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Abstract—Sequence labeling is a fundamental task of natural
language understanding. Recent neural models for sequence
labeling task achieve significant success with the availability of
sufficient training data. However, in practical scenarios, entity
types to be annotated even in the same domain are continuously
evolving. To transfer knowledge from the source model pre-
trained on previously annotated data, we propose an approach
which learns label-relational output structure to explicitly cap-
turing label correlations in the latent space. Additionally, we
construct the target-to-source interaction between the source
model MS and the target model MT and apply a gate mechanism
to control how much information in MS and MT should be
passed down. Experiments show that our method consistently
outperforms the state-of-the-art methods with a statistically
significant margin and effectively facilitates to recognize rare
new entities in the target data especially.

Index Terms—adaptive sequence labeling, transfer learning,
label-relational output structure, latent space

I. INTRODUCTION

Slot tagging is a critical component in spoken dialogue sys-
tems. It aims to extract semantic concepts as constraints from
the natural language. Traditionally, slot tagging is formulated
as a sequence labeling task using the IOB representation. Take
a movie-related utterance as an example, ”find comedies by
James Cameron”. The task tries to assign the corresponding
entity label to each word, ”O B-genre O B-dir I-dir”, where

* This work was partially supported by National Key R&D Program of
China No. 2019YFF0303300 and Subject II No. 2019YFF0303302, DO-
COMO Beijing Communications Laboratories Co., Ltd, MoE-CMCC ”Ar-
tifical Intelligence” Project No. MCM20190701.

* Weiran Xu is the corresponding author.

a B-XXX tag indicates the first word of slot type XXX, and
I-XXX is used for subsequent words of slot type XXX. The
tag O indicates words outside of any slot types. The example
above finally extracts ”comedies” as the movie genre to find
and ”James Cameron” as the director.

In recent years, neural network models have witnessed a
notable success in sequence labeling task. However, the devel-
opment of such models has largely been hindered by the lack
of sufficient training data. In various practical scenarios, entity
types to be annotated in the same domain are continuously
evolving. It remains an unsolved challenge to effectively make
use of the previous annotated data or models and alleviate
labor costs for new annotated data. Another urgent need is that
domain-specific entities can be recognized using models pre-
trained on annotated data with common entities, like Location
or Date. Both challenges expect to transfer knowledge from
annotated entity data available to new entity types to avoid
re-annotating all the samples. But for copyright and privacy
concerns, industrial scenarios prevent the release of original
training data. Therefore, we focus on incorporating source
model pre-trained on previously annotated data and facilitating
to recognize new entity types in this paper.

Similar to [1], we define a setting for our research consisting
of two aspects: (1) a source model, MS , already trained to
recognize a certain number of categories on the source data,
DS ; and (2) a transfer learning (TL) task consisting of training
a new model, MT , on the target data, DT , where new entity
categories appear, in addition to those of the DS (note that DS

is no longer available to perform TL). DT is typically much
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smaller in size compared to DS . These kinds of problems
regard leveraging knowledge about a source model learned on
a source dataset, to improve learning a target model on a target
dataset.

Existing works [2], [3] transfer the weights of the source
model and then finetune the target model. [4] utilizes the
outputs of the top layer of the expert models pre-trained on
source data when training new domains, allowing for faster
training. [1] proposes the neural adapter to learn the difference
between the source and the target label distribution. All of
these works ignore the structure of the output space and se-
mantic correlation between old entities and new entities. They
treat entity labels as independent classes, which makes transfer
learning difficult. The reason is that identifying one label is
not helped by data for other labels. We aim at addressing this
problem by learning output entity label structure to capture
the similarity of entities in the output space, so that data for
similar labels can help sequence labeling, even to the extent
of enabling few-shot or zero-shot sequence labeling.

