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Abstract—The transparent cornea is the window of the eye,
facilitating the entry of light rays and controlling focusing the
movement of the light within the eye. The cornea is critical, con-
tributing to 75% of the refractive power of the eye. Keratoconus
is a progressive and multifactorial corneal degenerative disease
affecting 1 in 2000 individuals worldwide. Currently, there is
no cure for keratoconus other than corneal transplantation for
advanced stage keratoconus or corneal cross-linking, which can
only halt KC progression. The ability to accurately identify subtle
KC or KC progression is of vital clinical significance. To date,
there has been little consensus on a useful model to classify KC
patients, which therefore inhibits the ability to predict disease
progression accurately.

In this paper, we utilised machine learning to analyse data from
124 KC patients, including topographical and clinical variables.
Both supervised multilayer perceptron and unsupervised varia-
tional autoencoder models were used to classify KC patients with
reference to the existing Amsler-Krumeich (A-K) classification
system. Both methods result in high accuracy, with the unsuper-
vised method showing better performance. The result showed that
the unsupervised method with a selection of 29 variables could
be a powerful tool to provide an automatic classification tool
for clinicians. These outcomes provide a platform for additional
analysis for the progression and treatment of keratoconus.

Index Terms—Variational Autoencoder, Multilayer Perceptron,
Cornea, Keratoconus, Bayesian Neural Networks, Clustering,
Deep Learning, Semi-supervised Learning, Dimensionality Re-
duction, Diagnosis, Amsler-Krumeich Classification

I. INTRODUCTION

Artificial intelligence (AI) is an emerging field in ophthalmic
science and medicine. While many researchers have utilised
deep and machine learning to monitor and analyse ocular
diseases such as diabetic retinopathy [1], macular degeneration
[2] and glaucoma [3], to date little AI research has been done
within the study of human corneal disease.

Keratoconus (KC) is a bilateral, asymmetric, progressive
corneal disease, affecting some 1 in 2,000 patients worldwide
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(Pearson et al. 2000). It is characterised by central and
para-central corneal thinning, leading to induced myopia and
irregular astigmatism causing deterioration of the patient’s best-
corrected visual acuity [4]. Currently, there is little consensus
on the etiology of KC however, both genetic and environmental
risk factors are considered to play a role [5]. Research suggests
a complex matrix of risk factors including gender, age, atopy,
sun exposure, geography, allergies, eye rubbing, contact lens
wear, dominant sleeping side, body mass index, amongst others.
Outside eye rubbing, however, the presence of other factors
have provided contradicting findings within the literature [6]–
[8].

The main diagnostic tool currently utilised in KC is corneal
topography and tomography, which describes the surface cur-
vature of the cornea. Various methods to obtain topographical
values exist, including Placido ring and Scheimpflug camera
measurement. The methodology impacts the available metrics.
Supplementary diagnostic technology may be used including
Optical coherence tomography (OCT), which utilises low
coherence interferometry to produce a two or three-dimensional
image. This may provide additional quantitative and qualitative
information on aspects such as corneal thickness and both
anterior chamber angle and depth information [9]. Although
topography and tomography represent a key diagnostic in-
dication, it is noted that a single diagnostic factor is not
sufficiently accurate to confirm an early diagnosis or indeed,
disease progression [10].

Corneal transplantation replaces the diseased cornea with
donor tissue and may restore corneal regularity and best-
corrected visual acuity. However, the surgery and postoperative
process is not without significant risks and considered a final
treatment option only. The most effective intervention currently
available to halt the progression of KC is corneal cross-linking
(CXL). Cross-linking is indicated in the presence of disease
progression, identified by a combination of increasing corneal
curvature, irregularity and refractive changes. The decision to
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proceed to CXL represents a clinical challenge as patients will
progress at different rates.

Similarly, not all patients will progress to require corneal
transplantation for visual rehabilitation. Although routinely
valid, surgical complications have been identified and CXL
does not appear to work in between 5-20% of procedures [11].
Projecting both the likelihood and rate of progression against
the risks of surgical intervention is, therefore, key to optimising
the timing of CXL intervention and the potential refractive
and visual outcomes. Consequently, an improved model of
progression prediction may prove invaluable.

