and therefore
should be explicitly searched for.

In this paper, we propose a novel and query-efficient ap-
proach for guiding a human, or oracle, to high-confidence
classification errors made by black box image classification
models. Specifically, we propose a search that leverages small
perturbations to an image to help identify instances within an
unlabeled evaluation dataset for which the classification model
has high confidence in its prediction, but is wrong. These
perturbations are similar to those of recent developments in
adversarial images. Special attention is devoted to ensure that
the developed technique is applicable to black box classifiers
where specifics of the model’s training data and architecture
may be unknown.

High-confidence errors can be interpreted as blind spots to
a classification model [1]. These high-confidence errors can
be caused by dataset shift during use [2], dataset bias during
training [3], overfitting, and other reasons for poor model
performance. For example, [4] describes a classification model
learned from a biased dataset of dogs with dark fur and cats
with light fur. When used for inference, this model is highly
confident that dogs with light fur belong to the cat class.
Discovering that dogs with light fur can be misclassified with
high confidence reveals a weakness of the classifier.

Previous efforts have designed search techniques to help
discover high-confidence errors in an unlabeled evaluation
set by searching for errors above a confidence threshold,
⌧ (typically set to 0.65 for binary classification) [4], [5].
Unfortunately, these techniques ignore the logical expectation
that some amount of error is expected to occur at a confidence
level less than 100%. Meaning, 30% of the predictions made
with 70% confidence should be errors, 20% of the predic-
tions made with 80% confidence should be errors, and so
on. Therefore, existing methods may simply discover errors
by chance, not by some sophisticated search procedure that
leverages commonalities between errors to increase the rate
of error discovery. Instead, in this work we consider the
problem of finding errors at rates greater than expected, to
encourage search methods that discover something about a
model’s weaknesses to increase the rate of error discovery.

Contributions of this work are summarized as follows:
1) We define the problem of finding errors within an

unlabeled evaluation dataset at rates greater than what
model confidence would suggest.
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2) We design a novel error search that utilizes adversar-
ial perturbations to improve the chance of discovering
prediction errors.

3) We empirically demonstrate that our novel search proce-
dure finds errors at a rate greater than the rate suggested
by model confidence.

The remainder of this paper is organized as follows: In
Section II we discuss existing methods used to search for
high-confidence errors, and provide background on adversarial
images. In Section III we formulate the problem of discov-
ering errors at a rate that exceeds expectation given model
confidence. Then, in Section IV, we introduce a novel method
to search for errors that leverages adversarial perturbations
to glean extra information about model confidence. Next, in
Section V and VI, we present experimental results and provide
a discussion. Finally, in Section VII, we conclude and provide
thoughts for future research.

II. RELATED WORK

In this section we discuss existing methods to search for
high-confidence errors from black box classification models
within an unlabeled evaluation dataset. We review adversarial
images and their relation to our proposed search technique.
We also briefly discuss model calibration.

A. High-Confidence Errors
Attenberg (2015) [1] introduced the concept of searching

for high-confidence errors in relation to machine learning clas-
sification models. Here, high-confidence errors were defined
to be predictions for which a classification model was highly
confident, but wrong. Works considering the search for high-
confidence errors [1], [5], [6] all follow a general structure: 1)
define a utility function to describe a search’s value, and 2)
develop a search method to help maximize the defined utility
function.

In Attenberg (2015) [1], the objective was to motivate
human users to find high-confidence errors. The defined utility
was a monetary value that would be paid for every high-
confidence mistake that was found. The search method was
to allow the human searcher to query the model when they
discovered instances they felt the model may incorrectly
classify. As a result, the human searcher developed their own
search technique to try and “Beat the Machine”. Although
relevant to the initial formulation of the problem, recent papers
focus on algorithmic approaches to help guide an oracle to the
discovery of high-confidence errors.