Motivated by the problems described above, we propose
a novel transfer method with label-relational output structure
for sequence labeling. Specifically, we first encode the input
sequence using the source model MS and the target model
MT individually. To tackle the issue of feature discrepancy, we
construct strong target-to-source interactions and employ the
gate mechanism to determine how much information in MS

and MT should be passed down. Then we encode the seman-
tics of the label entities and learn the label-relational output
structure in the joint context-output space via complex non-
linear relationships. Our model can learn to share parameters
across output classifiers and input contexts to better capture
the similarity structure of the output space and leverage prior
knowledge about this similarity. To the best of our knowledge,
we are the first to apply learning joint input-output embeddings
to solving transfer learning of adaptive sequence labeling.

To summarize, our major contribution includes:
• We propose a transfer method which learns label-

relational output structure to explicitly capturing label
correlations.

• We augment our method with the target-to-source inter-
action between the source model and the target model.

• Empirically, our model can offer significant improve-
ments over previous models on the CoNLL dataset and
enable to recognize rare new entity types in the target
dataset.

II. STATE-OF-THE-ART ARCHITECTURE IN
SEQUENCE LABELING

A standard sequence labeling task can be defined as follow:
given an input sequence X = (x1, x2, ..., xn), we need to
predict the output sequence Y = (y1, y2, ..., yn). X and Y
represent the input and output space respectively. Typically, the
model learns to maximize the conditional probability P (Y |X).

In this section, we introduce the state-of-the-art neural
model for sequence labeling, CNN+BiLSTM [5], which is
also the baseline model we use to evaluate the capability of
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Fig. 1. State-of-the-art baseline architecture in sequence labeling.

our method for transfer learning. The general architecture is
described in Figure 1. The model is composed of: a CNN layer
at the character level, followed by a BiLSTM at the word level,
a fully connected layer, and a CRF/output layer. First, a word
in the input sequence is represented by both its word-level
and character-level embeddings. Then, a bidirectional LSTM
processes the input sequence, followed by a fully connected
layer. The final prediction yt is obtained by applying a softmax
over the output feature vector ht:

p (yt|ht) ∝ exp
(
WTht + b

)
(1)

where W ∈ Rdh×|V| is a trainable weight matrix and b ∈ R|V|
is a bias vector. V is the label set of sequence labeling.
The parameterization in Eq. 1 makes it difficult to learn the
structure of the output space or to transfer this information
from one label to another because the parameters for output
label i, WT

i , are independent from the parameters for any
other output label j, WT

j . We will dive into the detailed
analysis of this problem in the following sections.

Besides, we also implement a Linear Chain CRF [6] over
the fully connected layer to improve the prediction ability of
the model, by taking the neighboring prediction into account
while making the current prediction.

III. PROBLEM FORMALIZATION
Given a source dataset DS which has E classes and a

sequence labeling model MS trained on DS , we aim at training
a new model MT on the target dataset DT which extends
original E classes to E+N classes. Note that DS is no longer
available to perform transfer learning and DT is typically
much smaller in size compared to DS . The core challenge
is how we incorporate output features of the source model
MS to facilitate the learning process of the target model MT

without access to the original source dataset DS .

IV. METHODOLOGY
In this part, we will adequately delineate our transfer

method with label-relational output structure for sequence
labeling. We start from a brief description of the overall
architecture and then dive into the details of each part of the
proposed model.
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Fig. 2. Our transfer method with label-relational output structure for sequence labeling.

A. Model overview

Figure 2 illustrates the architecture of our method with
label-relational output structure. The left represents the source
model and the right represents the target model. First, we
encode an input word by concatenating its character embed-
dings and word embeddings. Then, a multi-layer bidirectional
LSTM processes the word representation. To incorporate the
output features of the source model to the target model, we
construct a stronger interaction between the source model and
the target model rather than direct concatenation. Besides, we
employ a gate mechanism to control how much information
in the source model and target model should be passed down.
Moreover, instead of using a common softmax output layer,
our method aims at explicitly capturing label correlations to
facilitate transfer learning by learning label-relational output
structure.

