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Abstract—Multi-label learning has been successfully applied to
solve instance multi-semantics problems. Moreover, the topology
information of samples is often adopted in existing works to
improve the prediction performance, in which the similarity of
samples is usually calculated in the entire feature space. However,
in real-world applications, each label is often determined by a
subset of the original features, so when we focus on different
labels, the similarity of two instances may be different. In this
paper, we propose a multi-label learning method by exploiting
the local similarity of samples. Specifically, the smoothness
assumption is applied to assume that if the feature subset is
similar between samples, the corresponding label should be
similar. In addition, L1 regularization is also adopted to sparse
the weight coefficients when constraining the output space of the
instance. The experimental results on several data sets validate
the effectiveness of the proposed method.

Index Terms—multi-label, smoothness assumption, local simi-
larity

I. INTRODUCTION

Multi-label learning deals with instances having a set of
class labels simultaneously, which widely exist in real-world
applications. The goal of multi-label learning is to learn a
model that assigns an appropriate set of labels to an unseen
example from the training data. In recent years, this technique
has been increasingly studied and widely applied to various
fields including text annotation [1], [2], [3], automatic image
annotation [4], [5], music emotion categorization [6], [7], [8]
and so on [9], [10].

Based on the smoothness assumption, it is thought that the
similar samples in the feature space should also have similar
properties in the label space, so the neighbors’ information
of samples is often used as a kind of additional information
to improve the performance of the model. For example, in
ML-KNN [11], the maximum a posteriori (MAP) principle is
used to determine the label set of unseen examples, which
is based on the k-nearest neighbor information of samples.
In LSF-CI [12], if two instances are neighbors to each other,
their similarity is 1, so that the label space of the constrained
instances are similar. Zhao and Guo [13] selected the k-nearest
neighbors of the samples and applied the Laplacian manifold
regularization to solve the incomplete label problem.
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Many studies have tried to exploit the sample similarity in
multi-label learning, and most of them calculated the similarity
between samples based on the whole features, and all the
labels share the similarity matrix of samples derived from the
feature space. However, in many real-world applications, when
we focus on different labels, the similarity of two samples may
be different, we call this case that the samples are locally
similar. For example, in Figure 1, image (a) has the label
desert and sky, image (b) has the label desert, sky and trees.
When we focus on the two labels of desert and sky, image
(a) and image (b) are similar, but when we only focus on
the label trees, the two images are not similar. Since a label
is determined by a subset of features, if we use the whole
feature space to calculate the similarity of samples on specific
labels, the unrelated features may affect the final calculation
result, resulting in inaccurate similarity. In Figure 1, we can
easily observe that both the desert and the sky occupy most
of the two images, so it can be said that the two images have
a high similarity. If the similarity of the samples is defined
globally to determine the relevance of the labels, it is easy to
erroneously deduce that the two images have the same value on
the label trees. However, if we look at the local part, as shown
by the green box in the two images, they are significantly
different, so that the two images have different values on the
label trees. Therefore, calculating the corresponding sample
similarity for each label separately can make more accurate use
of the structural information of the sample and its neighbors,
that is, similar samples have similar outputs.

In this paper, we propose a novel and effective multi-
label learning method, which uses the local similarity of
samples, named ML-LSS (Multi-Label learning with Local
Similarity of Samples). In our method, for different labels,
we only use the feature subset of the label when calculating
its corresponding similarity matrix, and its feature subset is
obtained by using the dimensionality reduction method that
maximizes the dependency between the feature and the label.
In addition, when we constrain the label space of the sample,
L1-regularization is applied to sparse the weight parameter
vector in which non-zero items represent the selected label-
specific features, and the irrelevant features have a coefficient
of 0 [12], [14], which is in line with our idea that we only
use partial features to solve the local similarity of the samples.
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(a) sky, desert (b) sky, desert, trees

Fig. 1. Illustration of the local similarity of samples, in the local area within
the green box, the values of the two pictures are not similar in the label trees.

Finally, based on the smoothness assumption, we assume that
if the feature subset is similar between samples, the outputs of
the corresponing label should be similar. We use the Proximal
Gradient Descent (PGD) to optimize the model. Comparison
experiments on eleven data sets show that the proposed method
is effective and can improve the performance of multi-label
learning by using the local similarity of samples.

The main contributions of this study can be summarized
as follows: 1) We propose a novel and effective multi-label
learning method, which uses the local similarity of samples,
named ML-LSS; 2) We extract label-specific features by using
a dimensionality reduction method that maximizes the de-
pendence between features and labels, and use corresponding
feature subsets to calculate a local similarity matrix of samples
for each label. Then, we assume that if the feature subset
is similar between samples, the outputs of the corresponding
label should be similar. Based on the idea that only partial
features are used to construct the local similarity of samples,
we use L1-regularization to sparse the weight parameter vector
in which non-zero items represent the selected label-specific
features.