The first algorithmic approach to search for high-confidence
errors, within an unlabeled evaluation dataset, was introduced
by Lakkaraju (2017) [4]. This human-in-the-loop search de-
fined a utility function that gave a uniform value for each
discovered high-confidence error and discounted this value
by the cost of the human, or oracle, to label a sampled
instance (regardless if it was a high-confidence error or not).
However, the utility function is simplified for imagery as it
places uniform cost for each call to the oracle. A multi-armed
bandit algorithm was then used to search through clusters in

a derived feature space to find high-confidence errors. The
search is driven by tracking the average utility of a cluster,
which can be viewed as the likelihood of finding a high-
confidence error in that cluster.

Bansal and Weld (2018) [5] defined a utility function
to encourage the high-confidence error search to be spread
throughout a derived feature space. Given an unlabeled eval-
uation dataset, X , where cx is the confidence of a model’s
prediction for x 2 X , Q ✓ X is a query set of instances
to evaluate for correctness, and Cover(x|Q) is a function to
calculate how much an instance x is covered by an error found
in the query set Q, the utility function is then:

U =
X

x2X

cx ⇤ Cover(x|Q). (1)

This utility function rewards the discovery of errors that
“cover” the evaluation dataset. Here, coverage of an instance
is a function of its distance to the nearest error found in the
query set, where closer points yield larger values. Note that
the utility function does not directly reward the discovery of
high-confidence errors, but rather rewards finding errors that
are near high-confidence points. A greedy search was then
used to search through clusters of the derived feature space
where the probability of each cluster containing an error was
tracked. Full details can be found in [5].

Maurer and Bennette (2019) [7] present an extension to
[4] and [5] that identifies the flaw of valuing error discovery
at the rate expected given model confidence. Meaning, the
work identifies the fact that errors should be expected for
confidence levels below 100%. The Standardized Discovery
Ratio is introduced as a new measure of search performance,
and compares the actual number of discovered errors to the
expected number of errors given the confidence of the model’s
predictions. This measure is discussed in much greater detail
in Section III.

B. Adversarial Images
In Convolutional Neural Networks (CNNs) an adversarial

image is formed by inserting small targeted perturbations to an
original image such that it is confidently misclassified by the
model [8]. The difference between the adversarial example and
the original input is often indistinguishable to the human eye,
but is still successful at fooling the classifier. Many methods
exist to create adversarial images, and they can be split into
two main classes: model-based and decision-based.

Model-based adversarial attacks leverage knowledge of
the model’s weights and architecture. For example, the fast
gradient sign method [8] relies on gradient information to
create targeted perturbations to be added to the original im-
age. Although effective, model-based methods require model
information that may not always be available with a black-box
classifier.

Decision-based adversarial attacks require no knowledge
of the model’s weights and architecture. Instead, they only
require access to the model to predict labels for new images
[9], [10]. Of particular interest is the Boundary Attack [9]



which begins with a large adversarial perturbation and itera-
tively reduces the amount of perturbation while still remaining
misclassified. More specifically, the attack begins with an
adversarial image (perhaps created through the injection of
Gaussian noise) and then performs a series of steps in random
directions to reduce the size of the perturbations. Each or-
thogonal step is adjusted to move along the decision boundary
towards the original input, with the intent to find the minimal
distance between the perturbation and the original input while
still being misclassified.

Most research of adversarial images has been devoted to
creating adversarial attacks or defending against adversarial
attacks. However, Stock and Cisse (2017) [3] leveraged ad-
versarial images to identify model prototypes and criticisms
to help expose classifier biases. For example, they discovered
a bias in a classifier that confidently identified street lights set
against a blue sky as traffic lights. This was done by looking
at model criticisms, or, images that required the least amount
of perturbation to turn the image adversarial. Additionally,
Ilyas (2019) [11] showed that image classification models
discriminate instances through features that are robust and
through features that are non-robust. Robust features are highly
predictive and related to the classification task as perceived by
humans. Non-robust features can also be highly predictive, but
do not necessarily pertain to the human perceived classification
task (in the example above, perhaps the presence of features
related to the sky). Ilyas (2019) [11] also showed that non-
robust features are more susceptible to an adversarial attack.
Meaning, a classification decision based on a non-robust
feature may require less perturbation to change the prediction.
These two works hint that there may be a discrepancy between
a classifier’s prediction confidence and the amount of pertur-
bation required to turn an image adversarial, and could be
leveraged to help discover prediction errors. This is explored
further in Section IV.