To achieve an accurate model of prediction, it remains
essential to classify patients and the stages of the disease
process. Currently, no universal classification scheme exists
for keratoconus [12]. The purpose of this pilot study, which
is the first step in developing an accurate model of disease
progression prediction, is to accurately classify KC patients
through the use of machine learning.

This research aims to examine machine learning models
through the use of patient data to develop a model that
can accurately classify different stages of KC, with two key
objectives:
• To use supervised and unsupervised models to classify

different stages of KC;
• To compare the accuracy of the supervised and unsuper-

vised models in the classification of KC.
The paper is organised as follows. In Section II, we review

the related work on Keratoconus diagnosis by machine learning
methods. Section III describes a keratoconus patient data set
collected in a private ophthalmic clinic (Vision Eye Institute
(VEI) Chatswood), which is used in this study. In Section III-B,
we develop a variational autoencoder (VAE) with Gaussian
mixture classifier. The VAE clusters the corneal data into four
A-K classes to distinguish the severity of KC in our cohort.
In Section III-C, we develop a multilayer perceptron model
to predict the A-K classification label from known labels. In
Section IV, we apply the VAE model and MLP model to the
clustering and classification tasks for the keratoconus patient
data set. The VAE with application to our corneal data set
demonstrates excellent performance with clustering accuracy.
The MLP has state of the art performance on the real corneal
data. In Section V, we outline the results of the study, as well
as the next steps for this research.

II. LITERATURE REVIEW

Deep learning has significantly improved object recognition
and medical image analysis [13]. In recent years there has been
an increase in research with deep learning and ocular disease.

The aim of machine learning in KC research to date has
predominantly been to identify early or subclinical forms of
the disease. A recent review by Lin et al. [14] details 17
publications concerning the detection of KC, 15 of the 17
reviewed papers utilised topographic maps as the primary input,
with 65% of the papers seeking to classify KC patients, and
30% seeking to distinguish KC or sub-KC. While some of the
reviewed papers utilised multiple machine learning models, 53%

utilised neural networks, 23% utilised discriminant analysis.
Differentiation across accuracy, sensitivity and specificity was
apparent in the reviewed papers with ranges reported between
65.2%-100%, 63%-100% and 82%-100% respectively.

Of most relevance to this study, several cohorts utilised the
Pentacam corneal topography and tomography unit, thereby
allowing objective comparisons. See [15]–[17]. Further, Yousefi
et al. [17] used an unsupervised algorithm to cluster KC
associated variables with the greatest accuracy effectively.

Kovacs et al. [16] undertook a study with a Pentacam
HR Scheimpflug device. This retrospective case-control study
utilised a multilayer perceptron neural network to assess the
corneal symmetry in 60 eyes from 30 patients who had
unilateral keratoconus. This research classified patients based
on videokeratography and clinical signs through the framework
of KISA, the three components of which are central keratometry
(K), the inferior-superior (I-S) value and keratoconus percentage
index [12]. The accuracy of machine learning classification
in this study was based on the Pentacam progress index
(PPI). However, while this functionality is readily available on
Pentacam devices, it has not widely been used to classify KC
within the existing literature.

Kovacs et al. used classifiers trained on variables through
the creation of bilateral data for each parameter. The best
neural network architecture was determined from a feedforward
network based on highest accuracy, through the training and
test sets of 70% and 30% respectively. Results indicated the
highest accuracy was to identify subtle corneal changes in
unilateral KC patient’s control eyes which have both sensitivity
and specificity at 90%. However, while the study demonstrated
high accuracy between normal, subnormal and KC groups, it
did not discriminate between severity levels of KC within the
KC group. Further, as the control group were represented by the
opposite and previously non-diagnosed eye, the practical benefit
of these findings remains unclear. KC is considered bilateral
disease albeit often highly asymmetrical in the presentation.
Confirmation of a diagnosis of KC in the less affected eye is
therefore to be expected.

Hwang et al. [15] utilised multivariate logistic regression
analysis and hierarchical algorithm to determine the optimal
objective, machine derived variables and combinations, utilising
an approach of combining metrics from two devices Pentacam
and Spectral Domain OCT. This retrospective case-control
study analysed asymmetric clinically normal fellow eyes
from 30 KC patients and 60 clinically normal eyes from 60
bilaterally normal control patients. While the authors did not
specify training and testing set sizes, in establishing sensitivity,
specificity and area under curve (AUC), it demonstrated the
ability to reduce the 24 variables to 13, utilising the hierarchical
clustering method, highlighting the benefits of utilising multiple
devices and inputs. Results were highest for the clustered
combination from both the Pentacam and OCT device, with
the combined 13 variables as listed in Table I below resulting
in 100% sensitivity and 100% specificity distinguishing KC
from control corneas.