The rest of the paper is organized as follows: Section II
briefly reviews some related works. Section III introduces the
proposed algorithm. Section IV reports the experiments on
real-world data sets. Finally, Section V concludes this paper.

II. RELATED WORK

To solve the problem of multi-label learning, a large number
of algorithms have been proposed for multi-label learning. The
existing multi-label learning algorithms can be divided into
two categories, namely problem transformation and algorithm
adaption [15]. On one hand, algorithm adaptation methods
work by fitting algorithms to data, i.e., Binary Relevance
(BR) [16], Label Power set (LP) [6]. On the other hand, prob-
lem transformation methods work by fitting data to algorithms,
such as deep neural network [17], decision tree [18]. In addi-
tion, many researchers further use the neighbors’ information
of samples. For example, Zhang and Zhou [11] considered
label prior probabilities gained from the k-nearest neighbors
of the instance and utilized maximum a posteriori (MAP)
principle to determine proper labels in their ML-KNN method.
The WELL [19] method solved the weak label problem, and it
constructed a similarity matrix of samples and embedded the
correlation between labels in the model. In the optimization
process, it not only solved the weight coefficient, but also

solved the sample “appropriate similarity” matrix. LSF-CI [12]
used the k-nearest neighbor graph model to create an instance
similarity matrix. Specifically, the similarity between samples
with mutual neighbors is 1, and the rest are 0.

For multi-label learning, feature selection approaches fall
into two types: transformation-based approaches and direct
approaches [20]. Problem transformation approaches trans-
form a multi-label instance into multiple single-label instances,
then exploit a classical single-label feature selection approach
like the filter method, wrapper method or embedded method
directly. For the direct approaches, Zhang and Zhou [21]
proposed to use the HSIC method to find a lower-dimensional
feature space in which the dependence between the features
and labels are maximized. Lee and Kim [22] achieved feature
selection on multi-label data by maximizing the mutual infor-
mation between selected features and labels. Yan and Li [23]
proposed a graph-margin based feature selection for multi-
label data.

Label-specific feature selection in multi-label learning has
also attracted a lot of attention in recent years. LIFT [24] was
an algorithm to exploit label-specific features for multi-label
learning. For each label, LIFT constructed features by conduct-
ing clustering analysis on its positive and negative instances.
Yan et al. [25] employed the information theory to implement
label-specific feature selection and assigned different weights
to the different class instances according to the imbalance rate.
Jia et al. [26] discussed the efficiency of jointly combining
label-specific features and correlation information for multi-
label learning. In LLSF [14], L1-regularization was applied
to get the weights of features for each label, and the feature
with zero weight value does not affect the final discrimination.
Meanwhile, LLSF required that strongly correlated labels
should have a large similarity between their weight vectors.
Furthermore, LSF-CI [12] improved the LLSF algorithm by
adding instance correlation.

III. THE PROPOSED APPROACH

A. Multi-Label Learning

Assume X 2 R
d⇥n be the input space and Y = {�1,+1}

q

be the label space with q possible labels. We denote by
{(x1, y1), (x2, y2), · · · , (xn, yn)} the training data that con-
sists of n instances. xi 2 X is a d-dimensional feature vector
xi = [x1i, x2i, · · · , xdi]

T and yi = [yi1, yi2, · · · , yiq] is the
label vector of xi, each element yik = 1 if the label yk is
related to xi, otherwise yik = �1. The goal of multi-label
learning is to predict a label set for an unseen instance, so we
need to learn a classifier: f : X ! Y . We assume f consists of
q sub-functions, one for each label, i.e., f = [f1, f2, · · · , fq].
In this study, we apply the linear model for each fk :

fk(xi) = xT
i Wk, (1)

Here, we add an additional dimension with a constant value of
1 for each data xi (1  i  n), so xi = [x1i, x2i, · · · , xdi, 1]T .
The offset term bj has been expanded into Wk, and Wk =

[W1k,W2k, · · · ,Wdk, bk]T represents the weight parameters
of the linear model corresponding to the k-th label.



B. Combining Local Similarity of Samples

In reality, a label is often determined by a subset of features,
rather than all features, and different labels may correspond
to different subsets. With the previous discussion, we know
that the samples are locally similar. In this paper, the learning
procedure of ML-LSS consists of two steps. The first is to
select the corresponding feature subset for each label, and
the second is to use the feature subset to calculate the local
similarity matrix of samples.

