
An Improved Minimax-Q Algorithm Based on
Generalized Policy Iteration to Solve a

Chaser-Invader Game
Minsong Liu ∗†, Yuanheng Zhu ∗†, Dongbin Zhao ∗†

∗The State Key Laboratory of Management and Control for Complex Systems, Institute of Automation,
Chinese Academy of Sciences, Beijing 100190, China

†School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100049, China
Email: {liuminsong2018, yuanheng.zhu, dongbin.zhao}@ia.ac.cn

Abstract—In this paper, we use reinforcement learning and
zero-sum games to solve a Chaser-Invader game, which is actually
a Markov game (MG). Different from the single agent Markov
Decision Process (MDP), MG can realize the interaction of
multiple agents, which is an extension of game theory to a MDP
environment. This paper proposes an improved algorithm based
on the classical Minimax-Q algorithm. First, in order to solve
the problem where Minimax-Q algorithm can only be applied for
discrete and simple environment, we use Deep Q-network instead
of traditional Q-learning. Second, we propose a generalized
policy iteration to solve the zero-sum game. This method makes
the agent use linear programming method to solve the Nash
equilibrium action at each moment. Finally, through comparative
experiments, we prove that the improved algorithm can perform
as well as Monte Carlo Tree Search in simple environments and
better than Monte Carlo Tree Search in complex environments.

Index Terms—Minimax-Q, Markov game, Generalized Policy
Iteration, Deep Q-network

I. Introduction

With the continuous progress and development of rein-
forcement learning (RL) in recent years, the research on
RL had gradually extended from single-agent RL to multi-
agent RL. In single-agent RL learning, the goal of the agent
is to learn an optimal policy through continuous interaction
with the environment, so that the cumulative reward return
is maximized [1]. However, the problems faced in reality are
sometime multi-agent problems. In the single-agent RL, the
environment of agent is stable. But in the multi-agent RL, the
environment is complex and dynamic [2]. Therefore, it brings
great difficulties to the learning process, and the research on
multi-agent RL is extremely challenging.

Research on multi-agent RL mainly focuses on the coop-
eration and interaction between agents. The goal for agents
is to learn how to interact with other agents while taking
care of own interest. An important difference between multi-
agent RL and single-agent RL is that the behavior of other
agents may affect the decision of own agent. This is very
similar to the idea of game theory. Therefore, combining

This work was supported in part by the National Key Research and
Development Program of China under Grants 2018AAA0101005 and
2018AAA0102404.

game theory with RL can well address multi-agent coop-
eration and competition problems. Game theory provides a
reliable mathematical framework for the study of multi-agent
interactions [3]. Among them, stochastic game and Nash
equilibrium are the basis for the study of multi-agent. Littman
proposed the Minimax-Q algorithm [4], which combines game
theory and RL to solve the two-player zero-sum game. During
confrontation, the agent can learn to obtain high return and let
opponent get low return. It uses the minimax method in game
theory to modify the Q value update process of traditional Q-
learning, so that the agent can adapt to the existence of another
independent agent when making decisions. The algorithm uses
linear programming to solve the Nash equilibrium policy
of the stage game for each specific state [5]. It uses the
TD method to iteratively learn the state value function or
action-state value function [6]. Through the minimax operator,
the agent can simulate the strongest opponent as much as
possible, and then learn a most stable policy. Littman verified
the effectiveness of the Minimax-Q algorithm in a football
confrontation game. However, the Minimax-Q algorithm also
has its own limitations. The Minimax-Q algorithm can find the
Nash equilibrium policy of multi-agent RL. If the opponent
plays a bad policy instead of Nash equilibrium policy, the
current agent cannot find a better policy according to the
opponent. At the same time, the Minimax-Q algorithm uses the
traditional Q-learning method to update the Q-value table, so
it can only be applied in a simple experimental environment
with discrete states and discrete actions. Once encountering
high-dimensional and continuous environments, the Minimax-
Q algorithm cannot achieve good results.

In this paper, we propose an improved Minimax-Q algo-
rithm based on generalized policy iteration to solve a Chaser-
Invader game [7]. Compared with the traditional Minimax-
Q algorithm, we use generalized policy iteration instead of
value iteration. In the process of updating the agent’s policy,
the agent will consider the influences of the policy of the
opponent agent, which could make the policy learned by
our agent more effective. We use neural network as a value
function to fit the Q value, so that the algorithm can be
used in complex or continuous experimental environments.