Yousefi et al. [17] utilised unsupervised machine learning



TABLE I
PENTACAM AND OCT COMBINED VARIABLES FROM [15]

Pentacam and Resultant 13 variablesOCT combined

Temporal Outer
Pachymetry Minimum
Temporal Inner
Index Vertical Asymmetry
Central Thickness
Epithelium Standard deviation
Minimum - Medium SD-OCT
Index Surface Variance
Inferior Temporal Inner
Epithelium Minimum-maximum
Minimum SD-OCT
Superior Outer
Superior Inner

to predict KC severity. The study utilised Swept-Source
OCT images (CASIA), to analyse 3,000 eyes representing
a significant data set. Unlike most studies the Ectasia Severity
Index (ESI) was used to determine participant suitability. The
ESI, which analyses corneal changes and degeneration is an
instrument guided screening index, is not routinely used in
clinics minimising the practical impact of the research.

This study utilised Swept-Source OCT images (Casia) of
12,242 eyes from multiple centres in Japan, from which 3,156
eyes with valid ESI were selected. Of interest, the paper only
outlines patient selection based on ESI and does not include
details on patient history. The algorithm is comprised of 3
key steps, principal component analysis (PCA) to reduce input
data from 420 to 8 significant components linearly; manifold
learning to reduce non-linearly parameters to eigen-parameters;
density-based clustering to identify keratoconic eyes.

This study utilised t-SNE to consider clustering of variables
within the analysis, resulting in four different clusters of
patients, reflecting the classification of patients. The study
achieved a specificity and sensitivity of identifying healthy
eyes from KC eyes of 94.1% and 97.7% respectively. The
results of this study distinguished KC from normal eyes, rather
than establishing a well-defined model of stages within KC.

While emerging, most of the machine learning studies
with KC have been undertaken, focusing primarily on the
classification of pachymetric images. To date, machine learning
has not been utilised to establish an association between the
multifactorial variables of KC.

In the present study, Pentacam image data combined with
risk factors such as age, gender, eye rubbing and others were
included. Both supervised, and unsupervised machine learning
was used and compared to a widely used classification system:
Amsler-Krumeich (A-K) classification system. The primary
goal is to accurately classify KC patients, to develop a more
accurate model for early disease progression prediction, rather
than identifying or classifying KC from subclinical and normal
samples.

III. MATERIALS AND METHODS

A. Patient corneal data set

This is a retrospective single centre study approved by
the University of Sydney Human Research Ethics Committee
(HREC 2013/1041). Patient data from 124 KC patients was
collected from Vision Eye Institute Chatswood between 2014-
2017. The medical records of each patient were reviewed and
analysed, of which 79% (63.7%) were male. The information in
Table II was extracted to be utilised as variables of consideration
in both supervised and unsupervised models.

TABLE II
VARIABLES UTILISED IN STUDY

Variable Source

Gender Patient questionnaire
Age Patient questionnaire
Nationality Patient questionnaire
Diabetes Medical record
Atopy Medical record
Allergy Medical record
Hypertension Medical record
Other disease presence Medical record
Length of time since diagnosis Patient questionnaire
Known eye history Patient questionnaire
Family history Patient questionnaire
Eye rubbing Patient questionnaire
Primary optical aid Patient questionnaire
Uncorrected distance visual acuity VEI clinician assessment
Corrected distance visual acuity VEI clinician assessment
Presence of hydrops VEI clinician assessment
Corneal scarring VEI clinician assessment
Vogt’s Striae VEI clinician assessment
Fleischer’s ring VEI clinician assessment
Refractive sphere Pentacam
Refractive cylinder Pentacam
Refractive axis Pentacam
Flat keratometry Pentacam
Steep keratometry Pentacam
Thinnest pachymetry Pentacam
Location X axis Pentacam
Location y axis Pentacam
Central pachymetry Pentacam
Amsler-Krumeich (AK) classification VEI clinician

All patients were classified, through clinician experience,
based on the Amsler-Krumeich (A-K) classification, which is
comprised of mean-K readings on the anterior curvature sagittal
map, thickness at the thinnest location and the refractive error
of the patient, and biomicroscopy. Table III [18] shows how
A-K classification groups patients.