We attempt to find a lower-dimensional feature space for
each label in which the dependence between the features
and the label are maximized. Many criteria can be used to
measure such dependence and here we adopt the Hilbert-
Schmidt independence criterion (HSIC) [27], due to its sim-
plicity and HSIC well measures the independence of two
variables [21], [28]. HSIC is a kernel-based dependence metric
for random variables, which measures the dependence between
the feature and the label by computing the Hilbert-Schmidt-
norm of the cross-covariance operator over the domain Q⇥Y

reproducing kernel Hilbert spaces (RKHSs). We consider a
linear projection P , assume that the instance x is projected into
the new space Q by �(x) = PTx. Then, we try to maximize
the dependence between the feature description �(x) 2 Q and
the label yk 2 Y (1  k  q). Therefore, for each label yk,
we use HSIC to measure the correlation of the original feature
space and label yk. An empirical estimate of HSIC is:

HSIC(Q,Y, Pxy) = (N � 1)
�2tr(HKHL), (2)

where Pxy is the joint distribution and tr(·) is the trace of
matrix. K = [Kij ]N⇥N and L = [lij ]N⇥N are the matrices
of the inner product of instances in Q and Y , and these
could also be considered as the kernel matrices of X and yk
with kernel functions. K = h�(x),�(x)0i, L(yk, y0k), H =

[Hij ]N⇥N , Hij =
�ij�1
N , and the �ij takes 1 when i = j and

0 otherwise. In Eq. (2), the normalization term does not affect
the result, so we only need to consider tr(HKHL) in the so-
lution process. Denote X = [x1, x2, · · · , xn], xi represents the
i-th sample, Yk = [y1k, y2k, · · · , ynk]T , yik represents the k-th
label belongs to the i-th sample. We adopt linear kernel matrix,
thus �(x) = PT

k X and K = h�(x),�(x)0i = XTPkPT
k X ,

L = YkY T
k . Pk is the projection matrix we need to solve, and

we can rewrite the optimization as follows:

P ⇤

k = argmax
Pk

tr(HXTPkP
T
k HL). (3)

The matrix Pk reduces the feature dimension to d-dimension
and denote Pk = [p1, p2, · · · , pd](d⌧ D), the column vectors
of the matrix Pk forms a basis spanning of the new space. By
constraining the basis to be orthonormal, we have

max
Pk

tr(HXTPkP
T
k XHL) s.t. (P i

k)
TP j

k = �ij , (4)

here, P i
k (1  i  d) represents the i-th column of the Pk

matrix. To solve this problem, we have:

tr(HX
T
PkP

T
k XHL) = tr(

dX

i=1

HX
T
P

i
k(P

i
k)

T
XHL)

=
dX

i=1

tr(HX
T
P

i
k(P

i
k)

T
XHL) =

dX

i=1

(P i
k)

T (XHLHX
T )P i

k.

(5)
It is easy to obtain the optimal (P i

k)
⇤ by using the Lagrangian

model. We can get the eigenvalues of XHLHXT , assuming
they are sorted as �1 � �2 � · · · � �d � 0 � · · · � �D, the
optimal (P i

k)
⇤ are the normalized eigenvectors corresponding

to the largest d eigenvalues.
We use the HSIC method to get a projection matrix for

each label, so we can get a new space for each label that is
maximized by its dependence. For each label, if the subset
of features that determine the label is different, the similarity
between the two samples may be different. So here we use
the new feature space to calculate the local similarity matrix
of samples for label yk by the cosine similarity method, as
follows:

Rijk =
(PT

k xi)
T
(PT

k xj)

kPT
k xikkPT

k xjk
, (6)

Rijk represents the similarity of the samples xi and xj on
label yk. And Rijk > 0 indicates that the sample i and the
sample j are positively correlated, Rijk < 0 indicates that
they are negatively correlated. Furthermore, they are irrelevant
if Rijk = 0. Based on the manifold assumption, we assume
that if xi and xj are similar on label yk, fk(xi) and fk(xj)

should be similar, and vice versa. This idea makes us need to
minimize the function below:

⌦(f) =
qX

k=1

nX

j=1

nX

i=1

Rijkkfk(xi)� fk(xj)k
2
2. (7)

We adopt the squared Euclidean distance to measure the
similarity. Considering that the sample local correlation is
calculated based on the features that maximizes the label
dependence, f(x) should also be determined by the specific
features. According to Eq. (1), if Wjk = 0, the j-th feature
has no effect on the discrimination of the k-th label yk. Only
the features corresponding to the non-zero items in Wk are
used to discriminate the k-th label, so the weight coefficient
matrix should be a sparse matrix. Therefore, we apply L1-
regularization on Wk. The objective function is defined as:

min
W

1

2
kXTW � Y k2F + �1

qX

k=1

kWkk1

+
�2

2

qX

k=1

nX

j=1

nX

i=1

RijkkX
T
i Wk �XT

j Wkk
2
2,

(8)

�1 and �2 are the balance factors. The first term is the loss
function to measure the distance between the predicted value
and the true value of the labels. The second term is an L1-
regularization term to sparse the weight parameter vector. The
third item is the local similarity constraint of samples, which



represents that the feature subset of label yk is similar between
samples, the distance between the two samples on label yk
should be small.

C. Optimization

The objective function in Eq. (8) can be represented as:

G(W ) = min
W

1

2
kXTW � Y k2F + �1

qX

k=1

kWkk1

+
�2

2

qX

k=1

tr(WT
k XLkX

TWk),

(9)

where Lk = Ak � Rk, and Ak = Diag(d1, d2, · · · , dn) is a

dialog matrix, di =
nP

j=1
Rijk.

