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Abstract—Skin cancer is a quite common type of cancer. Its
incidence is more often in caucasian people and melanoma is
the most lethal one. In order to increase patient prognosis,
developing tools to assist early diagnosis is quite important. In
the last few years, several methods have been proposed to deal
with automated melanoma detection. Nonetheless, most of them
are based only in dermoscopy images and/or do not take into
account lesion clinical information. In this paper, we developed
an ease and accessible mobile tool to assist melanoma detection.
The app is linked to a convolutional neural network (CNN)
trained on images collected from smartphones and lesion clinical
information. Since the occurrence of melanoma is much smaller
than other skin lesions, most of the datasets for this problem are
imbalanced. To deal with this issue, we present an approach based
on evolutionary algorithm to balance datasets. The proposed
approach obtained promising results in comparison with related
works with a balanced accuracy of 92% and a recall of 94%.
However, it is a preliminary study, therefore these metrics may
vary when applied to other datasets.

Index Terms—melanoma, skin cancer, app, deep learning,
CNN, data balancing

I. INTRODUCTION

The skin cancer occurrence, melanoma and non-melanoma,
has increased over the last decades. Currently, the World
Health Organization (WHO) estimates that 2-3 million non-
melanoma cancers and 132,000 melanomas occur every year
in the world [1]. According to the Brazilian Cancer National
Institute (INCA), one in every three cancer diagnosis is a skin
cancer [2]. The presence of skin cancer is strongly related
to the incidence of ultraviolet radiation caused by sunlight
exposure [3]. Due to the lack of pigmentation, caucasian
people are under the highest risk [4]. Early detection is crucial
to increase patient prognosis since melanoma spread is a life-
threatening [5].

Several computer-aided diagnoses (CAD) have been pro-
posed to automated skin cancer detection [6]–[15]. In the
last few years, most approaches applied Convolutional Neural
Networks (CNN) trained on dermoscopy images [6]–[12].
However, in emerging countries such as Brazil, in particular
in the countryside [16], there are not enough dermatologists

nor dermatoscopes1. However, smartphones may be useful
to overcome this situation. According to the Ericsson report
[17], in 2019 the total number of mobile subscriptions around
the world was around 8 billion. In Brazil around 78% of
the population have their own smartphone [18]. Therefore,
a smartphone based application to assist doctors to diagnose
melanoma during the screening process is very desired.

Pacheco and Krohling [19] approached the task of lesion
detection considering the six most common skin diseases.
Their work uses images collected from smartphones instead
of dermoscopy ones. The proposed model also considers
the lesion clinical information related to each image. The
authors obtained an average improvement of around 7% in
the balanced accuracy, which shows the impact of clinical
information on automated skin cancer classification.

Dai et al. [20] proposed an embedded iOS mobile appli-
cation for skin cancer detection using a CNN. The model
was trained using 10,000 dermoscopy images clustered into 7
different types of skin lesions. As it is based on dermoscopy
images, to use a smartphone app is necessary a dermatoscope
attached to it. This is a limitation since such device is
expensive and not often available in remote areas. Also, it
does not use clinical information to improve performance.
Phillips, Fosu and Jouny [21] focused on developing an
Android application to detect melanoma using Support Vector
Machine (SVM) trained on a dataset composed of 20 images
of 3 types of skin lesions. Instead of an embedded solution
in a smartphone device, the authors decided to use a server
to perform the model. As the model was trained using few
samples, its performance is limited.

Alquran et al. [14] also worked with melanoma detection
using a dataset composed of dermoscopy images. The authors
also applied SVM that achieved a balanced accuracy and recall
of 84.01% and 83.33%, respectively.

In this paper, we extend Pacheco and Krohling [19] in
the following points: 1) we propose an approach to deal

1medical device that magnifies the lesion for better visualization
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with imbalanced data; 2) we link their model with a mobile
application; 3) we expand the dataset including other skin
lesions.

The remainder of this paper is organized as follows: in
section 2, we describe the CNN approach and data balancing
techniques. In section 3, we present the technologies used to
develop the app. In section 4, we provide experimental results
and discussions; and in section 5, we draw some conclusions.

II. AN APPROACH TO DETECT MELANOMA USING DEEP
LEARNING

In this section, we describe an approach to combine clinical
images and lesion clinical information using a CNN [19].
Next, we describe the proposed data balancing methods.