B. Target-to-source interaction

Our method encodes the input sequence just like the state-
of-the-art architecture in Figure 1. A word in the input
sequence is represented by both its word-level and character-
level embeddings. Then, a multi-layer bidirectional LSTM
processes the input sequence. We assume the hidden states
of the i-th BiLSTM layer are represented as (h(i)s1 , ..., h

(i)
sn ) for

the source model MS and (h
(i)
t1 , ..., h

(i)
tn ) for the target model

MT .
In our work, we aim to transfer knowledge in an incre-

mental, progressive way from the source model to the target
model. The intuitive way of fusing two features from MS

and MT is to concatenate them directly. However, we must
tackle the issue of feature discrepancy between the source and
target data because of the different label spaces. For example,
many words corresponding to new tag categories can already
appear in the source data, but they are annotated as O1 since
their labels are not part of the source data annotation yet.
[1] uses an RNN-based neural adapter to encode the context
information of the source model individually but ignores
target-to-source interaction. Thus, we propose to construct
a stronger interaction between the source model and target
model with an attention-based matching module, which has
shown its effectiveness in recent natural language inference
models [7]–[9].

Formally consider k-th hidden state h(i)tk
∈ Rhc at i-th RNN

layer of the target model and hidden states (h(i)s1 , ..., h
(i)
sn ) of the

source model, where n indicates the number of tokens in the
input sequence and hc denotes dimensions. Our model attends
on the hidden states of MS with k-th hidden state h(i)tk

of MT

to capture corresponding information between the source and
target models:

αj = (h
(i)
tk
)T · h(i)sj , j = 1, 2, ..., n (2)

βj =
exp(αj)∑n
j=1 exp(αj)

(3)

h̃tk
(i)

=

n∑
j=1

βj · h(i)sj (4)

1An O tag indicates that a token belongs to no label.
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Then we define the following interaction operators:

g = σ(Wg[h
(i)
tk
; h̃tk

(i)
;h

(i)
tk
− h̃tk

(i)
;h

(i)
tk
∗ h̃tk

(i)
]) (5)

o(i) = g ∗ h(i)tk
+ (1− g) ∗ h̃tk

(i)
(6)

where σ(·) indicates a sigmoid function and g is the resulting
gating function, which control how much information in the
source model and target model should be passed down. We
expect the model to focus on the relevant parts of MS and
MT and incorporate them automatically. o(i) will be pass on
to the (i + 1)-th BiRNN layer as input. Besides, we employ
multi-level target-to-source interactions on all the layers of
BiRNN to leverage multi-grained linguistic knowledge.

C. Label-relational output structure

For approaches directly using the output softmax layer like
Eq.1, the underlying label correlations cannot be explicitly
considered. If we denote the feature extracted by any arbitrary
neural model as f ∈ Rdf , then the probability of being any
given label is calculated by:

p = σ
(
WT

o f
)
,WT

o ∈ R|V|×df (7)

where V is the label set of sequence labeling. For simplicity,
we omit the bias parameter and normalization operation. We
can see that every row vector of WT

o is responsible for
predicting the probability of one particular label. We will refer
the row vectors as label vectors for the rest of this paper. As
these label vectors are independent, the label correlations are
only implicitly captured by sharing the model parameters that
are used to extract f . The paradigm of parameter sharing is
not enough to impose strong label dependencies and the values
of label vectors should be better constrained.

Previous works [10]–[13] substantiate that learning the
structure of the output space can help the transfer of learned
information across output labels. So data for similar labels can
help classification, even to the extent of enabling few-shot or
zero-shot classification. We first introduce our label encoder
network and then delineate the process of learning the output
structure.

Label Encoder Network For the sequence labeling task,
the output labels are annotated with IOB format, such as B-
EntityName, where EntityName is usually written as a text

phrase. We exploit the semantics provided by pre-trained word
embeddings by simply averaging the embeddings of all tokens
in the EntityName of the label. In general, there may be
additional information about each label, such as dictionary
entries, cross-lingual resources, or contextual information, in
which case we can add an initial encoder for these descrip-
tions which outputs a label embedding matrix. We leave the
investigation of additional label information to future work.
To distinguish B-EntityName from I-EntityName of the same
entity, we add a two-dimensional vector to the start of the
word embedding. Formally we consider the label embedding
matrix E ∈ R|V|×d, where each row vector represents a label
embedding.