In Eq. (9), the L1 norm is a non-smooth function, which
causes the objective function to be non-convex and non-
smooth, making it difficult to employ the traditional gradient-
descent optimization method. The accelerated proximal gradi-
ent method is usually applied to solve the L1 norm optimiza-
tion problem. Here, we will solve for the weight coefficient
Wk(1  k  q) corresponding to each label, the accelerated
proximal gradient method divides the optimization target into
two parts, which can be expressed as follows:

min
Wk2H

G(Wk) = s(Wk) + g(Wk), (10)

where H represents Hilbert space, s(Wk) is smoothing while
g(Wk) is non-smoothing. s(Wk) is further Lipschitz contin-
uous, that is, s(Wk) satisfies the following condition:

krs(W 0

k)�rs(Wk)k
2
2  Lipk�Wkk

2
2 (8W 0

k,Wk), (11)

where �Wk = W 0

k � Wk, Lip is the Lipschitz constant.
Considering the second order Taylor series of s(Wk) at the
current estimate of the parameter vector W (t)

k :

s(Wk)
⇠= s(W (t)

k )+ < rs(W (t)
k ),Wk �W (t)

k >

+
Lip

2
kWk �W (t)

k k
2
2

=
Lip

2
kWk � (W t

k �
1

Lip
rs(W (t)

k ))k
2
2 + const,

(12)
where const is a constant unrelated to Wk, and < ., . >
represents the inner product. The minimum value of Eq. (12)
can be obtained on W (t+1)

k :

W (t+1)
k = argmin

Wk

Lip

2
kWk �W (t)

k

�
1

Lip
rs(W (t)

k )k
2
2 + g(Wk).

(13)

For the Eq. (9) and Eq. (10), s(Wk)and g(Wk) can be
represented as:

s(Wk) =
1

2
kXTWk � Ykk

2
2 + �2tr(W

T
k XLkX

TWk),

g(Wk) = �1kWkk1.
(14)

Therefore, the rs(Wk) is calculated by:

rs(Wk) = X(XTWk � Yk) + 2�2(XLkX
TWk). (15)

Then, we have:

krs(Wk +�Wk)�rs(Wk)k
2
2

=kXXT
�W + 2�2XLkX

T
�Wk22

2kXXT
�Wkk

2
2 + 2k2�2XLkX

T
�Wkk

2
2

=2(kXXT
k
2
2 + k2�2XLkXk

2
2)k�Wkk

2
2.

(16)

Thus, the Lipschitz constant can be calculated by:

Lip =

q
2(kXXT k22 + k2�2XLkXT k2). (17)

Then, combined with Eq. (12), we can get the optimal solution
of Wk iteratively by:

W (t+1)
k = argmin

Wk

Lip

2
kWk � Zk22 + g(Wk), (18)

Z = W (t)
k �

1

Lip
(X(XTWk � Y ) + �2XLkX

TWk). (19)

The previous work [29] has shown that setting W (t)
k =

W (t)
k +

b(t�1)
�1

b(t)
(W (t)

k �W
(t�1)
k ) can improve the convergence

rate to O(t�2
), where b(t) satisfying (b(t))2�b(t)  (b(t�1)

)
2,

and W (t)
k is the result of Wk at the t-th iteration. The closed

solution of Eq. (18) can be calculated by a soft threshold
method which is defined as:

(W i
k)

(t+1)
=

8
><

>:

Z(t)
i � �2/Lip, �1/Lip < Z(t)

i ;

0, |Z(t)
i |  �1/Lip;

Z(t)
i + �2/Lip, Z(t)

i < ��1/Lip.

(20)

Here, W i
k and Zi represent the i-th row of the Wk and Z

matrices respectively. The detailed algorithm of the proposed
method is shown in Algorithm 1.

IV. EXPERIMENTS

A. Experiments Setup

In this study, we conduct extensive experiments on various
multi-label real-world datasets. For each data set S, the
number of instances is denoted as |S|, the number of features
is denoted as dim(S) , and the number of labels is denoted as
L(S). In addition, LCard(S) denotes cardinality representing
the average value of labels belonging to instances, and ‘Do-
main’ denotes the types of the datasets. Table I summarizes
the detailed characteristics of the eleven real-world multi-label
datasets. We utilize five commonly used multi-label evaluation
measures to evaluate the performance of the trained classifiers
on the multi-label datasets: Hamming loss, Ranking loss, One
error, Coverage and Average precision [15].

The performance of ML-LSS is compared against three
well-established and two state-of-the-art multi-label learning
algorithms, including LIFT [24], ML-KNN [11], MLFE [30],
BR [16] and LSF-CI [12].



Algorithm 1: The ML-LSS algorithm
Input: The training set D = {xi, yi}ni=1, parameters

�1, �2 , � and the convergence criterion ⇠.
Output: The regression parameters matrix W.