A. Deep model architecture to detect melanoma

Pacheco and Krohling [19] presented a dataset composed
of clinical images and lesion clinical information, and an
approach to combine both. Each sample in the dataset has
a clinical diagnosis, an image, and eight clinical features:
the patient’s age, the part of the body where the lesion is
located, if the lesion itches, bleeds or has bled, hurts, has
recently increased, has changed its pattern, and if it has
an elevation. The clinical information was encoded in 22
variables: 15 bits for region of the body, 1 integer for age,
and 6 bits for the remaining features. These features are based
on common questions that dermatologists ask patients during
an appointment [19].

In order to combine clinical images and lesion clinical infor-
mation, Pacheco and Krohling [19] proposed a straightforward
mechanism to control the contribution of features extracted
from images (FI) and clinical information (CI). We applied
the same approach, but now for melanoma detection. Figure
1 shows a schematic diagram of the used approach.

It is possible to assign more importance for FI or CI by
changing the number of features of each one. As the number
of clinical information data NCI is fixed, one can manipulate
the number of features extracted from the image NFI . In (1)
is described how to calculate the NFI given the NCI and the
contribution factor (λ) of NCI from all the features.

NFI =
NCI
1− λ

−NCI , λ ∈ [0, 1]. (1)

B. Data Balancing

A dataset is imbalanced when the number of samples
for each class is not uniform distributed among the classes.
Classifiers tend to perform worse on imbalanced dataset since
they are designed to generalize from data [22]. To deal with
imbalanced data, we propose two new methods based on
evolutionary algorithm: the Mixup Extrapolation Balancing
(MUPEB) and the Differential Evolution (DE). In addition,
We have also applied two standard data balancing techniques:
oversampling and weighted loss function. The balancing tech-
niques are described in the following.

1) Weighted loss function: This technique does not change
the frequency of samples on datasets. It consists of using a
weighted loss function based on a strategy that penalizes miss
classification of minority classes. In this paper, we applied the
weighted cross-entropy as a loss function. The weight assigned
to each label is described by:

Wi =
N

ni
(2)

where N is the total of samples and ni is the number of
samples of class i.

2) Oversampling: This technique consists of making copies
of the training dataset until the classes have the same number
of samples [23]. Several works applied oversampling or some
variation to tackle the imbalanced data problem [22], [24].

3) Mixup Extrapolation Balancing (MUPEB): This tech-
nique balances the dataset by applying a series of mixup
[25] and extrapolation operations. From 2 images, the method
generates 5 new ones. This is done until the dataset gets
balanced. The possible combinations of 2 images, X1 and X2,
are described by:

P1 = 0.5X1 + 0.5X2 (3)

P2 = 1.5X1 + 0.5X2 (4)

P3 = 0.5X1 + 1.5X2 (5)

P4 = 1.5X1 − 0.5X2 (6)

P5 = 1.5X2 − 0.5X1 (7)

where P represents each of the possible combinations applied
to the images X1 and X2. Regarding the clinical data, it will
be copied from one of the images in the following way: for the
images resulting from (3), the clinical data is chosen randomly;
from (4) and (6) the clinical data will come from the first
image of the pair, X1. Lastly, the images resulting from (5)
and (7), the clinical data will come from the second image
of the pair, X2. It is worth mentioning that since samples
from the same class share similar clinical information, this
oversampling method does not impact significantly in the
model training phase.

4) Differential Evolution (DE): inspired by the mutation
operator from the differential evolution algorithm [26], which
combines 3 images resulting in a new image. The operator is
defined as follows:

X4 = X1 + α(X2 −X3) (8)

where X is a set of images and α is a factor ranging from
-0.5 to 0.5, a new value for α is chosen in each combination
according to a uniform probability distribution. Regarding
clinical information used, for each combination generated, the



Fig. 1: The illustration of the model proposed by Pacheco and Krohling [19]. In this work, we modified the last layer for
melanoma detection

clinical information is randomly chosen between one of the
three base images. This technique is also applied only for data
from the same class.

III. APP DEVELOPMENT

In order to assist on melanoma detection, we developed
a multi-platform smartphone application. The app’s purpose
is to assist clinicians who have no or low dermatological
experience or do not have access to a dermatoscope. Using
the app, clinicians may prioritize patients with possible skin
cancer on screening process, leading them to a specialist.

Fig. 2: Schematic diagram of the smartphone app to melanoma
detection

Embedding a CNN in a smartphone presents two main
requirements: 1) the weight’s size that can be too large and
does not fit on the device’s memory; and 2) the need of

computational resource to perform the model. Since not all
smartphones can fulfill these requirements, we decided to
deploy the CNN model on a server. Figure 2 shows a schematic
diagram of the developed system.