C. Model Calibration

Guo (2017) [12] found that modern neural networks are
poorly calibrated. Meaning, the maximum value of the soft-
max layer, often taken as the confidence of the classifier’s
prediction, does not represent a true probability of correctness.
As stated in Guo (2017), given a model M , with M(X) =
(Ŷ , P̂ ), where X are model inputs with true labels Y , Ŷ are
model predictions, and P̂ are model confidences, a perfectly
calibrated model satisfies the following:

P
⇣
Ŷ = Y |P̂ = p

⌘
= p, 8p 2 [0, 1]. (2)

Meaning, for a well calibrated model, the probability that a
prediction made with p confidence is correct, is equivalent
to the reported confidence, p. Although in practical settings
perfect model calibration cannot be achieved, [12] showed that
temperature scaling can be used to adequately calibrate neural
network models with a validation dataset.

Therefore, all of the classifiers used in our study have been
calibrated using temperature scaling on a validation dataset.

The intention of this step is to ensure that the discovered over-
confident errors are not an artifact of poor model calibration,
but systematic errors made by the classifier for the unlabeled
evaluation dataset.

III. PROBLEM FORMULATION

Lakkaraju (2017) [4] defined a utility function that valued
the discovery of high-confidence errors uniformly. Bansal and
Weld (2018) [5] defined a utility function that weighted the
discovery of a high-confidence error by the amount of the
dataset it helps “explain”, or the “coverage” of the error. This
was done to discourage the search method from sampling
a rich pocket of errors and ignoring the rest of the search
space. Additionally, both of these formulations defined a high-
confidence error to be a classification error above a prediction
confidence threshold ⌧ , where ⌧ is set to 65% for binary
classification.

Unfortunately, these prior formulations ignore the reason-
able expectation that prediction errors should occur at con-
fidence levels anywhere below 100%. Meaning, the exist-
ing search methods may simply discover errors by chance,
not from some sophisticated search procedure that leverages
commonalities between errors to increase the rate of error
discovery. More specifically, we argue that discovering er-
rors at the expected rate is no more informative about the
weaknesses of the model than random search, because it could
be expected to find the same number of errors by randomly
sampling predictions from a defined confidence range. Instead,
we should explicitly encourage the discovery of errors at
rates that exceed expectations to promote search methods that
uncover model weaknesses to increase their rate of discovery.

We consider the problem of discovering high-confidence
errors at rates greater than what a model’s confidence would
suggest, which was recently introduced by [7]. Given a black-
box classifier, M , with M(x) = (ŷx, p̂x), where x is an
instance from an unlabeled evaluation set X , ŷx is the model’s
prediction, p̂x is the model’s confidence, and yx is the true
label assigned by some oracle, the task is to find a query
set of data points, Q ✓ X , that maximize the Standardized
Discovery Ratio (SDR). Here SDR is defined as:

SDR =

P
q2Q (ŷq 6= yq)P
q2Q (1� p̂q)

, (3)

where |Q| = B, p̂q > 0.65 for q 2 Q, and B represents the
labeling budget of the oracle used to find true labels. The
SDR can then be interpreted as the number of discovered
misclassifications relative to what would be expected given
the confidence of the predictions.

In this formulation, a query set that leads to an SDR of
one indicates that errors were discovered at the rate expected
given the confidence of the predictions. Values greater than
one indicate that errors were discovered at a rate greater
than expected. While previously developed methods do not
explicitly value this type of error discovery, it is still possible
that errors are discovered at rates that exceed expectation.



However, this formulation allows us to explicitly value this
higher rate of discovery, and maximize the value of the oracle’s
search.

Additionally, Theorem 3.1 shows that a query set for a
model who’s SDR has an expected value greater than one is
an indicator of model overconfidence. However, a query set
obtained through some search procedure with an SDR greater
than one does not prove the existence of model overconfidence,
because the i.i.d assumption of the proof is almost certainly
violated. Still, an SDR greater than one does suggest the
presence of model overconfidence, and the discovered errors
may provide insight to particular weaknesses.

