
A Co-Training-based Algorithm Using Confidence
Values to Select Instances

Karliane M. O. Vale, Flavius L. Gorgônio, Yago N. Araújo
Dept. of Computing and Technology

Federal University of Rio Grande do Norte
Caicó, Brazil

{karliane, flavius}@dct.ufrn.br, yagonobreg@gmail.com

Arthur C. Gorgônio, Anne Magály de P. Canuto
Dept. of Informatics and App. Mathematics
Federal University of Rio Grande do Norte

Natal, Brazil
gorgonioarthur@gmail.com, anne@dimap.ufrn.br

Abstract—Data classification tasks have been used in a wide
range of problems in the Machine Learning field and the
different learning paradigms (supervised, unsupervised or semi-
supervised) define the task a computer can learn from a set of
labeled and/or unlabeled data. This paper presents a study in
the semi-supervised learning paradigm and proposes changes on
the co-training algorithm in order to propose a confidence value
procedure to include new instances in the labeled dataset. In
order to evaluate the proposed method, an empirical analysis with
30 datasets has been conducted, with different characteristics,
that were set up with different percentages of initially labeled
instances. Each dataset was trained using four different classifi-
cation algorithms (Naive Bayes, Decision tree, Ripper and k-NN)
as basis for the co-training training procedure. The obtained
results are promising and they indicate that, in most cases, the
proposed method performs better than the co-training method
originally proposed in the literature.

Index Terms—Data classification, Semi-supervised learning,
Co-training algorithm.

I. INTRODUCTION

Machine learning is a research field that aims to develop
computational algorithms to automate tasks and, consequently,
to reduce the need for human and specialist intervention in
tasks that can be automated. According to the type of data
used in the machine learning process, we have three learning
paradigms: unsupervised learning (in which all the instances
are unlabeled), supervised learning (in which all the instances
are labeled) and semi-supervised learning (in which some part
of the instances is labeled) [1].

Data classification, a common task in machine learning
that has been applied to a wide range of problems, uses
primarily supervised learning algorithms. However, a natural
limitation of such algorithms is that they need to have a set
of labeled instances with a reasonable size in order to achieve
a reasonable performance. In this case, the need for a large
number of training instances is undeniably a critical problem.
Given that the cost of manually labeling instances is usually
high and it is a time-consuming process, one way to smooth
out this problem is through a process of training classifiers
with a small amount of labeled data and a large amount of
unlabeled data, which is known as semi-supervised learning
(SSL).

Semi-supervised learning algorithms use labeled instances
to build their initial hypothesis and combine the information

obtained from these instances in order to label the unlabeled
instances. In other words, it is possible to use partially-
supervised information to guide the learning process and to
increase the amount of evidence of the target labels [2].

There are several semi-supervised learning models and al-
gorithms described in the literature, including self-training, co-
training and multi-view learning, mixture models, graph-based
methods, and semi-supervised support vector machines [3].
The training process for semi-supervised learning algorithms
is similar to any model. Initially, a classifier is trained from a
reduced number of labeled instances. This classifier is then
used to classify instances that have not yet been labeled,
which are added to the training dataset. Finally, the classifier is
retrained using the modified dataset and the whole procedure
is repeated [1].

The two most used SSL algorithms are self-training and
co-training and the labeling process for these algorithms is
similar [4]. The main difference between co-training and other
algorithm is that the former uses an approach based on the
idea of multi-description. In its execution, training instances
are described by two or more sets of disjoint attributes, i.e.,
through different describing views. Nevertheless, each view is
sufficient to train one or more classifiers [5].

However, we have observed that the process of automatic
assignment of labels is still a difficult task. The main question
is related to the random choice of the unlabeled instances to
be labeled. In order to smooth out the problem cited above,
Rodrigues et al. [6] proposed a confidence parameter to guide
the labeling process of the self-training method. According to
the authors, the main idea is to minimize the randomness in
which the instances are chosen during the labeling process.

In this paper, we will address the limitation of the co-
training algorithm related to the selection criterion used to
decide the instances to be labeled in each iteration. Our
objective is to present a more robust extension of the co-
training algorithm, named Co-Training with Fixed Threshold
- CTFT, which uses a confidence threshold as a selection
criterion of the unlabeled instances. The main advantage of
CTFT is that, during the labeling process, this method selects
only instances whose confidence in prediction are higher than
or equal to the threshould, so that they are considered reliable.
In order to evaluate the feasibility of the proposed strategy,

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

an empirical analysis has been conducted. In this analysis,
the proposed algorithm (with threshold) was compared to the
original co-training, using 30 classification datasets.