1 for k=1 to q do
2 solve Pk by Eq. (5);
3 comput the local simility martrix Rk by Eq. (6);
4 initialize the parameters;
5 b0, b1  1, W (0)

k ,W (1)
k  (XXT

+ �I)�1XYk;
6 t 1;
7 while stopping criterion is not satisfied do
8 W (t)

k = W (t)
k +

b(t�1)
�1

b(t)
(W (t)

k �W (t�1)
k );

9 update Z by Eq. (19);
10 update (W i

k)
(t+1) by Eq. (20);

11 b(t+1)
 

1+
p

4((b(t))2+1)
2 ;

12 t t+ 1;
13 end
14 return Wk;
15 end
16 return W .

TABLE I
STATISTICS OF THE ELEVEN DATASETS.

Datasets |S| dim(S) L(S) LCard(S) Domain
flags 194 19 7 3.39 images
birds 645 260 19 1.01 audio
cal500 502 68 174 26.04 audio
genbase 662 1186 27 1.25 biology
medical 978 1449 45 1.25 text
llog 1460 1004 75 1.18 text
yeast 2417 103 14 4.24 biology
shashdot 3782 1079 22 1.18 text
arts 5000 462 26 1.64 text
corel5k 5000 499 374 3.52 images
education 5000 550 33 1.46 text

With the previous discussion, LIFT [24] proposed the
idea of label-specific features for multi-label learning. ML-
KNN [11] was an algorithm that works similarly as ML-
LSS by using the neighbors’ information of samples. BR [16]
was a representative algorithm of problem transformation
methods, which decomposed a multi-label learning problem
into q independent binary (one-vs-rest) classification problems.
MLFE [30] applied the multi-output regression techniques
to train the prediction model under the MLFE framework
which enriches the label information by utilizing the structural
information of the feature space. LSF-CI [12] attempted to
learn label specific features for each label with consideration
of label correlation in label space and instance correlation in
feature space simultaneously.

For the comparing algorithms, parameter configurations
suggested in corresponding literatures are used, i.e. MLFE:
parameters �1, �2 and �3 are chosen among {1, 2, ..., 10},
{1, 10, 15} and {1, 10} respectively; LSF-CI: parameters �1

and �2 are selected from {2
�10, 2�9, · · · , 210}, �3 is selected

from {2
�12, 2�11, · · · , 212}. For ML-LSS, the values of the

parameters �1 and �2 are selected among {2
�5, 2�4, · · · , 26}

with cross-validation on the training set. For performance
evaluation, we perform a 10⇥ 5-fold cross-validation on each
dataset, where the mean metric value, as well as standard
deviation, are recorded for each comparing algorithm.

B. Experiments Result

In Table II, we summarize the detailed experimental results
of five comparing algorithms on each data set, where the
best performance among the five comparing algorithms is
highlighted in boldface.

Across all the 55 configurations (i.e. 5 criteria ⇥ 11 datasets
as shown in Table II), ML-LSS ranks in 1

st place at 35 cases,
in 2

nd place at 12 cases, in 3
rd and 4

th places at only 8 cases,
and never ranks in 5

th and 6
th places.

To further analyze the relative performance between the
comparing algorithms, Friedman test [31] is used as the
statistical test in this paper. Table III summarizes the Friedman
statistic FF and the corresponding critical value on each
evaluation metric. For each evaluation metric, the null hypoth-
esis of indistinguishable performance among the comparing
algorithms is clearly rejected at the 0.05 significance level.
Therefore, Bonferroni-Dunn test [31] at 0.05 significance level
is employed to test whether our proposed method ML-LSS
achieves competitive performance against the comparing algo-
rithms. Here, the ML-LSS is regarded as a control algorithm
whose average level difference with the comparison algorithm
is calibrated with critical difference (CD). Accordingly, ML-
LSS is deemed to have a significantly different performance
to one comparing algorithm if their average ranks differ by at
least one CD (CD=2.055 in this paper: # comparing algorithms
k = 6, # data sets N = 11).

Figure 2 illustrates the CD diagrams [31] on each evaluation
metric, where the average rank of each comparing algorithm
is marked along the axis (lower ranks to the right). In each
sub-figure, any comparing algorithm whose average rank is
within one CD to that of ML-LSS is connected with a thick
line. Otherwise, any algorithm not connected with ML-LSS is
considered to have significant different performance between
them. From Figure 2, we can get the following observations:

• ML-LSS achieves an optimal average rank in terms of all
evaluation metrics.

• ML-LSS significantly outperforms ML-KNN and MLFE
in terms of all evaluation metrics.

• ML-LSS is significantly outperforming other comparing
algorithm in terms of one error, comparable to LIFT
in terms of hamming loss, ranking loss, coverage and
average precision, comparable to BR in terms of ham-
ming loss, ranking loss and coverage, comparable to LSF-
CI in terms of hamming loss, average precision, and
significantly outperforms LIFT and BR LSF-CI on all
the other cases.