Theorem 3.1: Suppose there exists a sufficiently large query
set sampled i.i.d. from an unlabeled evaluation dataset. If
the expected SDR is greater than one then there exists some
level of model confidence where the probability of a correct
prediction is less than the model confidence.

Proof by contradiction: Assume the probability of making
a correct prediction at a specific model confidence is always
greater than or equal to the model confidence.

The expected value of the SDR can be calculated as:

E[SDR] =
E

hP
q2Q (ŷq 6= yq)

i

E

hP
q2Q (1� p̂q)

i .

The expected number of errors in the numerator can be
substituted with the expectation of the true probability of error,
simplifying to:

E[SDR] =

P
q2Q E [(1� pq)]P
q2Q E [(1� p̂q)]

 1.

Because of our assumption we know the numerator is smaller
than or equal to the denominator implying the expected SDR
must be less than or equal to one. Therefore, if the expected
SDR is greater than one there must exist some model confi-
dence that is greater than the probability of a correct prediction
at that confidence level, and the model is overconfident.

IV. ADVERSARIAL DISTANCE SEARCH

This section introduces a methodology to search for high-
confidence errors that utilizes an Adversarial Distance measure
to guide the search.

A. Adversarial Distance
A classifier’s prediction for a specific image can be changed

by strategically perturbing the pixels of that image until the
classifier assigns it a different label. These perturbations result
in an adversarial image if the image has been minimally
changed such that a human can not identify the difference. In
our work we call an image adversarial if it has been perturbed
and changes the classifier’s original prediction, even if the new
prediction matches the image’s true label. Additionally, in our
work, no human check is performed to verify that the image
has been minimally changed.

Given the work in [11], we believe deep neural network
models may erroneously base some of their high-confidence

predictions on non-robust features. Using the observation of
[3] that some images are easier to turn adversarial than others,
and the observation of [11] that non-robust features are easily
broken by adversarial attacks, we present a measure to help
identify predictions that are more susceptible to adversarial
attack. Or alternatively, a measure to identify instances for
which the model is potentially overly confident in its predic-
tion due to the presence of non-robust features. If these types
of predictions are indeed more prone to error than what is
suggested by the confidence of the model, selecting them for
a query set would result in an SDR greater than one and reveal
something about model weaknesses.

We introduce the term Adversarial Distance to describe how
much perturbation an image needs for the classifier to change
its prediction in comparison to the expected amount of pertur-
bation, as determined by predictions of similar confidence. To
begin, Mean Absolute Error (MAE) can be used to measure
the mean pixel-wise difference between an adversarial image
and the original image. MAE can be calculated for two NxM
images called a and b as:

MAE(a, b) =
1

NM

NX

i=1

MX

j=1

|a(i,j) � b(i,j)| (4)

Adversarial Distance is then defined to be the difference
between an image’s observed MAE and expected MAE, based
on confidence.

AdvDist(x) = MAE (x,A(M,x))� F (p̂x) , (5)

where x is the image for which we are calculating the
Adversarial Distance, M is the classifier being evaluated,
A(M,x) is a mechanism to alter x such that M ’s prediction
is changed, and F (p̂x) is a function to calculate the expected
MAE based on the classifier’s predictive confidence, p̂x, for
the instance, x.

In our work, the mechanism A, used to create an adversarial
image is the decision-based Boundary Attack [9] discussed in
Section II. As a reminder, we call an image adversarial if
the perturbation of the image changes the classifier’s original
prediction. The intuition behind the attack, as described by
Brendel (2017) [9] and repeated here, is that the algorithm be-
gins with an image that is already adversarial (perhaps through
the addition of Gaussian noise) and performs a random walk
to “follow the boundary between the adversarial and the non-
adversarial region such that (1) it stays in the adversarial region
and (2) the distance towards the target image is reduced” [9].
The Boundary Attack was selected to create adversarial images
because it finds progressively smaller perturbations to make
the image adversarial, and because it is a decision-based attack
that requires no model information.
F should provide an expected MAE given the confidence of

a prediction. Here, we calculate the MAE for every item in the
evaluation set and fit a LOESS [13] regression line to estimate
F . MAE is the dependent variable for this LOESS line, and
the classifier confidence score is the independent variable.