This paper is divided into seven sections as follows. Sections
II and III describe the fundamental concepts and some research
related to the subject of this paper, while a detailed description
of the proposed method is illustrated in Section IV. In Section
V, the methodology used in the empirical analysis is described.
Section VI presents the results provided by the empirical
analysis and some discussions about them. Finally, Section
VII presents some conclusion.

II. SEMI-SUPERVISED LEARNING

As the name itself suggests, semi-supervised learning is
situated between the supervised and unsupervised learning
paradigms, given that it works with partially labeled data
[3]. The difference between these paradigms is related to
the way in which the knowledge generalization process is
carried out. While supervised learning uses instances whose
classes (labels) are previously known, in unsupervised learning
such classes are unknown [7]. Therefore, the definition of
the supervised learning task consists of training classifiers
based on previously known classification instances. However,
in real-world classification tasks, you can find datasets in
which only part of the data is labeled, while the rest has no
labels. The semi-supervised learning mechanism proposes to
treat data with such characteristics in order to achieve a better
classification [8].

Semi-supervised learning considers the set D of instances
as being divided into two sets: 1) the labeled data {DL} =
{(xi, yi)|i = 1, · · · , l}, so that x is an instance, y is the label
for this instance x and l is the number of labeled instances; 2)
the unlabeled data {DU} = {(xj)|j = l+1, · · · , l+u}, so that
x is an instance and u is the amount of unlabeled instances.
Often, it is assumed that |DU | � |DL|.

One of the advantages of semi-supervised learning is the
potential to reduce the need for large amounts of labeled data
in domains in which only a small set of labeled instances
is available [9]. An additional advantage of this learning
paradigm can be verified in scenarios in which an expert
does not have a complete knowledge about the concept to be
learned. In other words, this expert only has knowledge con-
cerning some instances of a given dataset, having, therefore,
some difficulties of labeling instances to increment the training
dataset. Several researches have been developed addressing the
semi-supervised learning, either to solve problems [10]–[12],
or to create extensions or new algorithms [13]–[16]. In this
work, the co-training algorithm has been modified in order to
enable changes in the process of inclusion of new instances
in the labeled dataset.

The co-training algorithm, like the other semi-supervised
learning algorithms, increases the labeled set of data by
iteratively classifying the set of unlabeled data and moving
the most reliable prediction instances to the labeled set of
data [17]. In this method, two complementary classifiers are
generated simultaneously, fed with two different views of the

set of attributes: xi = [x(1)i , x(2)i], where xi is an instance,
x(1)i is an instance view, containing a subset of attributes
of xi and x(2)

i is the other instance view, containing the
remaining attributes of the xi, which have not been used in
x(1)i . Once each classifier provides its prediction, their outputs
are combined using a voting strategy (or any other combination
strategy). In parallel, after generating these two groups from
the data, the labeled dataset needs to be increased. In order to
do this, the prediction of the first classifier is used to increase
the labeled set available for the second classifier, and vice
versa [18]. In other words, the prediction of one classifier is
included in the labeled set of the other classifier.

Figure 1 shows the flow of the labeling process for co-
training. As it can be observed in this figure, at the beginning,
two views are created, in which two supervised classifiers are
generated using the two different views (C1 and C2) of the
initially labeled data. The next step is to classify the unlabeled
data, using classifier C1 to label based on view 1 and C2

to label based on view 2. Finally, the instances with highest
confidence in each classifier are selected and added to the set
of labeled data of the other classifier. This process is repeated
until the set of unlabeled data is empty. Algorithm 1 describes
the steps performed to carry out this process in the co-training
algorithm.

Fig. 1. Labeling process in co-training.

As it can be observed, in the co-training algorithm, two
classification algorithms are used in order to provide the pre-
dictions of the unlabeled instances. Among the classification
algorithms usually used in the literature, some of the most
significant are Naive Bayes (NB), Decision tree (DT), rule
based classification algorithm (ripper) and k-Nearest Neighbor
(k-NN. The Naive Bayes method is a probabilistic classifier
based on applying Bayes’ theorem that assumes the attributes
are conditionally independent [19]. The Decision tree classifier
is based on a divide-and-conquer strategy to solve a decision
problem [19]. The ripper algorithm is a propositional rule
learning algorithm that performs efficiently on large noise
datasets, naturally extends first-order representation and are
competitive with Decision tree in generalization performance
[20]. The k-NN algorithm classifies a new instance based on
the class that appears most frequently among the closest in-
stances and, to achieve this, it usually considers the Euclidean
distance [21]. These four classification algorithms will be used
in the empirical analysis to be performed in this paper.