Learning Output Structure Inspired by recent neural
language generation works [13], [14], we expect to learn
the joint context-output space and capture the label-relational
structure. Let gin(·) and gout(·) be two non-linear projections
of dj dimensions of any context ht and any embedded output
ej , where ej is the j-th row vector from the label embedding
matrix E. We assume gin(·) and gout(·) could capture the
context and output structure respectively and combine them
in a joint way. So we change the Eq.1 to the following Eq.8:

p (yt|ht) ∝ exp (gout(E)gin(ht) + b) (8)

In the experiments, we employ the following forms of gin(·)
and gout(·):

gin(ht) = σ(Vht + bv) (9)
gout(E) = σ(EU+ bu) (10)

where σ(·) is a nonlinear activation function such as Relu
or Tanh. The matrix U ∈ Rd×dj , and bias bu ∈ Rdj are
the linear projection of the encoded outputs, and the matrix
V ∈ Rdj×dh and bias bv ∈ Rdj are the linear projection of
the context.

From the above formula we can learn the joint context-
output space which incorporates both components for learning
output and context structure:

σ(EU+ bu)︸ ︷︷ ︸
Output structure

σ(Vht + bv)︸ ︷︷ ︸
Context structure

(11)

where U ∈ Rd×dj and V ∈ Rdj×dh are the dedicated pro-
jections for learning output and context structure respectively
(which correspond to W and f projections in Eq. 7). Figure
3 gives a detailed explanation of joint context-output space. E
represents output label space and ht represents input context
vector. U,V align output and input to the same dimension
space. By joint learning the non-linear projection gin and gout,
our method aims to learn complex relationships between input
context and output. Since the output label encoding E exploits
label semantics, Eq. 8 can also measure some degree of label
dependency in the label-relational output structure. As will be
shown in the experiment section, this label-relational output
structure provides a further improvement over our state-of-
the-art baseline model.



Algorithm 1 Target Model Training
Require: {(X(n), Y (n))}NT

n=1: target training data
L: loss function.
θS: parameters of the source model MS(X; θS)
θT: parameters of the target model MT (X; θT )

Ensure: {y(n)}NT
n=1: predictions

1: # initialization period
2: train the source model MS(X; θS) using the source data DS
3: initialize the parameters θT with θS

4: # training period
5: for e = 1→ n epochs do
6: for n = 1→ NT do
7: y(n) =M(X(n); θS , θT )
8: θT := θT − α∇θTL[y(n), θT;X(n), Y (n)]
9: θS keep fixed

10: end for
11: end for

D. Training procedure

In Algorithm 1, the training procedure for our methods
consists of two stages: initialization and training. In the
initialization stage, we first train the source model MS(X; θS)
using the source data DS then initialize the parameters θT with
θS . For the new parameters of MT in the output layer, we ini-
tialize them with weights drawn from the normal distribution,
X ∼ N

(
µ, σ2

)
, where µ and σ are the mean and standard

deviation of the pre-trained weights in the same layer of MS .
In the training stage, we send the same input sequence to MS

and MT simultaneously, and get the prediction from the output
layer of MT . We use the negative log-likelihood of the data
as our training objective. During backpropagation, we keep θS

fixed and only update θT .

V. EXPERIMENTS

A. Dataset

We adopt the dataset from [1] based on CoNLL 2003 NER
dataset in our experiments. The original dataset includes four
types of named entities: organization, person, location and
miscellaneous (represented by ORG, PER, LOC, and MISC,
respectively). For our experiments, we divide the CoNLL train
set into 80%/20% as DS and DT . Please note that in the
subsequent step, DS is no longer available for training MT .
We make LOC the new label to be detected in the subsequent
step. Hence we replace all the LOC label annotations with O
when they appear in DS . Instead, we keep LOC as it is in
DT . We repeat this process for all four categories to obtain
four datasets for our TL setting. Please refer to more detailed
statistics in the original dataset paper [1].