Figure 1: Example LOESS curve fit between log-MAE and classifier confi-
dence. The horizontal distance of points from the fitted line represents the
Adversarial Distance, thus the yellow points fall farthest to the left of the
fitted LOESS line and have the smallest Adversarial Distances. The yellow
instances would be used to query the oracle and search for errors.

Figure 1 shows an example LOESS for this application (built
using the Kaggle13 dataset described later). Note that the
horizontal distance of points from the fitted line represents
the Adversarial Distance, thus the points falling farthest to the
left of the fitted LOESS line will have the smallest Adversar-
ial Distances. Additionally, note that calculating Adversarial
Distance is completely unsupervised because the true labels
of the images are not needed.

B. Search

Once the Adversarial Distance has been calculated for every
instance in the evaluation set, the search for high-confidence
mistakes is easily defined. Intuitively, the search queries an
oracle to label the instances with the lowest Adversarial
Distance. In Figure 1, these instances are colored yellow.
Algorithm 1 defines the search in detail.

Algorithm 1 Adversarial Distance Search
Input: Evaluation set X, budget B, and classifier M
Q = {}, instances that have been queried
S = {}, misclassified instances
For: b = 1, 2, ..., B do:

q = argminx2X and x 62Q AdvDist(x)
yq = OracleQuery(q)
Q Q [ q

If: yq 6= M(q) : S  S [ q

Return: Q and S

Algorithm 1 operates by placing the image with the lowest
Adversarial Distance not already in the query set, Q, into the
query set. The oracle then labels the image and if the label
does not match the model prediction the instance is added to
the set S. Once the oracle has been queried B times, the search
is concluded, and the set of queried points Q, and discovered
errors, S, are returned for inspection.

V. RESULTS

This section introduces the experimental datasets, classifiers,
evaluation procedure, and results.

A. Datasets and Classifiers
The proposed Adversarial Distance search method is evalu-

ated using three experimental datasets. Each dataset introduces
high-confidence errors in a different way. In line with previous
works, high-confidence errors are searched for over a critical
class in a binary classification problem. Below is a description
of each dataset and the mechanism by which high-confidence
errors were introduced to the evaluation set.

Kaggle13: The Kaggle13 dataset contains 25,000 images of
cats and dogs, randomly split into equal sized train and test
sets, with 1/10th of the train set reserved for validation. The
classification task is defined such that the classifier needs to
determine animal type: “cat” or “dog”. High-confidence errors
are introduced through dataset bias during training; black cats
are removed from the training dataset. When searching for
high-confidence errors, the “cat” class is the critical class. This
dataset was originally used in [4] and made available by [5].

CelebA: The CelebA dataset contains 202,599 images of
faces split into a predefined train, validation, and test datasets
[14]. We restricted our test set to 10,000 images for com-
putational considerations. The classification task is defined
such that the classifier needs to determine gender, “male” or
“female”. High-confidence errors are introduced by simulating
a small dataset shift: the training set is made of RGB images
and the test dataset has been converted to gray scale. When
searching for high-confidence errors, the “male” class is the
critical class.

UT-Zap50K: The UT-Zap50K dataset contains 50,025 im-
ages of footwear which is randomly split into a 2/3rds training
set and a 1/3rd test set, with 1/10 of the train set reserved for
validation [15], [16]. The classification task is defined such
that the classifier needs to identify footwear type, “not shoe”
or “shoe”. Note that boots are removed from each dataset
to remove easy elements of the classification task, resulting
in the removal of 12,834 images. High-confidence errors are
introduced by overfitting; the classifier is trained for 75 epochs
(25 epochs produces an adequate classifier). When searching
for high-confidence, the “not shoe” class is the critical class.

A CNN with eight convolutional layers and three linear
layers is used to build a classifier for each dataset. Models are
trained until the classifier stops improving on the validation
dataset (with the exception of the UT-Zap50K dataset as de-
scribed in the dataset description). Furthermore, the validation
datasets are used to perform temperature scaling for each
classifier as recommended by [12] to rectify the naturally poor
calibration of CNNs. The intent is to help ensure that any
discovered high-confidence errors are not simply an artifact
of poor model calibration, but a true deficiency of the model
on the simulated unlabeled evaluation datasets.