Algorithm 1: Co-training algorithm

1 Input: labeled data {DL} = {(xi, yi)|i = 1 · · · l},
unlabeled data {DU} = {(xj)|j = l + 1 · · · l + u}, a
learner named k.

2 begin
3 Every instance has two views Xi = [X

(1)
i , X

(2)
i].

4 Initially, we have the training instances as
D

(1)
L = {(X(1)

i , Yi), ..., (X
(1)
l , Yl)} and

D
(2)
L = {(X(2)

i , Yi), ..., (X
(2)
l , Yl)} as well as

5 the unlabeled instances as
D

(1)
U = {(X(1)

i), ..., (X
(1)
l)} e

D
(2)
U = {(X(2)

i), ..., (X
(2)
l)}

6 where,
7 {DL} = D

(1)
L ∪D

(2)
L e D

(1)
L −D

(2)
L = ∅

8 {DU} = D
(1)
U ∪D

(2)
U e D

(1)
U −D

(2)
U = ∅

9 repeat
10 Generate classifiers C(1) and C(2) from

training data D
(1)
L e D

(2)
L , respectively.

11 Classify the unlabeled data D
(1)
U and D

(2)
U

using the classifiers C(1) and C(2),
respectively.

12 Add the first k instances with highest
confidence prediction classified by C(1) to set
D

(2)
L .

13 Add the first k instances with highest
confidence prediction classified by C(2) to set
D

(1)
L .

14 Remove those instances from the unlabeled
dataset.

15 until {DU} = ∅;
16 end
17 Output: labeled data

III. RELATED WORK

In this section, some studies are described in which co-
training is used with the goal of solving problems. In [10],
for instance, a semi-supervised approach was proposed that
adapts active learning to the co-training algorithm to classify
hyperspectral images, automatically selecting new training
samples of unlabeled pixels. The effectiveness of the proposed
approach is validated using a probabilistic support vector
machine classifier.

Research [11] is aimed at designing a semi-supervised
learning model for the NER system (Indonesian Named En-
tity Recognition). The NER system aims to identify and to
classify an entity based on its context, however few instances
have a label. Thus, the semi-supervised learning model co-
training was used to deal with unlabeled data in the NER
learning process and to produce new labeled data that can be
applied to improve a new NER classification system. Another
study with co-training can be found in [12], in which the
authors proposed a new approach for classifying students in an

academic credit system, combining transfer learning and co-
training. The resulting model can effectively predict the study
status of a student enrolled in an educational program, using a
classification model enhanced by transfer learning techniques
and co-training in educational data from another program. In
addition, this approach can address the scarcity of sets of
educational data for early prediction of students with problems.

There are, additionally, some studies, similar to this one,
which extend co-training or use it to create new algorithms.
In research [13], for instance, Deep Co-training was created,
which consists of a method based on deep learning (inspired
by the structure of co-training). Deep Co-training trains several
deep neural networks to be used with the different views
necessary for the functioning of co-training and explores
contradictory examples to encourage differences among the
views, in order to prevent the neural networks to collapse
with one another. In [14] a method named multi-co-training
was proposed, which aimed at improving the performance of
a document classification system. Documents are transformed
using three document representation methods in order to
increase the variety of the sets of attributes for classification.

In [15], a semi-supervised learning algorithm was intro-
duced, which combines co-training with the support vector
machine (SVM) classification algorithm. By means of an
interactive learning procedure, the new final set of labeled data
can be determined based on sets of unlabeled data, training two
SVM classifiers. Additionally, in [16], the authors pŕoposed a
new object recovery algorithm based on co-training, named
co-transduction. The objective of this work was to develop an
algorithm to merge different measures of similarity for robust
object recovery through a semi-supervised learning structure.
Given two similarity measures and a shape to be queried, the
proposed algorithm iteratively retrieves the most similar shapes
using one measure and assigns them to a pool for the other
measure to make a new classification and vice versa.