TABLE II
COMPARISON RESULTS (MEAN±STD.) OF MULTI-LABEL METHODS ON REAL-WORLD DATASETS. THE BEST PERFORMANCE ON EACH MEASURE IS

MARKED IN BOLD.

data algorithm Hamming loss# Ranking loss# One error# Coverage# Average precision"

flags

LIFT 0.2656±0.0069(2) 0.2161±0.0053(1) 0.2379±0.0217(3) 0.5385±0.0044(1) 0.8084±0.0053(1)
ML-KNN 0.3239±0.0046(6) 0.2483±0.0070(6) 0.2544±0.0221(6) 0.5737±0.0070(6) 0.7868±0.0075(6)

MLFE 0.2737±0.0070(4) 0.2346±0.0083(4) 0.2367±0.0189(2) 0.5537±0.0050(4) 0.7981±0.0077(4)
BR 0.2645±0.0063(1) 0.2240±0.0067(2) 0.2396±0.0104(4) 0.5429±0.0054(2) 0.8034±0.0043(3)

LSF-CI 0.2861±0.0059(5) 0.2426±0.0061(5) 0.2397±0.0099(5) 0.5601±0.0055(5) 0.7913±0.0045(5)
ML-LSS 0.2681±0.0058(3) 0.2306±0.0049(3) 0.2150±0.0171(1) 0.5520±0.0029(3) 0.8072 ±0.0055(2)

cal500

LIFT 0.1386±0.0004(4) 0.1843±0.0007(3) 0.1307±0.0061(3) 0.7667±0.0030(5) 0.4989±0.0015(4)
ML-KNN 0.1390±0.0003(5) 0.1865±0.0006(4) 0.1515±0.0072(6) 0.7665±0.0052(4) 0.4886±0.0012(6)

MLFE 0.1402±0.0017(6) 0.1865±0.0013(5) 0.1321±0.0025(4) 0.7653±0.0005(3) 0.4984±0.0000(5)
BR 0.1371±0.0003(1) 0.1799±0.0003(2) 0.1181±0.0023(2) 0.7475±0.0015(2) 0.5030±0.0008(2)

LSF-CI 0.1379±0.0005(3) 0.1866±0.0010(6) 0.1451±0.0057(5) 0.7821±0.0025(6) 0.5025±0.0015(3)
ML-LSS 0.1378±0.0000(2) 0.1794±0.0005(1) 0.1165±0.0010(1) 0.7457±0.0014(1) 0.5031±0.0009(1)

genbase

LIFT 0.0083±0.0006(5) 0.0148±0.0020(6) 0.0044±0.0051(4) 0.0448±0.0026(6) 0.9778±0.0037(5)
ML-KNN 0.0048±0.0003(4) 0.0059±0.0011(4) 0.0111±0.0028(5) 0.0195±0.0015(4) 0.9871±0.0022(4)

MLFE 0.0012±0.0002(2) 0.0030±0.0005(2) 0.0025±0.0007(3) 0.0143±0.0009(2) 0.9939±0.0010(3)
BR 0.0092±0.0051(6) 0.0124±0.0052(5) 0.2215±0.1395(6) 0.0246±0.0050(5) 0.8883±0.0668(6)

LSF-CI 0.0019±0.0004(3) 0.0036±0.0007(3) 0.0023±0.0015(2) 0.0152±0.0012(3) 0.9946±0.0009(2)
ML-LSS 0.0008±0.0001(1) 0.0021±0.0004(1) 0.0023±0.0008(1) 0.0128±0.0006(1) 0.9953±0.0006(1)

medical

LIFT 0.0124±0.0002(3) 0.0283±0.0018(5) 0.1612±0.0067(4) 0.0433±0.0026(5) 0.8724±0.0043(4)
ML-KNN 0.0158±0.0003(6) 0.0450±0.0019(6) 0.2507±0.0058(6) 0.0641±0.0023(6) 0.8035±0.0044(6)

MLFE 0.0100±0.0001(1) 0.0210±0.0012(1) 0.1346±0.0029(2) 0.0342±0.0010(2) 0.8969±0.0028(2)
BR 0.0132±0.0039(5) 0.0266±0.0041(4) 0.2419±0.1141(5) 0.0409±0.0041(4) 0.8373±0.0623(5)

LSF-CI 0.0130±0.0006(4) 0.0246±0.0019(3) 0.1395±0.0067(3) 0.0378±0.0028(3) 0.8948±0.0046(3)
ML-LSS 0.0101±0.0002(2) 0.0213±0.0009(2) 0.1339±0.0063(1) 0.0332±0.0013(1) 0.9010±0.0028(1)

birds

LIFT 0.0459±0.0007(4) 0.1880±0.0080(4) 0.4433±0.0166(4) 0.1301±0.1301(4) 0.5943±0.0110(4)
ML-KNN 0.0510±0.0009(5) 0.1988±0.0066(5) 0.5435±0.0152(5) 0.1336±0.0039(5) 0.5443±0.0046(5)