Figure 2 shows a reliability diagram, as described in [12],
for each test dataset and temperature scaled classifier. The reli-
ability diagram compares expected accuracy to actual accuracy



Dataset Validation Test

Celeb A 98% 81%
Kaggle13 81% 81%
UT-Zap50K 98% 94%

Table I: Classifier performance split by dataset.

Figure 2: Reliability diagram for each dataset/classifier pair. The red in each
diagram indicates overconfidence. The three datasets have differing levels of
overconfidence.

for the test dataset by using a classifier’s predictions, confi-
dences, and true labels binned for different confidence levels.
Visible red portions on the reliability diagrams represent model
overconfidence, or confidence levels where more errors exist
than are expected. The reliability diagrams shown here focus
exclusively on the critical class of the dataset (as identified
in the dataset description), and reveal that varying levels of
overconfidence are represented by these three dataset/classifier
pairs. Additionally, Table I shows the validation and test
accuracy for each dataset and classifier pair. The large drop
in test accuracy for the CelebA dataset is mainly attributed to
the conversion of the test dataset to gray scale; much smaller
drops were observed when avoiding the dataset shift.

B. Evaluation

The purpose of our evaluation is to determine if 1) a search
driven by Adversarial Distance will discover diverse errors,
and if 2) a search driven by Adversarial Distance can help
discover a query set with an SDR greater than one, indicating
that errors are discovered at a rate exceeding the rate expected
given the confidence of the model’s predictions. We evaluate
each component separately.

As motivated by Bansal and Weld [5], it is desirable to
discover diverse errors to avoid sampling a rich pocket of high-
confidence errors [5]. We measure the diversity, or spread, of
the discovered errors as the average minimum distance from
each instance in the evaluation set to an instance selected
by the search. To simulate the evaluation of a black-box
classifier, and to stay consistent with previous literature, spread
is calculated with a feature space derived from the principal
components of the evaluation set’s pixel space, as we may
not have access to the features used to train the classifier.
Euclidean distance is used for distance measurements. For an
evaluation set, X , and a query set, Q, spread is defined as,

spread =

P
x2X minq2Qdist(x, q)

|X| . (6)

As previously motivated, the SDR is used to assess the
quality of the query set. SDR is defined in Equation 3 and
is the ratio of discovered errors to the expected number of
errors given classifier confidence. Again, this measure provides
greater insight to the quality of the search rather than defining
an arbitrary threshold at which a discovered mistake is deemed
valuable.

C. Experiments

The proposed Adversarial Distance search is compared
to the Lakkaraju search [6], the Bansal and Weld search
[5], a search that samples the lowest confidence predictions,
and a random search. To encourage follow on research, all
of the code used to perform our experiments is available
at https://github.com/afrl-ri/adversarialDistance. Code for the
Lakkaraju and Bansal and Weld search was generously made
available in [5] and used for this experimentation. Data anal-
ysis was done with R and the tidyverse packages [17] [18].

Due to the sensitivity of the searches to the initial conditions
of the unlabeled evaluation dataset, each search is run 1,000
times using a random 2,000 instance subset of the test data.
This replication simulates having 1,000 unlabeled evaluation
datasets for each classifier and search method. Each evaluation
set only contains instances predicted by the classifier to belong
to the critical class with confidence greater than 65% (the
threshold used in previous works to denote a high-confidence
error). Each search selects a 50 sample query set and is
compared using spread and SDR.

Figure 3 shows the mean spread of each search over 50
queries to the oracle. It is worth noting that all methods achieve
similar spread, even in comparison to the Bansal and Weld
search which is specifically designed to sample throughout
the search space. This indicates that searches are likely not
getting stuck in areas with high rates of error (as previously
feared), but rather are sampling throughout the search space.
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Figure 3: Mean spread across 1,000 runs of the search methods. All methods
achieve a similar spread, and the spread improves as more data points are
sampled.