Finally, it is worthwhile to mention that the algorithm
presented in this work was inspired by the extension proposed
in [6], which used a confidence parameter in the self-training
labeling process to minimize the inclusion of noise and to
improve, in general, the accuracy of the classification tasks.
Therefore, only instances whose output labels yielded by the
classifier have confidence values above a confidence threshold
are taken into account. In this sense, this confidence threshold
was used to define the automatic label assignment in the semi-
supervised learning process.

IV. THE PROPOSED CO-TRAINING METHOD

The general steps of the extension of the co-training algo-
rithm proposed in this work, named Co-Training with Fixed
Threshold (CTFT), is shown in Figure 2. In this figure, the
dashed rectangle in the upper right corner represents the main
difference between this proposal and the original co-training.
As in the original co-training, CTFT begins by creating two
distinct views (1 and 2) of the data set. Then, two supervised
classifiers (C1: view 1 and C2: view 2) are generated using the
sets of labeled data as training set. As mentioned previously,

these two classifiers are used to classify the unlabeled data.
In the following step, the instances whose confidence value in
the prediction is higher than or equal to a confidence threshold
defined for each classifier are selected and labeled using
the prediction delivered by the classifier output combination.
Then, the unlabeled instances selected in the previous step,
predicted by the classifiers C2 and C1, are added to the set of
labeled data of both classifiers, using the co-training inclusion
procedure (described in Section II). Finally, the process restarts
using the new sets of labeled data and iterates until the sets
of unlabeled data are empty or there are no instances whose
confidence in the prediction is higher than or equal to the
minimum accepted confidence.

Fig. 2. The general steps of Co-Training with Fixed Threshold (CTFT)

As already mentioned, in this work, we developed an
extension of the co-training algorithm following the same
methodology described in [6]. In other words, we included
a new parameter, called confidence threshold, which is re-
sponsible for selecting instances in the labeling process. In
the original co-training algorithm, the number of instances to
be included in the labeling was also a parameter, k (steps 13
and 14 of Algorithm 1). However, it is a static parameter that
always selects the same number of instances to be labeled
and it is the same value for both classifiers. However, as
classifiers C2 and C1 have different views of the same dataset,
they may have different behavior (performance). Additionally,
their behavior may change throughout the labeling process.
Therefore, the use of a single static parameter may not be
an efficient selection for the labeling process. Aiming at
making this process more robust, we introduce the confidence
threshold, which defines the accepted minimum confidence
that an instance must have in order to be included in the
labeled set. This confidence threshold (CT) is defined for each
classifier and a different number of unlabeled instances may be
selected to be included in the labeled set at each iteration. As a
consequence, in this proposed algorithm, the labeling process
may not label all unlabeled instances, but only those whose
confidence thresholds are higher than the minimum accepted
confidence.

Algorithm 2 presents the main steps of the CTFT. In
this algorithm, the lines 12 and 13 represent the differences
between this algorithm and the original co-training (Algorithm
1).

V. EXPERIMENTAL METHODOLOGY

An empirical analysis is conducted in order to validate
the feasibility of the proposed co-training algorithm. In this

Algorithm 2: Co-training algorithm using a fixed
threshold

1 Input:labeled data {DL} = {(xi, yi)|i = 1 · · · l},
unlabeled data {DU} = {(xj)|j = l + 1 · · · l + u},
minimal confidence mc.

2 begin
3 Each instance has two views Xi = [X

(1)
i , X

(2)
i].

4 Initially we have training instances as
D

(1)
L = {(X(1)

i , Yi), ..., (X
(1)
l , Yl)} and

D
(2)
L = {(X(2)

i , Yi), ..., (X
(2)
l , Yl)} and

5 unlabeled data as D
(1)
U = {(X(1)

i), ..., (X
(1)
l)} and

D
(2)
U = {(X(2)

i), ..., (X
(2)
l)}

6 where,
7 {DL} = D

(1)
L ∪D

(2)
L and D

(1)
L −D

(2)
L = ∅

8 {DU} = D
(1)
U ∪D

(2)
U and D

(1)
U −D

(2)
U = ∅

9 repeat
10 Generate the classifiers C(1) and C(2) from

training data D
(1)
L and D

(2)
L , respectively.

11 Classify unlabeled data D
(1)
U e D

(2)
U using the

classifiers C(1) e C(2), respectively.
12 Add to set D(2)

L the instances classified by
C(1), whose prediction’s confidence rate is
greater than or equal to the minimum
confidence threshold (CR1) for the inclusion
of new instances.