B. Implementation details

We implement all sequence labeling models within the
AllenNLP framework [15] and use the negative log-likelihood
of the data as our training objective. We train models for
100 epochs and select the model that performs best on the
development set via early stopping. We use 300 dimension
Glove pre-trained embedding to initialize the weights of the
embedding layer. We use the Adam optimizer [16] with a

TABLE I
PERFORMANCE COMPARISON OF DIFFERENT METHODS ON CONLL

DATASET. WE REPORT THE F1 SCORES OF THE TEST SETS BOTH ON THE
SOURCE DATA DS AND THE TARGET DATA DT . ”ORI” INDICATES THE

ORIGINAL 3 NE CATEGORIES IN THE SOURCE DATA, WHILE ”NEW”
INDICATES THE NEW NE CATEGORY IN THE TARGET DATA. ”ALL” IS THE

OVERALL TEST F1 FOR ALL 4 NE CATEGORIES IN THE TARGET DATA.

Model MS MT

Ori Ori New All
baseline [5] 91.35 89.66 90.20 89.79
baseline w/o CRF 91.06 86.52 87.19 86.68
baseline+finetuning 91.35 90.83 88.96 90.39
baseline+finetuning w/o CRF 91.06 90.42 89.39 90.18
adapter [1] 91.35 91.08 90.73 90.99
adapter w/o CRF 91.06 90.94 89.33 90.56
our method 91.36 91.55* 93.62* 92.83*
our method w/o CRF 91.08 91.40 93.01* 92.66*

learning rate of 0.0001 and gradient clipping of 10.0. We use
dropout of 0.2 in the BiLSTM and set the size of the BiLSTM
layers to 300 dimensions. The models are evaluated with the
F1 score as in the official CoNLL 2003 shared task [17].

C. Evaluation on public datasets

Table I shows the results of the CoNLL dataset where we
make LOC the new label in the target data. We report the
F1 scores of the test sets both on the source data DS and
the target data DT . The numbers with * indicate that the
improvement of our model over all baselines is statistically
significant with p < 0.05 under t-test. Baseline [5] follows the
same architecture as Figure 1 and we train MS on DS and
MT on DT , respectively. Since we do not perform weight
transfer between MS and MT , baseline [5] can be used
to substantiate the effect of transfer learning. Based on the
baseline [5], baseline+finetuning first trains MS on DS with
the same model architecture, then initializes MT with the
weights of MS , finally finetunes MT on the target dataset
DT . [1] proposes an RNN-based neural adapter to help transfer
learning. Note that we aim to confirm the effects of our transfer
technique. Therefore, we employ the same sequence labeling
model with different transfer settings in the experiments.

Comparing the baseline with the other transfer methods,
we can see that transferring weights from the initial model
always boosts the performance of original 3 NE categories
but fails in new target NE for the standard pre-training and
fine-tuning TL paradigm. We assume that label disagreement
of new NE in the source and target data is adverse to the
recognition capability of the target model. Therefore, our
transfer method tackles this discrepancy and improve F1-
score in new target NE with a statistically significant margin
up to 2.44% by learning the label-relational output structure
and constructing multi-grained target-to-source interaction.
Moreover, our method outperforms state-of-the-art transfer
method [1] with a margin of 1.84% in overall F1-score, which
substantiates the neural adapters only on the top layer of
RNN are insufficient to mitigate the discrepancies between the
source and target label distribution. Taking a deep insight into
the F1 scores of the new NE category, we find that our method



TABLE II
PERFORMANCE COMPARISON OF DIFFERENT METHODS ON ATIS DATASET

WHERE WE SELECT THE TOP 58 ENTITY TYPES AND IGNORE CLASSES
WITH SAMPLE NUMBERS BELOW 10. WE RANDOMLY SELECT 10 CLASSES
AS THE NEW TARGET CATEGORIES IN THE REST OF 58 CLASSES. HENCE
DS CONTAINS 48 ENTITY TYPES AND DT CONTAINS 58 TYPES. WE

PERFORM ALL THE EXPERIMENTS WITH CRF LAYER. THE OTHER
SETTINGS ARE SIMILAR TO THE CONLL DATASET.

Model MS MT

Ori Ori New All
baseline [5] 95.67 95.15 92.99 95.06
baseline+finetuning 95.67 95.72 91.91 95.52
adapter [1] 95.67 95.66 93.38 95.58
our method 95.67 95.98 93.80* 95.86

TABLE III
OVERALL F1 SCORES IN RECOGNIZING DIFFERENT TARGET NE

CATEGORIES OF THE TEST SET OF THE SUBSEQUENT STEP.