MLFE 0.0458±0.0006(3) 0.1632±0.0044(2) 0.3560±0.0137(2) 0.1192±0.0029(2) 0.6555±0.0084(2)
BR 0.0541±0.0003(6) 0.2845±0.0028(6) 0.6903±0.0206(6) 0.1864±0.0019(6) 0.4089±0.0103(6)

LSF-CI 0.0456±0.0009(2) 0.1633±0.0019(3) 0.3592±0.0103(3) 0.1195±0.0015(3) 0.6541±0.0053(3)
ML-LSS 0.0455±0.0010(1) 0.1627±0.0065(1) 0.3507±0.0130(1) 0.1191±0.0033(1) 0.6580±0.0058(1)

llog

LIFT 0.0178±0.0001(6) 0.1520±0.0041(4) 0.6670±0.0070(2) 0.1962±0.0047(6) 0.4222±0.0053(2)
ML-KNN 0.0158±0.0001(5) 0.1665±0.0022(6) 0.8041±0.0069(6) 0.1750±0.0024(4) 0.3025±0.0040(6)

MLFE 0.0156±0.0001(4) 0.1474±0.0010(3) 0.7146±0.0062(5) 0.1823±0.0013(5) 0.3612±0.0018(5)
BR 0.0154±0.0001(3) 0.1319±0.0014(1) 0.7066±0.0092(4) 0.1442±0.0017(1) 0.3876±0.0047(4)

LSF-CI 0.0153±0.0001(2) 0.1522±0.0028(5) 0.6704±0.0042(3) 0.1662±0.0023(3) 0.4212±0.0024(3)
ML-LSS 0.0153±0.0000(1) 0.1421±0.0018(2) 0.6534±0.0052(1) 0.1569±0.0017(2) 0.4267±0.0023(1)

yeast

LIFT 0.1931±0.0009(1) 0.1662±0.0007(1) 0.2264±0.0042(2) 0.4549±0.0014(3) 0.7666±0.0015(1)
ML-KNN 0.1955±0.0010(2) 0.1694±0.0010(3) 0.2356±0.0035(4) 0.4505±0.0014(1) 0.7614±0.0015(3)

MLFE 0.2073±0.0007(5) 0.1782±0.0012(5) 0.2441±0.0013(5) 0.4691±0.0011(5) 0.7490±0.0011(5)
BR 0.1994±0.0005(4) 0.1724±0.0003(4) 0.2268±0.0022(3) 0.4602±0.0004(4) 0.7585±0.0005(4)

LSF-CI 0.4108±0.0015(6) 0.3392±0.0020(6) 0.3554±0.0043(6) 0.6237±0.0017(6) 0.6175±0.0017(6)
ML-LSS 0.1993±0.0008(3) 0.1692±0.0006(2) 0.2213±0.0024(1) 0.4544±0.0007(2) 0.7622±0.0010(2)

slashdot

LIFT 0.0173±0.0002(5) 0.0465±0.0006(3) 0.0891±0.0011(3) 0.0444±0.0005(3) 0.8928±0.0013(3)
ML-KNN 0.0221±0.0001(6) 0.0500±0.0005(4) 0.0944±0.0004(6) 0.0463±0.0006(4) 0.8829±0.0007(6)

MLFE 0.0158±0.0002(3) 0.0591±0.0012(6) 0.0897±0.0012(5) 0.0569±0.0012(6) 0.8865±0.0007(5)
BR 0.0165±0.0002(4) 0.0413±0.0006(2) 0.0895±0.0013(4) 0.0374±0.0007(2) 0.8950±0.0007(2)

LSF-CI 0.0152±0.0001(2) 0.0547±0.0012(5) 0.0856±0.0013(2) 0.0526±0.0012(5) 0.8927±0.0008(4)
ML-LSS 0.0150±0.0001(1) 0.0406±0.0005(1) 0.0856±0.0009(1) 0.0372±0.0006(1) 0.8993±0.0007(1)

arts

LIFT 0.0531±0.0001(1.5) 0.1143±0.0005(2) 0.4625±0.0021(4) 0.1737±0.0006(2) 0.6233±0.0012(3)
ML-KNN 0.0599±0.0000(6) 0.1492±0.0007(6) 0.6150±0.0034(6) 0.2072±0.0008(4) 0.5225±0.0021(6)

MLFE 0.0581±0.0002(5) 0.1486±0.0005(5) 0.4794±0.0038(5) 0.2198±0.0010(6) 0.5991±0.0015(5)
BR 0.0535±0.0023(3) 0.1119±0.0025(1) 0.4590±0.0341(3) 0.1708±0.0025(1) 0.6555±0.0084(2)