13 Add to set D(1)
L the instances classified by

C(2), whose prediction’s confidence rate is
greater than or equal to the minimum
confidence threshold (CR2) for the inclusion
of new instances.

14 Remove those instances from the set of
unlabeled data.

15 until {DU} = ∅ or @xi∈{DU} | conf(xi)≥mc;
16 end
17 Output: labeled data

analysis, we used 30 different classification datasets, obtained
from different repositories: UCI Machine Learning (UCI)
[22], Knowledge Extraction based on Evolutionary Learning
(KEEL) [23], Kaggle Datasets [24] and GitHub [25]. Table
I briefly describes the datasets used, in terms of the number
of instances (#Inst), attributes (#Att) and classes (#Classes)
in each dataset. In addition, it also indicates the type of data
(Type), whether it be integer (I) and/or categorical (C) and/or
real (R).

Figure 3 presents an example to illustrate the division of
the dataset to be used in this analysis, considering the learning
strategy used. As it can be observed in Figure 3, ten distinct
sets of 90% of the total dataset for training and 10% for testing
are created. This is due to the fact that we are applying a 10-
fold stratified cross validation technique. It is common to have
a sample of data for training and another independent sample,
with different instances, for testing. As long as both samples

TABLE I
DATASETS

Dataset #Inst #Att #Class Type
Balance Scale 625 5 3 C
BTSC1 748 5 2 C
Bupa 345 7 2 C,I,R
Car Evaluation 1728 7 4 C
Cnae-9 1080 857 9 I
Connectionist Bench 208 60 2 R
Hill Valley With Noise 606 101 2 R
Image Segmentation 2310 19 7 R
Indian Liver Patient 583 10 2 I,R
Iris 150 4 3 R
KR vs KP2 3196 37 2 C
Leukemia 100 50 2 R
Mamographic Mass 961 6 2 I
Multiple Features 2000 649 10 R
Mushroom 8124 22 2 C
Musk 6598 168 2 I
Ozone Level Detection 2536 73 2 R
Pen Digits3 10992 16 10 I
Phishing Website 2456 30 3 I
Pima 768 9 2 I, R
Planning Relax 182 13 2 R
Seeds 210 7 3 R
Semeion 1593 256 10 I
Solar Flare 1389 10 3 C
SPECTF Heart 267 44 2 I
Tic-Tac-Toe Endgame 958 9 2 C
Twonorm 7400 21 2 R
Vehicle 946 18 4 I
Waveform 5000 40 3 R
Wilt 4839 6 2 R
1Blood Transfusion Service Center. 2King-Rook vs King-Pawn.
3Pen-based recognition of handwritten digits.

are representative, the error rate in the test suite provides a
good indication of performance [20].

Fig. 3. An example of data division.

Once a dataset is divided into training and testing, the test
set is separated and the training set is further divided into
labeled and unlabeled sets. Since all datasets are originally
labeled, it is possible to perform an extensive analysis of
the impact of the size of the initially labeled set in the
analysed semi-supervised methods. In this analysis, 5 different
configurations are used, 5%, 10%, 15%, 20% and 25% of
the data initially labeled. In other words, of the 90% of the

instances selected for training, the process started with either
5%, 10%, 15%, 20% or 25% of the labeled data. In this way, it
is possible to analyze the performance of the analysed methods
as the amount of instances initially labeled increases. The
choice of the labeled dataset was made randomly, but in a
stratified way, respecting the same proportion of classes as
the dataset original dataset.

After pre-processing the data, the training/test procedure
starts. In this analysis, four classification algorithms well
known in the literature are applied: Naive Bayes, decision
tree, Ripper and k-NN. As explained earlier, these algorithms
are chosen because of their popularity and their use in the
machine learning domain. For all algorithms, we used the
implementations of the Weka tool, available in the R language.
More details on the operation of the classification algorithms
and their implementation in the R language can be obtained
in [26] and [27].

Additionally, it was necessary to choose a confidence thresh-
old to be used throughout the labeling process. Therefore,
we performed an initial analysis using different values, of
which 95% obtained the better results. In order to validate
the performance of the proposed methods from a statistical
point of view, we applied the Wilcoxon test. Since this test is
non-parametric, it is suitable for comparing the performance
of two learning algorithms when applied to separate datasets.
A more complete discussion of the Wilcoxon test is presented
in [28].