On the client side, we have a mobile application devel-
oped using React Native2 framework, and Expo SDK3. The
application sends skin lesion images along with their clinical
information to the server. The server performs the CNN model
and replies the diagnosis prediction. Finally the app displays
it on the screen.

The first back-end layer is based on the java web server
Tomcat that implements a Rest API to be consumed by the
user as a service. All user information, for log purpose, is
stored in a MySQL database. The second layer is based on
Flask4, a framework based on Python that is designed for
micro applications. It makes a direct execution of the machine
learning models, which were developed also in Python. Every
request for processing a new clinical image with its clinical
information that arrives at Flask is queued in Redis 5, a NoSQL
key-based database. If no data is being processed then the first
available data of the Redis queue is read and sent to a previous
trained model. The result of the model is then stored on Redis
that will be further consulted by the user.

Next is presented screenshots of the application to illustrate
its workflow. Figure 3 shows the main screen and the log in
screen, respectively. Next, Figure 4 shows the menu and the
image upload process, respectively. Last, Figure 5 shows the
form to collect clinical information and the image of the lesion
itself with the diagnosis prediction, respectively.

2https://facebook.github.io/react-native/docs/getting-started
3https://docs.expo.io/versions/latest/
4https://flask-doc.readthedocs.io/en/latest/
5https://redis.io/



(a) App home screen (b) App log in

Fig. 3: App’s home screen and log in screen

(a) App menu (b) App image acquisition

Fig. 4: App’s menu screen and image acquisition’s screen

(a) App clinical information (b) App result

Fig. 5: App’s clinical information screen and result’s screen

IV. EXPERIMENTS AND RESULTS

In this section, we present the dataset used to train the
CNN, a visualization of the features extracted from the images,
the criteria used in the networks evaluation, and the results
obtained from the simulations.

A. Dataset

The PAD-UFES dataset used in this work is a combination
of the one introduced by Pacheco and Krohling [19], which
is composed of the six most common skin diseases: Actinic
Keratosis (ACK), Basal Cell Carcinoma (BCC), Melanoma
(MEL), Nevus (NEV), Squamous Cell Carcinoma (SCC), and
Seborrheic Keratosis (SEK). We added one more disease
class labeled as Others, which includes lesions that were not
represented within the previous 6 classes. Next, we split the
data into melanoma and non-melanoma as presented in Table
I.

TABLE I: The frequency of each label in PAD-UFES dataset.
We included the OTHERS label into the original dataset
proposed by Pacheco and Krohling [19].

Disease Images Diseases Images
MEL 67 Melanoma 67
ACK 543

Non-melanoma 1990

BCC 442
NEV 196
SCC 149
SEK 215

OTHERS 445
Total 2057

B. Visualization

We applied the t-Distributed Stochastic Neighbor Embed-
ding (t-SNE) [27], which is a visualization of high-dimensional
data. In total, 2048 features were extracted from all dataset
samples after the last ResNet50 convolutional layer. These
features were reduced to two dimensions using t-SNE and
shown in Figure 6, which we observe that some samples of
melanoma are overlapped with non-melanoma ones.

Fig. 6: Visualization of the features extracted by ResNet50
from all samples using t-SNE.

C. Evaluation criteria

As evaluation criteria, we aimed first at a high recall,
followed by a high accuracy, and last for a high precision.
This choice is justified since the recall is directly related to
the number of false negative, i.e., the number of melanomas
classified by the network as non-melanoma. A false negative is



the worst scenario for melanoma detection since the clinician
assumes that the lesion is a non-melanoma. The precision is
related to the number of false positive, meaning the number
of non-melanoma lesions classified as melanomas by the
network. In this case, although the patient would be worried,
the clinician will send the patient to a specialist.

D. Results

The results are divided according to the type of simulation
performed. First, we present a sensitivity study used to find
the best setup for the model. Second, we review the impact of
clinical information combined with image on the CAD perfor-
mance. Finally, we investigated the impact of data balancing
on the model’s performance.

For all tests, a ResNet50 was trained using the architecture
described in Pacheco and Krohling [19] combining features
extracted from the images with lesion clinical information
using a 5-fold cross-validation. ResNet50 was used due to its
effective performance [19]. We performed the training phase
for 100 epochs using Stochastic Gradient Descent (SGD)
optimizer with a learning rate equal to 0.01 that decreases
by a factor of 1/2 or 1/5 every 20 epochs, alternately. We
applied a standard data augmentation [28] and used the pre-
sented techniques to deal with imbalanced dataset. All images
were resized to 224×224×3. The evaluation metrics were:
balanced accuracy (BACC), precision (PR), recall (REC), and
F-measure. The use of F-measure was necessary because of
the high imbalance among dataset classes.