LSF-CI 0.0550±0.0001(4) 0.1430±0.0007(4) 0.4518±0.0030(2) 0.2139±0.0012(5) 0.6202±0.0009(4)
ML-LSS 0.0531±0.0001(1.5) 0.1293±0.0004(3) 0.4489±0.0026(1) 0.2006±0.0005(3) 0.6300±0.0017(1)

corel5k

LIFT 0.0094±0.0000(2) 0.1257±0.0005(3) 0.6588±0.0034(3) 0.2995±0.0015(3) 0.3028±0.0012(1)
ML-KNN 0.0094±0.0009(5) 0.1358±0.0003(4) 0.7394±0.0023(6) 0.3098±0.0007(4) 0.2437±0.0008(6)

MLFE 0.0098±0.0000(6) 0.2149±0.0035(6) 0.6579±0.0014(4) 0.4735±0.0066(6) 0.2857±0.0008(4)
BR 0.0094±0.0002(4) 0.1237±0.0006(1) 0.6763±0.0207(5) 0.2892±0.0013(1) 0.2772±0.0052(5)

LSF-CI 0.0094±0.0000(2) 0.1726±0.0012(5) 0.6477±0.0025(2) 0.4011±0.0016(5) 0.2962±0.0009(2)
ML-LSS 0.0094±0.0000(2) 0.1246±0.0006(2) 0.6443±0.0047(1) 0.2941±0.0012(2) 0.2978±0.0012(2)

education

LIFT 0.0375±0.0001(1.5) 0.0708±0.0005(1) 0.4663±0.0015(4) 0.0992±0.0007(2) 0.6420±0.0015(2)
ML-KNN 0.0383±0.0001(5) 0.0783±0.0003(3) 0.4999±0.0036(6) 0.1056±0.0003(3) 0.6125±0.0023(6)

MLFE 0.0384±0.0005(6) 0.0946±0.0044(6) 0.4634±0.0009(2) 0.1367±0.0061(6) 0.6375±0.0014(3)
BR 0.0375±0.0018(3) 0.0710±0.0019(2) 0.4739±0.0327(5) 0.0991±0.0018(1) 0.6366±0.0166(4)

LSF-CI 0.0378±0.0001(4) 0.0932±0.0009(5) 0.4636±0.0026(3) 0.1352±0.0011(5) 0.6362±0.0011(5)
ML-LSS 0.0375±0.0001(1.5) 0.0796±0.0007(4) 0.4615±0.0023(1) 0.1160±0.0008(4) 0.6421±0.0015(1)
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Fig. 2. Comparison of ML-LSS (control algorithm) against five comparing algorithms with the Bonferroni-Dunn test. Algorithms not connected with ML-LSS
in the CD diagram are considered to have significantly different performance from the control algorithm (CD=2.055 at 0.05 significance level).

TABLE III
FRIEDMAN STATISTICS FF IN TERMS OF EACH EVALUATION METRICAND

THE CRITICAL VALUE AT 0.05 SIGNIFICANCE LEVEL (# COMPARING
ALGORITHMS K = 6, # DATA SETS N = 11).

Evaluation metrics FF critical value
Hamming loss 5.0594
Ranking loss 4.9968

One error 19.2479 2.4004
Coverage 6.1513

Average precision 12.7686

C. Sensitivity Analysis

In order to test the robustness of the proposed algorithm,
we also analyzed the influence of the trade-off parameters on
the experimental results, including the parameters �1 and �2.
The larger the �1, the more important the L1 regularization
is, the larger the �2 is, the more important the local similarity
of samples is. Due to space limitations, we only report the
experimental results on the flags dataset using the Ranking
loss and One error evaluation measures, the results of other
datasets are similar. As shown in Figure 3, we can observe
that when the parameter �1 and the parameter �2 are at an
appropriate value, both evaluation measures reach the optimal
value. In addition, we compared the running time of the six
algorithms on the dataset flags. As shown in Figure 4, our
algorithm has the shortest running time, and the MLFE [30]
algorithm has the longest running time, which indicates that
the time loss of our algorithm is small.

V. CONCLUSION

In the real world, when the labels we focus on are different,
the similarity between the samples may be different. We can
say that the samples are only locally similar, whereas the pre-
vious algorithms assume that all labels share the same sample
similarity matrix, which may damage the model performance.
In this paper, we propose a method that makes good use of
the local similarity of the sample. Specifically, we assume that
the different labels are determined by a different subset of the

Fig. 3. Influence of �1 (�2 = 2) and �2 (�1 = 0.1) with Ranking loss and
One error evaluation measures on dataset flags.

Fig. 4. Comparison of the running time of six algorithms on the dataset flags,
assuming the running time is t, the Y-axis represents log(t+ 1).

original features, and the feature subset of each label is calcu-
lated by the dimensionality reduction method that maximizes
the dependence of the features and label. In addition, we apply
L1 regularization to sparse weight parameter vectors. Finally,
we assume that the subset of features that determine a label
is similar between samples, and the value of samples in the
label should be similar. We carried out extensive experiments
to validate the effectiveness of our algorithm in comparison
with other state-of-the-art approaches on various data sets.
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