VI. RESULTS AND DISCUSSION

In this section, we will present and analyse the results of
the empirical analysis which evaluates the performance of the
proposed method, CTFT. As previously explained, the results
obtained from these methods will be compared with those
obtained from the original co-training algorithm.

This analysis is divided into two parts and, in the next two
subsections, we will present the obtained results for each part,
obtained performance and statistical analysis, respectively.

A. Performance Analysis

Table II, that reports the obtained results, is organized as
follows: the first column represents the name of the methods;
columns 2 to 6 indicate the average accuracy and stan-
dard deviation obtained by the corresponding semi-supervised
method, averaged over all 30 datasets, according to the per-
centage of initially labeled instances, namely: 5%, 10%, 15%,
20% and 25%, respectively. In addition, the CTFT accuracy
levels which are higher than the original co-training - OCT
are highlighted in bold. The horizontal sub-parts of this table
present the average accuracy of each classification algorithm:
Naive Bayes, Decision tree, Ripper and k-NN.

By analysing Table II, it is possible to notice that the method
proposed in this work (CTFT) obtained higher accuracy than
the original co-training (OCT) in all analysed cases. In addi-
tion, as it was expected, the accuracy of both methods increase
as the percentage of initially labeled instances increases. When
using 5% of instances in the labeling set, the initial training

TABLE II
AVERAGE ACCURACY OF ALL METHODS WITH NAIVE BAYES, DECISION

TREE, RIPPER AND K-NN

% of inicially labeled instances
Met. 5% 10% 15% 20% 25%

Naive Bayes
OCT 59.90 ± 19.47 61.59 ± 18.89 62.75 ± 18.50 63.13 ± 18.67 63.89 ± 18.62
CTFT 61.98 ± 17.72 64.34 ± 17.57 65.32 ±17.90 65.89 ± 18.26 66.81 ± 17.45

Decision tree
OCT 59.63 ± 20.92 63.18 ± 20.10 65.90 ± 18.81 66.98 ± 18.22 68.43 ± 17.95
CTFT 62.09 ± 19.99 68.66 ± 16.75 70.00 ± 15.74 71.03 ± 15.29 72.26 ± 14.79

Ripper
OCT 59.26 ± 16.78 63.19 ± 15.64 65.07 ± 15.91 66.64 ± 15.77 68.65 ± 15.87
CTFT 64.07 ± 16.33 67.92 ± 15.30 69.63 ± 14.80 70.38 ± 14.29 71.66 ± 14.12

k-NN
OCT 65.15 ± 17.88 69.04 ± 17.32 70.71 ± 17.05 72.25 ± 16.87 72.88 ± 17.01
CTFT 70.28 ± 14.66 72.79 ± 14.06 74.41 ± 13.32 75.07 ± 13.27 75.66 ± 12.81

sets are usually very small and, as a consequence, this classifier
will not be able to classify efficiently the unlabeled instances.
However, the difference in performance when increasing from
5% to 25% the percentage of initially labeled instances was
not huge for k-NN, for example.

It is important to emphasize that both methods (OCT and
CTFT) have high standard variation values. This is due to the
fact that the values presented in this table are averaged over
30 datasets. As these datasets represent different classification
applications, the analysed methods tend to have different
performances over these 30 datasets, leading to a high standard
deviation.

There is also an important aspect to be highlighted in
relation to the CTFT algorithm. As previously mentioned, due
to the fact that this algorithm uses a fixed threshold, it does
not label instances whose confidence rate is lower than the
threshold initially set. As a consequence, the set of labeled data
may only contain those instances whose prediction is reliable,
positively affecting the prediction of the classifiers and, as a
consequence, improving the effectiveness of the co-training
testing process.

Figure 4 shows the average percentage of labeled instances
for each classifier using the OCT and CTFT algorithms during
the labeling process. When analyzing this figure, we can see
that the CTFT algorithm labels between 30% and 70% of
the instances of the set of initially unlabeled data. On the
other hand, the OCT algorithm always labels the entire set of
unlabeled data.

These results show that the inclusion of instances in the
labeled set which are not reliable (low confidence) may deteri-
orate the performance of a semi-supervised method. Therefore,
a more meticulous selection criterion can have a positive effect
in the performance of these methods and this is the main
motivation behind the proposal of CTFT.