Figure 4 shows the mean SDR of each search method over
50 queries. The average SDR achieved by the Adversarial
Distance search dominates the curves of the other methods,
and indicates that this search method finds errors at rates
that exceed expectations. The other methods achieve an SDR
near one for the Kaggle13 and UT-Zap50K datasets, which
indicates that they are discovering errors at the rate indi-
cated by model confidence. For the CelebA dataset the other
methods discover errors at nearly twice the rate indicated
by model confidence, but this is not surprising given the
amount of overconfidence shown in Figure 2. Interestingly,
the performance of the Adversarial Distance search decreases
as the query size increases, indicating that the density of error
prone instances lessens as the adversarial distance increases.
Recommendations to alleviate this issue will be discussed in
Section VII.
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Figure 4: Mean SDR across 1,000 runs of the search methods. The Adversarial
Distance method achieves the highest SDR values, meaning it has the highest
rate of error discovery relative to the expected rate of error discovery.

Of particular interest, in regards to SDR, is the performance
of the Adversarial Distance search for the Kaggle13 dataset.
Recalling the reliability diagram in Figure 2, there is very little
overconfidence for any of these search methods to discover.
However, at 20 queries the Adversarial Distance search dis-
covers errors at four times the rate that the model confidence
would suggest, while the other methods are discovering errors
at almost exactly the rate indicated by model confidence. Even
at 50 queries, the Adversarial Distance search is finding more
than twice as many errors as model confidence would suggest.

VI. DISCUSSION

In this section, we discuss the Adversarial Distance search
when considering the utility functions presented in previous
works. We then show some of the high-confidence mistakes
discovered by the Adversarial Distance search and discuss
what they tell us about model quality. We also provide a
discussion on why Adversarial Distance helps reveal these
informative instances.

A. Other Utility Functions

The Bansal and Weld Utility function is defined in Equation
1, and shows that the utility function rewards the discovery of
errors that occur near high-confidence points. Being near high-
confidence points is an important distinction because it does
not directly reward finding high-confidence errors. Figure 5
shows that the Bansal and Weld search achieves high values
for the Bansal and Weld utility. However, by looking at the
number of errors discovered (Figure 6), and the confidence of
the points sampled by the Bansal and Weld search (Figure 7),
it becomes obvious that high values of the Bansal and Weld
utility can be achieved by finding a large number of lower
confidence errors; even if these errors should be expected given
the model confidence. The Bansal and Weld search achieves
an SDR similar to random search, and it is not clear that the
search is achieving anything other than selecting samples in
the lower confidence ranges. This is further confirmed by the
strong performance of the low confidence search for this utility
function. The Adversarial Distance search may not perform
as well for this utility measure because it discovers fewer
errors, but our results from the previous section show it still
samples throughout the search space and finds more errors than
expected given the confidences of the sampled predictions.
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Figure 5: Mean Bansal and Weld utility across 1,000 runs of the search
methods.

The Lakkaraju utility function counts the number of errors
discovered by the search method. Figure 6 shows that the low
confidence search and the Bansal and Weld search maximize
this utility. However, as shown in Figure 7, these methods
sample lower confidence points, and so we should expect
them to find errors at high rates. The Adversarial Distance
search samples predictions with similar confidence levels to
the random search (Figure 7), but finds more errors. We believe
that this is strong evidence that our method finds errors that
point to model overconfidence because both methods sample
predictions of similar confidence, but the Adversarial Distance
search finds more errors and achieves greater SDR values.
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Figure 6: Mean number of errors discovered across 1,000 runs of the search
methods. This is the utility function presented by Lakkaraju for imagery.
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Figure 7: Box plot showing the model confidence of the sampled data points.

Interestingly, the Lakkaraju search method achieves com-
petitive values for the Bansal and Weld utility while having
a lower number of discovered errors. It is likely that the
discovered errors are in close proximity to high-confidence
predictions. Still, the query sets of the Lakkaraju search
achieve a low SDR which indicates that errors are occurring
at the expected rate (with the exception of the UT-Zap50K
dataset which is revealed to have a large amount of overcon-
fidence in Figure 2).