B. Clustering for corneal data by variational autoencoder

Variational autoencoder (VAE) [19] is a Bayesian deep neural
network, which consists of an encoder and a decoder and a
latent variable layer. The encoder and decoder which are deep
neural networks are used to extract features from the input data
and to generate the same type of output data from the latent
features respectively. The encoder is a deep net built to learn
features of the input data which are then passed to the latent
variable layer. In the decoder, the latent features are used to
generate the output data with the same format of the original



TABLE III
A-K CLASSIFICATION BY [18]

Grad Characteristic

1
Eccentric steeping
Myopia and astigmatism < 5.00D
Mean central K readings < 48.00D

2

Myopia and astigmatism 5.00-8.00D
Mean central K readings < 53.00D
Absence of scarring
Minimum corneal thickness > 400µm

3

Myopia and astigmatism 8.00-10.00D
Mean central K readings > 53.00D
Absence of scarring
Minimum corneal thickness 300-400µm

4

Refraction not measurable
Mean central K readings > 55.00D
Central corneal scarring
Minimum corneal thickness 200µm

data. Between the encoder and decoder, the latent variable layer
uses Gaussian random sampling to generate latent features. The
clustering is then obtained by features from the latent variable
layer between the encoder and decoder.

In this work, we take the encoder and decoder as multilayer
perceptron (MLP) models, which is a fully connected deep
neural network. The input data was trained by the VAE of the
above network architecture (see Figure 1). The encoder uses a
deep net to compress each high-dimensional input sample into
a two-dimensional real vector. By this, the encoder extracts
the features of the input and is then clustered by a Gaussian
mixture model [20] to a given number of classes.
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Fig. 1. VAE architecture: encoder, decoder and latent variable layer; the
encoder and decoder are MLP with 2 hidden layers.

Figure 1 shows the VAE model we use in the experiments.
The encoder and decoder are MLP with 2-hidden layers. The
network architecture of encoder and decoder are 29-128-256-2
and 2-256-128-29, where the 29 is the number of the variables
in the corneal data, 256 and 128 are the numbers of hidden
neurons of the deep nets. These are hyper-parameters which
have been tuned to optimize the performance of the deep
network. When the VAE model has been trained, a Gaussian
mixture model is applied to cluster the compressed 2D vectors.

The VAE is interpreted as a Bayesian inference model. The
N input data of encoder X = {x(i)}Ni=1 and N outputs of
decoder Y = {y(i)}Ni=1 and latent feature z are regarded as
random variables which are in the probability spaces X ,Y and
Z . The encoder is characterised by the conditional probability

density (CPD) qφ(z|x) satisfying

p(z) =

∫
X
qφ(z|x)pX(x)dx,

where pX is the (unknown) probability density function of
the input data. The φ signifies the parameters of the encoder
neural network.

The decoder is depicted by the CPD pθ(y|z), which links
the latent variable z by

pθ(y) =

∫
Z
pθ(y|z)p(z)dz ∀y ∈ Y,

where p is the probability density function of the latent variable
and θ signifies the parameters of the decoder neural network.

The marginal log-likelihood of output data set Y is given
by log pθ(Y ) :=

∑N
i=1 log pθ(y

(i)). For sample i = 1, . . . , N ,
the log-likelihood log pθ(y

(i)) has a variational lower bound
[21]

log pθ

(
y(i)
)
≥ Ez

[
log pθ

(
y(i)|z

)]
−DKL

(
qφ

(
·|x(i)

)
‖p(·)

)
,

where the DKL term represents the Kullback-Leibler divergence
[22] of the posterior distribution of the output of the encoder
and the prior distribution of the latent variable, and the −Ez
term is the reconstruction error of the decoder output. From
this, we can define the loss function of the VAE as

LOSS =

N∑
i=1

{
DKL

(
qφ(·|x(i))‖pθ(·)

)
−Ez

[
log pθ(y

(i)|z)
]}
.