B. Statistical Analysis

After a visual evaluation of the performance of each semi-
supervised method, there is a need to perform a statistical
analysis of the obtained results. As previously explained,
the Wilcoxon test was used to compare the performance
of different methods applied to different datasets. Table III

Fig. 4. Percentage of instances labeled in each method, separated by classifier

presents the results (p-values) of the Wilcoxon test. This table
is organized as follows: the first column represents the name
of the analysed classification algorithms, namely: Naive Bayes
(NB), Decision tree (DT), Ripper and k-NN; columns 2 to 6
indicate the obtained p-value, according to the percentage of
initially labeled instances, namely: 5%, 10%, 15%, 20% and
25%, respectively. In this case, for each cell configuration,
CTFT was compared to COT, using the Wilconxon test.

TABLE III
WILCOXON TEST´S RESULT FOR EACH CLASSIFICATION ALGORITHMS FOR

EACH PERCENTAGE OF INITIALLY LABELED INSTANCES

% of inicially labeled instances
Alg. 5% 10% 15% 20% 25%
NB 7.98e-03 1.29e-06 1.07e-06 1.61e-08 3.51e-10
DT 1.07e-06 2.96e-15 8.66e-14 1.94e-11 8.25e-11
Ripper 8.85e-08 4.98e-08 1.34e-09 1.33e-09 1.31e-08
k-NN 1.52e-13 4.31e-10 1.03e-11 1.80e-05 3.45e-07

By analyzing the referred table, it is possible to observe
that in all cases the p-value was lower than 0.05. Therefore,
we can conclude that, from a statistical point of view, the
proposed method provides higher accuracies than the original
co-training.

VII. CONCLUSION

This work presented an extension of the co-training method,
named Co-Training with Fixed Threshold (CTFT). As previ-
ously highlighted, the original co-training algorithm (OCT) has
a limitation related to the selection criterion to define which
instances will be labeled at each iteration. It tends to included
not reliable instances and this can deteriorate the performance
of this method. The purpose of our proposal was to smooth
out this limitation by including a confidence threshold as the
selection criterion to include new instances in the labeled set,
thus improving the overall average accuracy of the proposed
method, when compared to the approach used by the OCT.

The proposed algorithm was evaluated in an empirical
analysis that gathered 30 databases with diverse characteristics.

In addition, four different classification algorithms and five dif-
ferent percentages of initially labeled instances were assessed,
simulating situations that may occur in real-world databases.
The results obtained demonstrated that CTFT significantly
improves the average accuracy of OCT, as verified by the
application of Wilcoxon statistical tests on the obtained results.

Despite the improvement obtained from the use of CTFT in
relation to OCT, it is worth mentioning that, unlike the OCT
algorithm, CTFT may not label all instances of the unlabeled
data set. The behavior of OCT implies the possibility of in-
cluding instances with low confidence (not reliable instances),
which can negatively influence the prediction of this method.
On the other hand, the CTFT procedure limits the inclusion
of some instances in the set of labeled data. In this way, the
training set will contain only those instances whose prediction
is reliable, positively affecting the prediction of the classifiers.

REFERENCES

[1] O. Chapelle, B. Scholkopf, and A. Zien, Semi-Supervised Learning. The
MIT Press, 2006.

[2] J. Tanha, M. Van Someren, and H. Afsarmanesh, “Semi-supervised self-
training for decision tree classifiers,” International Journal of Machine
Learning and Cybernetics, vol. 8, pp. 355–370, Feb 2017.

[3] X. Zhu and A. B. Goldberg, “Introduction to semi-supervised learning,”
Synthesis Lectures on Artificial Intelligence and Machine Learning,
vol. 3, no. 1, pp. 1–130, 2009.

[4] K. M. O. Vale, A proposal to automate the process of labeling instances
in semi-supervised learning algorithms (in Portuguese). PhD thesis,
Federal Univ. of Rio Grande do Norte, Nov. 2019.

[5] E. Matsubara, M.-C. Monard, and G. Batista, “Multi-view semi-
supervised learning: An approach to obtain different views from text
datasets.,” pp. 97–104, 01 2005.

[6] F. M. Rodrigues, A. de M Santos, and A. M. P. Canuto, “Using
confidence values in multi-label classification problems with semi-
supervised learning,” in The 2013 International Joint Conference on
Neural Networks (IJCNN), pp. 1–8, 2013.