New Target
NE Catagory

Model
baseline finetuning adapter our method

LOC 89.79 90.39 90.99 92.83
PER 88.33 90.23 90.36 92.41
ORG 88.77 89.28 90.16 92.72
MISC 87.64 90.30 90.34 92.49

achieves much more improvements of 4.66% compared to the
baseline+finetuning, which further confirms the effectiveness
of our method. Besides, we also find that transfer methods
result in faster and more stable convergence than the baseline
without weight sharing.

To validate the generalization capability of our method, we
also perform experiments on another public dataset ATIS. The
results are shown in Table II. The numbers with * indicate
that the improvement of our model over all baselines is
statistically significant with p < 0.05 under t-test. Although
the baseline model has achieved great results, our method still
makes further improvements, especially on new entity types.
The results substantiate the effectiveness and generalization
capability of our method for new entities in the target dataset.

VI. QUALITATIVE ANALYSIS

A. Results of all NE categories

It is important to ensure that the improvement in the
performance is not specific to a target NE category. Thus, we
performed additional experiments on CoNLL dataset, using
other NEs as the target in the subsequent step.

In Table III, we present the overall F1 scores while rec-
ognizing four different new NE categories respectively on
four CoNLL datasets. The first column in the table identifies
different target NE categories as explained in the Dataset
section. The other four columns present the results of the
models without any TL method (baseline), with the transferred
parameters (baseline+finetuning), and with the neural adapter
[1] and our method respectively.

The results of Table III indicate those transfer methods
achieve a consistent improvement in the overall F1 score, es-

TABLE IV
COMPARISON WITH DIFFERENT MODEL COMPONENTS ON THE CONLL

DATASET. WE REPORT THE F1 SCORES OF THE TEST SETS ON THE TARGET
DATASET DT . ”ORI” INDICATES THE ORIGINAL 3 NE CATEGORIES IN THE
SOURCE DATA, WHILE ”NEW” INDICATES THE NEW NE CATEGORY IN THE

TARGET DATA. ”ALL” IS THE OVERALL TEST F1 FOR ALL 4 NE
CATEGORIES IN THE TARGET DATA.

MT

Model Ori New All
baseline+finetuning 90.83 88.96 90.39
our method 91.55 93.62 92.83
- w/o label-relational output structure 91.12 92.08 91.56
- w/o target-to-source interaction 91.36 92.68 91.89
- w/o gate mechanism 91.57 92.81 91.99

pecially for our method with label-relational output structure.
On average, our method gains 3.98 points of improvement
in F1 score on the CoNLL dataset compared to the baseline
and 2.15 points of improvement to the neural adapter. Our
proposed method improves the overall performance of recog-
nizing NEs in the target data, regardless of target NE types,
which substantiates the effectiveness of our method.

We have explained the issue of label discrepancy between
the source and target dataset in the previous section. There-
fore, we aim to figure out whether our method can make
a difference to tackle the issue. Figure 4 shows F1 scores
of the new target NE categories on the four datasets, where
each subgraph represents a target NE category. We can see
that baseline+finetuning always results in a drop of F1 score
compared to the baseline without any weight sharing because
of the label discrepancy. In all cases, our method significantly
outperforms baseline+finetuning with an average improvement
of 3.83% for the target entity categories. Moreover, in most
cases, we also outperform the state-of-the-art transfer method,
adapter [1] by 1.21% points. We argue that our method can
better help in resolving the annotation disagreement between
the source and the target data.

B. Ablation studies

To quantify the effects of different model components, we
report the performance of model variants in Table IV. We
implement three model variants: w/o label-relational output
structure, w/o target-to-source interaction, and w/o gate mech-
anism. For the variant w/o label-relational output structure,
we simply use a common softmax layer. For the variant w/o
target-to-source interaction, we use the original output features
of MS directly. For the variant w/o gate mechanism, we
concatenate two output features of MS and MT .