In training the neural network, the VAE uses back-
propagation to minimize the loss function. The qφ(·|x) and
pθ(·) are set as normally distributed density functions. The
mean and variance of qφ(·|x) are parameters by a deep neural
network, and the pθ(·) is the standard normal distribution
density by which the latent variable z is sampled.

C. Deep neural networks for classification

We use the multi-layer perceptron (MLP) model for corneal
data classification. The MLP model is a fully connected deep
neural network with multiple layers for a semi-supervised
learning task, see [23], [24].

An MLP of depth K is a multivariate function in the form
of

x
(j+1)
i = gij(x

(j) · wij + bij),

for j = 1, 2, . . . ,K and j = 1, 2, . . . , Nj , where the x(j) =

(x
(j)
1 , . . . , x

(j)
Nj

) is the input of jth layer with Nj neurons, and
gij is the activation function on R which connects the input
and the ith neuron in the jth layer, and wij and bij are the
trainable weights and biases. For classification task, the last
MLP is trained by back-propagation using a stochastic gradient
descent optimisation strategy.
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Fig. 2. Network architecture of MLP with three hidden layers. It has 128,
256 and 4 neurons in the second, third and fourth hidden layers.

Figure 2 shows the MLP model we use for corneal data with
three hidden layers. The network architecture is 29-128-256-4,
with 29 the dimension of the input data (i.e. the number of
the variables of corneal data) and 128, 256 and 4 the numbers
of neurons in the hidden layers in turn.

IV. EXPERIMENTAL RESULTS FOR CORNEAL DATA

A. Results and clinical interpretation of VAE clustering

As mentioned, we use VAE to reduce the dimension of input
data from the 29 initial variables to 2. We then utilise Gaussian
mixture modelling for clustering to classify the compressed
sample data into one of the 4 A-K classes. Figure 3 shows
the plot of latent 2D feature vectors of the corneal input data.
The class label is determined by the AK classification label
of the ground truth. We can observe that there is already an
embryonic form of clustering, but the classification is not clear
as different clusters have many overlaps.

We thus send the latent 2D feature vectors to the Gaussian
mixture model, which then clusters the samples into 4 classes.
As depicted in Figure 4, the classes of 1,2,3 and 4 relate
to A-K classifications of 1-4 as outlined in the introduction.
Patients in classes 1 and 4 are independent, as the groups have
different mean and variance in R2. The results also indicate
distinct features between classes 1 and 3. Our results infer
that classes 1 and 2 are the most similar, as evidenced with
overlapping on the cluster plot, which is brought about by
miss-clustering of the data for patients classified within groups
1 and 2. The accuracy of the VAE in Figure 4 compared with
the ground truth is as high as 80.3%. In 20 repetitions of
the test, comparing these results to the ground truth of A-K
classification through clinical diagnosis represents a significant
outcome with accuracy at 76.9% with Std Dev. of 3%, and
the highest accuracy level of 82.4%. The Std Dev. 3%, which
is small, reflects the uncertainty in the sampling of the latent
variable and Gaussian mixture clustering of the VAE.

Figure 5 shows the ROC curves and AUC for the VAE
classifier. The ROC curves for all classes are close to the
upper left corner, and the AUC for classes 1,2,3 and 4 achieves
high values at 0.91, 0.87, 0.79 and 0.99. It illustrates that the
VAE classifier has excellent performance for the corneal data
clustering. Meanwhile, the VAE has helped to classify patients

Fig. 3. The corneal data is compressed into two dimensional vector by VAE.
They are the input of the Gaussian mixture model for clustering. The 2D
vectors are the extracted features of the input data which can then be used for
clustering. Here, the class label for each sample is from the ground truth.

Fig. 4. Corneal data is clustered into 4 classes by Gaussian mixture model
using the latent 2D vectors from the VAE model. The clustering accuracy
compared to the ground truth is 80.3%. The shallow blue ellipses show the
confidence region of the centre of each cluster. The difference between class
1 and the classes 3 and 4 are apparent; the 1st and the 2nd classes are close
to each other.

into 4 classes that correspond to the A-K classification. As
this is an unsupervised model, it will facilitate clinicians being
able to accurately group patients with an A-K classification
based on the input 29 variables of real measurement.