E. Best Setup

In order to find the best setup, we used standard data
augmentation and weighted loss to deal with the imbalanced
dataset, as proposed in [19]. The goal is to find the network’s
best configuration of hyperparamters, so we can apply it to
further experiments. In order to increase the system’s recall,
we also introduced the use of F-measure defined by:

Fβ = (1 + β2)
PR.REC

(β2.PR) +REC
(9)

We carried out a sensitivity analysis, changing the value of
β in (9) along with 5 combinations of features (C) extracted
from the image (FI) and clinical information (CI). Table II
presents all 5 combinations of FI and CI.

TABLE II: Sensitivity analysis taking into account the impor-
tance of the FI and CI

C FI x CI NFI NCI

1 90% x 10%

22

198
2 80% x 20% 88
3 70% x 30% 51
4 60% x 40% 33
5 50% x 50% 22

From these experiments, we obtained the best setup with β
equal to 7 and 70% of FI and 30% of CI. The metrics using
this setup are a BACC of 89.00 ± 3.64, a precision of 15.65
± 6.87 and a recall of 100.00 ± 0.

F. The impact of clinical information

For the study of the impact of clinical information, the
number of features extracted from image is equal to the best
results obtained in Sec. IV-E. Also, we simulated with the five
values of beta used previously in order to find the best results.
Table III presents the results. From Table III and Sec. IV-E, we
can compare the performance of the network with and without
clinical information. Table IV presents these results. From
Table IV, we can notice that the use of clinical information
provided an average increase in both BACC and recall of
1.26% and 11.43%, respectively. However, we obtained an
average decrease in precision of 7.01%.

G. The impact of data balancing

The impact of balancing techniques is assessed by compar-
ing the 4 balancing approaches, i.e., weighted loss function
(WGT), oversampling (OVE), MUPEB, and DE. The setup
used was the best found in Sec. IV-E. Table V presents the
obtained results.

The results with the weighted loss function presented the
best result in terms of recall. The proposed approach based
on the mutation operator of DE provided the best result
in terms of balanced accuracy. Both approaches, WGT and
DE presented significantly better results when compared with
those obtained in [14] with an increase of about 16% in recall
and 6% in BACC.

V. CONCLUSION

In this paper, we presented a tool to support the diagnostic
of melanoma using a multi platform app for smartphone
using deep neural networks. The results obtained with clinical
information presents an average balanced accuracy of 89%
and a recall of 100%. It is important to mention that these are
results from a preliminary study and therefore may not stand
in real case applications. The study of the impact of clinical
information has shown that clinical information is relevant to
melanoma detection since it improved on average balanced
accuracy and recall in about 1% and 11%, respectively. Re-
garding the methods proposed to deal with imbalanced dataset,
both Mixup Extrapolation Balancing and Differential Evolu-
tion presented a lower performance compared to weighted loss
function. However, results obtained with DE inspired mutation
operator were very close to those obtained with weighted loss
function. Since the dataset is small, we are working on new
data augmentation methods to improve our results further.

TABLE III: F-measure regarding varying beta without clinical
information

Beta Metrics
BACC PR REC

1 77.37 ± 13.84 49.56 ± 23.21 57.14 ± 28.57
3 78.83 ± 14.62 31.34 ± 14.59 62.86 ± 30.77
5 82.92 ± 8.86 22.25 ± 9.75 77.14 ± 17.14
7 87.74 ± 4.03 22.66 ± 8.29 88.57 ± 10.69
10 87.41 ± 6.96 22.45 ± 4.41 85.71 ± 15.65



TABLE IV: Clinical information study

Beta Metrics
BACC PR REC

7* 89.00 ± 3.64 15.65 ± 6.87 100.00 ± 0.00
7 87.74 ± 4.03 22.66 ± 8.29 88.57 ± 10.69

*With clinical information.

TABLE V: The impact of data balancing

BAL Metrics
BACC PR REC

WGT 89.00 ± 3.64 15.65 ± 6.87 100.00 ± 0.00
OVE 84.34 ± 14.21 32.68 ± 8.93 74.28 ± 30.50
MPE 86.83 ± 12.36 29.9 ± 14.74 82.86 ± 27.70
DE 92.39 ± 4.31 35.67 ± 22.64 94.28 ± 7.00
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