B. Discovered Errors

Figure 8 shows the first six errors discovered by the
Adversarial Distance search for the Kaggle13 dataset. LIME
[19] has been run for each image to find the superpixels
that the model considers most important in classifying these

images as “cat”. Note that some images are missing LIME
information (the green outline) because the method did not
identify superpixels for that image that exceeded the default
threshold of importance. In general, the errors discovered by
the Adversarial Distance search were of dogs with light fur,
or dogs on a light background. For the cases where LIME
discovered important superpixels, the light-colored superpixels
were the most important indicators of the image containing a
cat. These high-confidence mistakes suggest that the model is
biased to place images with light colors into the cat class. This
is consistent with the training set containing only light furred
cats after the dataset was biased.

Figure 8: Dogs predicted to be cats with high confidence. Notice the dogs have
light fur or are on a light background. LIME also indicates that light colored
superpixels are the most important indicator of the cat prediction (LIME did
not identify critical superpixels for each image).

Similar results can be found for the CelebA and UT-Zap50K
datasets, but were not included for brevity.

C. Insight to Adversarial Distance
Figure 9 provides some insight as to how Adversarial

Distance helps find high-confidence mistakes. The first column
shows the original image and the important superpixels leading
to the image’s misclassification. The second column shows the
adversarial image and the superpixels leading to the image’s
correct classification. The third column shows the image from
the critical class with the highest Adversarial Distance, as a
kind of prototypical instance.

The first row of Figure 9 is from the CelebA dataset. For the
original image, the classifier predicts the image to be “male”,
and may be focused on the absence of bangs. After perturbing
a very small number of pixels, the classifier predicts female
and seems to be focused on the absence of sideburns (as
shown in the prototypical male image). In the second row, the
classifier predicts the original image to be a cat, and seems
focused on the light color of the hand (similar to the light color
of the prototypical cat image). In the adversarial image, the
classifier predicts the image to be a dog, and is now focused
on the dark nose. In the third row, the classifier predicts the
image to be “not shoe”, and seems to be focused on the toe,
and the absence of a heal. For the adversarial image, the



Figure 9: The first column is the original image (incorrectly labeled the critical
class) with LIME activation . The second column is the adversarial image (now
correctly classified) with LIME activation . The third column is the image from
the critical class with the highest Adversarial Distance. It is interpreted as a
prototypical instance from the critical class.

classifier predicts shoe and highlights the back of the shoe
(the prototypical “not shoe” has no back).

In the cases highlighted above, the classifier is incorrect
in its prediction because it seems to focus on non-robust
features of the image. However, robust features that could
lead to the correct prediction are also present in the image.
For example: the shoe has a well defined back, the dog has
a dark nose, and the woman does not have sideburns or
facial hair. These images likely have low Adversarial Distances
because these robust features exist in the image and only small
perturbations are required to break the non-robust features
leading to an incorrect prediction. Additionally, because these
robust features exist in the image, the classifier should not have
been as confident in its prediction as it was. A low Adversarial
Distance seems to indicate the presence of contradictory robust
features or model overconfidence. Sampling these types of
images helps discover errors at rates exceeding expectation.

VII. CONCLUSIONS

In this work, we introduced the concept of Adversarial
Distance and showed how it can be used to help discover
prediction errors at rates exceeding what would be expected
given the confidence of the model’s predictions. That is, when
the Mean Absolute Error between an image and its adversarial
version is lower than expected for a given classifier confidence,
the classifier may be more confident in its prediction than is
appropriate.

Experimental results compared the Adversarial Distance
search to existing methods designed to search for high-

confidence classification errors. Results showed that all meth-
ods achieved similar values of “spread”, meaning, they all
searched evenly throughout the problem’s derived feature
space. However, the Adversarial Distance search achieved the
largest Standardized Discovery Ratios, meaning, it resulted in
the highest rate or error discovery relative to the expected error
rate.

Future work should focus on the observation that the
Adversarial Distance search seems to discover fewer errors as
the number of search queries increases. This is likely because
the density of mistakes decreases as Adversarial Distance
increases. Therefore, when considering large searches, we
believe it may be beneficial to use the Adversarial Distance
search to prime methods that learn a meta-model of classifier
error. Additionally, future work should focus on the uses of
the discovered errors. For example, further model calibration
or improved risk mitigation strategies.
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