B. Results and clinical interpretation of MLP classifier

The MLP we utilise is a three-layer fully connected neural
network which learns the diagnosis of A-K classification from
the training data. The trained MLP model can be used to find
the A-K classification label of the test data set. Of totally 237
samples, we use 64% and 16% in training and validation and
20% in the test. We ran the experiments for 100 repetitions
to reduce the randomness due to random shuffle of the data
set and model training. We use 100 epochs for each training.
Our MLP model demonstrated a mean validation accuracy of
86.37% with epoch and variance of validation of 79-94% across
the analysis. The validation loss is decaying fast with a small
variation. The mean test accuracy is 75.85% with Std Dev
5.88%. Figure 8 shows the ROC curves for the MLP model



Fig. 5. ROC curves for VAE classifier. The VAE classifier shows excellent
performance on each of four classes, with AUC between 0.79 to 0.99.

Fig. 6. ROC curves for MLP classifier. The MLP classifier shows excellent
performance for each of four classes, with AUC between 0.86 and 0.97.
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Fig. 7. Validation accuracy of MLP for corneal data; the red curve shows the
mean validation accuracy with epoch up to 100 in training; the shallow red
region shows the variance of validation accuracy with epoch.
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Fig. 8. Validation loss of MLP for corneal data; the blue curve shows the
mean validation loss with epoch up to 100 in training; the shallow blue region
shows the variance of validation loss with epoch.

on each of four classes on corneal data with AUC values 0.92,
0.86, 0.97 and 0.94. The micro-average and macro-average
AUC values (which reflect the general performance of the MLP
classifier) are high at 0.96 and 0.93. The ROC curves are all
close to the upper left corner, which indicates the excellent
performance of the MLP classifier. We can thus infer that the
MLP model demonstrates promising potential as an accurate
artificial intelligence diagnosis for corneal diseases.

V. CONCLUSION AND DISCUSSION

We utilised an MLP model to learn the corneal disease
diagnosis from labelled training data, and then developed
a Bayesian neural network (Variational Autoencoder plus a
Gaussian mixture model) to determine the degree of corneal
disease from unlabelled corneal data. Both methods achieve a
state of the art performance on real corneal data.



In this study, the unsupervised VAE model resulted in higher
accuracy than the MLP model. Training against an existing
classification system, that is the A-K classification system in
this study, is not needed with the unsupervised model. There are
already multiple KC classification systems [16], [17] utilised in
research and clinical settings, resulting in inconsistency through
research output and clinical interpretation. This VAE model
with the 29-dimensional input could thus represent a potential
independent and standardised classification system for KC.

As VAE results (see Figure 4) showed, from left to right,
4 classes distinguished the patients from early to late stages,
which fits well with the progression pattern of the disease. The
cluster centre between classes 1 and 2 was closer to each other,
suggesting less differentiation between features and variables of
these groups. It is consistent with the clinical observation that
early stages of KC are hard to distinguish. Furthermore, this
clustering map seems to not only classify patients similarly
to the A-K system, but it also visualises how much closer
the features of patients (represented by the dots) are towards
the next stage. Identifying where a patient may sit within
their classification, that is at the beginning, middle or upper
extremity may have significant additional impact contributing
to the analysis of progression.

Accordingly, the next step in our research is to expand the
model to include control samples inclusive of longitudinal
outcomes. Unlike research to date, a vital goal of this study
has been not only to identify whether a patient has KC or not,
but rather to be able to accurately group patients within the
framework of the existing A-K KC classification stages.

Also of significance, the difference between this study and
those reviewed is that we looked at both eyes of KC patients, as
compared to the studies [16] and [15] which sought to identify
sub-clinical KC in the fellow eyes of unilateral KC patients.

This study is to be able to accurately group patients within
the framework of the existing A-K KC classification stages.
We focus on clinician involvement in determining the variables
considered and classification, which is an essential difference
between our study and those of [15]–[17], which use built-in
automated algorithms.

While this study did not achieve the same sensitivity and
specificity as the unsupervised model in [17], it is seeking
to distinguish different stages within KC, whereas the high
accuracy generated in [17] was to differentiate between KC
and control. Besides, our study represents a small data set
compared to [17].

This study was able to achieve mean accuracy levels of 76%
and 80% for supervised and unsupervised models respectively,
and we expect that the inclusion of control samples alongside
the existing clinical data may lead to additional improvement in
these outcomes. It is important to continue training and testing
the models to develop an approach which assists clinicians
better manage KC and predict disease progression.
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