[7] M. C. Monard and J. A. Baranauskas, Sistemas Inteligentes: Fundamen-
tos e Aplicações, ch. Conceitos sobre Aprendizado de Máquina, p. 89
114. Manole, 2003.

[8] M. Wang, W. Fu, S. Hao, D. Tao, and X. Wu, “Scalable semi-supervised
learning by efficient anchor graph regularization,” IEEE Transactions on
Knowledge and Data Engineering, vol. 28, pp. 1864–1877, July 2016.

[9] A. Santos and A. Canuto, “Applying semi-supervised learning in hi-
erarchical multi-label classification,” Expert Systems with Applications,
vol. 41, no. 14, pp. 6075 – 6085, 2014.

[10] S. Samiappan and R. J. Moorhead, “Semi-supervised co-training and
active learning framework for hyperspectral image classification,” in
2015 IEEE International Geoscience and Remote Sensing Symposium
(IGARSS), pp. 401–404, July 2015.

[11] B. Aryoyudanta, T. B. Adji, and I. Hidayah, “Semi-supervised learning
approach for indonesian named entity recognition (ner) using co-training
algorithm,” in 2016 International Seminar on Intelligent Technology and
Its Applications (ISITIA), pp. 7–12, July 2016.

[12] N. D. Hoang, V. T. N. Chau, and N. H. Phung, “Combining transfer
learning and co-training for student classification in an academic credit
system,” in 2016 IEEE RIVF International Conference on Computing
Communication Technologies, Research, Innovation, and Vision for the
Future (RIVF), pp. 55–60, Nov 2016.

[13] S. Qiao, W. Shen, Z. Zhang, B. Wang, and A. Yuille, “Deep co-training
for semi-supervised image recognition,” in The European Conference on
Computer Vision (ECCV), September 2018.

[14] D. Kim, D. Seo, S. Cho, and P. Kang, “Multi-co-training for document
classification using various document representations: Tf-idf, lda and
doc2vec,” Information Sciences, 2019.

[15] Y. Chen, T. Pan, and S. Chen, “Development of co-training support
vector machine model for semi-supervised classification,” in 2017 36th
Chinese Control Conference (CCC), pp. 11077–11080, July 2017.

[16] X. Bai, B. Wang, C. Yao, W. Liu, and Z. Tu, “Co-transduction for shape
retrieval,” IEEE Transactions on Image Processing, vol. 21, pp. 2747–
2757, May 2012.

[17] S. Sun, L. Mao, Z. Dong, and L. Wu, Multiview Machine Learning.
Springer, 2019.

[18] A. Albalate and W. Minker, Semi-Supervised and Unsupervised Machine
Learning - Novel Estrategies. Wiley, 2011.

[19] T. M. Mitchell, Machine Learning. McGraw-Hill, 1997.
[20] I. H. Witten, E. Frank, and M. A. Hall, Data Mining: Practical Machine

Learning Tools and Techniques. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 3rd ed., 2011.

[21] L. I. Kuncheva, Combining Pattern Classifiers: Methods and Algorithms.
Wiley Publishing, 2nd ed., 2014.

[22] D. Dheeru and E. Karra Taniskidou, “UCI machine learning repository,”
2017.

[23] J. Alcala-Fdez, A. Fernandez, J. Luengo, J. Derrac, and S. Garcia, “Keel
data-mining software tool: Data set repository, integration of algorithms
and experimental analysis framework.,” Multiple-Valued Logic and Soft
Computing, vol. 17, no. 2-3, pp. 255–287, 2011.

[24] J. W. Smith, J. E. Everhart, W. C. Dickson, W. C. Knowler, and R. S.
Johannes, “Using the ADAP learning algorithm to forecast the onset
of diabetes mellitus,” in Proceedings of the Symposium on Computer
Applications and Medical Care, pp. 261–265, IEEE Computer Society
Press, 1988.

[25] L. Breiman, “Bias, variance, and arcing classifiers,” Tech. Rep. 460,
Statistics Department, University of California at Berkeley, 1996.

[26] P. Cichosz, Data Mining Algorithms: Explained Using R. Wiley online
library, Wiley, 2015.

[27] L. Torgo, Data Mining with R: Learning with Case Studies, Second
Edition. Chapman & Hall/CRC, 2nd ed., 2017.

[28] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics
Bulletin, vol. 1, pp. 80–83, Dec. 1945.