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

The paper is structured as follows. In Section II, we introduce
the MDP, MG, generalized policy iteration, DQN algorithm,
and Minimax-Q algorithm. In Section III, we introduce an
improved Minimax-Q algorithm based on generalized policy
iteration. Section IV describes the Chaser-Invader game and
the experiment. Finally, the conclusion and future work are
summarized.

II. Background
A. Markov Decision Process and Generalized Policy Iteration

The MDP is a memoryless random process. A complete
MDP should satisfy Markov property: a certain state informa-
tion contains all relevant history. As long as the current state
is known [8], all historical information is no longer needed.
If a process is a Markov decision process, it includes five
elements: M = 〈S , A, P,R, γ〉 , where S is a finite set of states,
A is a limited set of actions, P is a state transition matrix, R
is a reward function, and γ is a discount factor.

Planning problems based on MDP can be solved by dynamic
programming methods. The policy iteration in the dynamic
programming method is the idea used to solve the optimal
policy [9]. The process of policy iteration includes two steps:
policy evaluation and policy improvement. Policy evaluation
is a process of solving the state value function corresponding
to the current policy when any policy is given. After the policy
evaluation finds the value function of the current policy, it is
necessary to carry out the policy improvement. The purpose of
policy improvement is to find a better policy. Policy iteration
is the process of repeating the policy evaluation and policy
improvement. It continuously improves the policy until the
policy converges to the optimal policy.

In the process of policy iteration, the two processes of
policy evaluation and policy improvement alternate with each
other, and one is started only after the other is completed.
Generalized policy iteration (GPI) refers to the general concept
of the interaction of policy evaluation and policy improvement,
without relying on the granularity and other details of the two
processes.

Compared with policy iteration, GPI replaces the stable
value function of infinite iterations with a value function of fi-
nite iterations during the policy evaluation process, which may
improves the efficiency of searching. The state value function
and action-state value function for the policy evaluation of GPI
are:

VT
i (st) =

∑
at

πT (at |st)
∑
st+1

p(st+1|st, at)[rst+1
at

+

γ ∗ VT
i−1(st+1)], i = 1, · · · ,N

(1)

QT
i (st, at) =

∑
st+1

p(st+1|st, at)[rst+1
at

+ γ ∗ VT
i (st+1)],

i = 1, · · · ,N
(2)

After the policy evaluation obtains the action-state value
function by N iterations, we need to improve the policy. The
formula for policy improvement is:

πT+1(s) = argmaxa QT
N(s, a) (3)

where T is the number of iterations of the GPI, i is the number
of iterations of value function during policy evaluation, N is
a finite number, πT represents the current policy and πT+1

indicates the policy to be updated, p(st+1|st, at) represents a
state transition function, VT

i (st) represents the value function
obtained by i iterations using πT (at |st), QT

i (st, at) represents
the state-action value function obtained by i iterations under
the current policy πT (at |st).

B. Markov Game

Matrix games are represented by tuples 〈n, Ai,Ri〉 [10],
where n is the number of players participating in the game, Ai

is the action set of the player i, and Ri is the reward value of
the player i. In order to maximize their reward, players choose
the corresponding action from the action set according to their
respective policies.

A Markov game(MG), also called stochastic game, is an
extension of game theory to MDP-like environments. Markov
game can be expressed as tuple N = 〈S , Ai, P,Ri, γ〉, where
• S is a set of joint state , which indicates the state that all

agents currently perform together.
• Ai is the set of finite action for the agent i, where A is

a joint behavior space. A can be expressed as: A1 × A2 ×

· · · × An

• P is a state transition matrix. p(s′|s, a1, a2, ...an) represents
the probability of transition to state s′ after performing
actions a1, a2, ...an in state s.

• R is a reward function. r(s′|s, a1, a2, ...an) indicates that
the agent is in the state s, and the immediate reward value
obtained after the state transition to s′ by performing
actions a1, a2, ...an.

• γ is a discount factor used to indicate how much attention
is paid to future rewards.