From the experiment results, all the components we pro-
pose effectively improve the performance of transfer learning
for sequence labeling. Among the three components, label-
relational output structure is the most essential one. Without
learning output structure, our method only achieves F1 score
of 91.56%, much lower than our full model by 1.27 abso-
lute points. The other model variants get lower F1 scores
by 0.94%(w/o target-to-source interaction) and 0.84%(w/o
gate mechanism). Meanwhile, target-to-source interaction also
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Fig. 4. New target category Test F1 of baseline, finetuning, adapter, and our method. Figure (a) (b) (c) (d) represent the F1 scores of new target category
LOC, PER, ORG, MISC, respectively.

makes a significant difference. In summary, all of these
components we propose can boost the performance of trans-
fer learning for sequence labeling and efficiently tackle the
challenge of label discrepancy.

VII. RELATED WORK

Learning Output Space Learning the structure of the
output space improves a wide variety of tasks, such as object
recognition and novelty detection in images [18], [18]–[20],
zero-shot prediction in texts [21], [22]. The approach has been
particularly successful in natural language generation tasks,
where word embeddings give a useful similarity structure for
next-word-prediction in tasks such as machine translation [23]
and language modeling [24]. Recent works have shown great
improvements over vanilla architectures by sharing parameters
across outputs through a bilinear mapping on neural language
modeling [12] or a dual nonlinear mapping on neural machine
translation [13], which can boost the classifier.

Transfer Learning Neural networks based TL has proven
very effective for various NLP tasks [25]. [26] applies TL to
NER with different NE categories by pre-training a linear-
chain CRF. [27] constructs label embeddings to automatically
map the source and target label types to help improve the
transfer between similar domains, where the label types are se-
mantically similar. [28] proposes progressive neural networks
to solve reinforcement learning tasks while being immune to
parameter forgetting. The networks leverage knowledge from
previous trained models with an adapter realized by a feed-
forward neural layer with non-linear activation. The adapter
is actually an additional connection between new model and
trained models. [1] employs BiLSTM based adapters in a
sequence-to-sequence way to map the output sequence in the
source space to the output sequence in the target space.

Sequence Labeling Recent state-of-the-art models of se-
quence labeling are recurrent neural network models, which
incorporate character-level and word-level embeddings and/or
additional morphological features. [29] uses BiLSTM+CRF to
achieve state-of-the-art performance (90.10 in terms of test
F1 on CoNLL 2003 NER dataset). [5] also implements a
similar BiLSTM model with convolutional filters as charac-
ter feature extractor, achieving 91.62 in the F1 score (BiL-
STM+CNN+lexical features). In this work, we choose to use
the BiLSTM and BiLSTM+CRF for sequence labeling, to

confirm whether our proposed transfer method can improve
transfer learning of sequence labeling task.

Pre-trained LM Unsupervised pre-trained models(BERT
[30], ELMo [31]) achieve huge success. BERT transfers
linguistic knowledge from unlabeled corpus while our paper
focuses on transfer learning from labeled only data. We can see
that they leverage knowledge from two disentangled sources
with different techniques and could be combined to enhance
each other. In terms of computational complexity, elaborate
supervised transfer methods are superior to BERT, especially
compared to pre-training on the unlabeled corpus. For perfor-
mance, our method also achieves good results on sequence
labeling. In our experiment scenario, we highlight the label
discrepancy between DS and DT and propose label-relational
output structure and target-to-source interaction. Only using
BERT embeddings can’t completely solve the issue because it
only captures context semantics and neglects label relations.
In this paper, we aim to confirm the effects of our method on
transfer learning only using labeled data. Thus, we employ the
same baseline model as [1] for fair comparison.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel approach which learns
label-relational output structure to explicitly capturing label
correlations in the latent space for adaptive sequence label-
ing. Along with the target-to-source interaction between the
source model MS and the target model MT , we achieve
significant improvements over previous methods on public
CoNLL dataset. Besides, our method effectively facilitates to
recognize rare new entities in the target dataset especially.
We plan to apply our method to cross-domain scenarios and
incorporate deep semantic knowledge of entity labels to the
output structure.
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