MG combines the characteristics of two methods of MDP
and matrix game. It extends the MDP problem from a single
agent to multiple agents. The behaviors of multiple agents
affect each other, so that the decision-making behavior of a
single agent needs to rely on the actions of other agents to
achieve the interaction and collaboration of multiple agents
[11]. If the total number of agents is one, the problem is a
single agent problem. If the total number of agents is two, the
problem is a zero-sum game. The research in this article is
based on a zero-sum game.

Unlike the single agent, the state value function and state
action value function of the zero-sum game are affected by the
states and actions of the two agents at the same time. For a
zero-sum game, the state value function can be expressed as:

V(st) =∑
at ,bt

π(at, bt |st)
∑
st+1

p(st+1|st, at, bt)[r
st+1
at ,bt

+ γ ∗ V(st+1)] (4)

The state action value function can be expressed as:

Q (st, at, bt) =
∑
st+1

p (st+1|st, at, bt)
[
rst+1

at ,bt
+ γ ∗ V (st+1)

]
(5)

where V(st) is the state value function, Q(st, at, bt) is a function
of the state value of the joint action, π(at, bt |st) is the joint
policy of two agents, which means the probability that agent
A and agent B choose action a and action b in state s,
p (st+1|st, at, bt) is a transition function, which represents the
probability of reaching state st+1 with actions at and bt in state
st, rst+1

at ,bt
is the reward function.

C. Minimax-Q

In the Markov game, because of the other dynamic agents
in the environment [12], using the single-agent value func-
tion update method cannot solve the problem well. Littman
proposed the Minimax-Q algorithm combined with the game
theory minimization algorithm, which only needs a state-action
value function to solve the problem. The goals of two agents in
the game are to maximize and minimize the state-action value
function. The linear programming method is used to solve
the state-action value function, and then the Nash equilibrium
policy is found.

Linear programming is to find an optimal policy to max-
imize or minimize an objective function under given con-
straints. We can simplify the above game problem. First, we
define a value function:

Q =

Q11 Q12 · · · Q1 j

Q21
. . .

...
...

. . .
...

Qi1 · · · · · · Qi j

 (6)

where Q is a state-action value function, and Qi j represents
the state-action value obtained when the agent chooses action
i and another agent chooses action j. Then we can write the
following linear programming:

max
p,··· ,pi

V

s.t. p1Q11 + p2Q21 + · · · + piQi1 ≥ V
p1Q12 + p2Q22 + · · · + piQi2 ≥ V
...
p1Q1 j + p2Q2 j + · · · + piQi j ≥ V
p1 + p2 + · · · + pi = 1
pk ≥ 0, k = 1, · · · , i

.

where pk (k = 1, · · · , i) is the probability that the agent chooses
action k. V is the state value function of the agent. Solving
the above formula can get the Nash equilibrium policy.

For agent A and agent B in zero-sum game, referring to
Equation (4), the joint policy function is divided into two parts,
where agent B’s policy is to minimize Q function, and agent
A’s policy is to maximize Q function. For a state s, the state-
value function of agent A under policy π(st, ·) can be expressed
as:

V(st) = max
π(st ,·)

min
bt∈Ab

∑
at∈Aa

Q(st, at, bt)π(st, at) (7)

The action-state value function in zero-sum game is:

Q(st, at, bt) = R(st, at, bt) + γ
∑
st+1

p (st+1|st, at, bt) V (st+1) (8)

The Minimax-Q learning update formula is:

Q(st, at, bt)←Q(st, at, bt) + α[rt+1+

γV(st+1) − Q(st, at, bt)]
(9)

where agent B is the opponent of agent A. a is the action
of agent A and b is the action of agent B. If Q(st, at, bt) is
known, we can directly solve the Nash equilibrium policy at
state s by linear programming [4]. However, in multi-agent
RL, Q(st, at, bt) is unknown, so the excellent TD in Q-learning
is used to update the action-state value function.

D. DQN

Traditional Q-learning is a model-free RL method. The goal
is to learn the policy of choosing the optimal action in a given
limited MDP. The core of the Q-learning algorithm is to use
the difference between the current Q value and the target Q
value to iteratively update the value. The updated formula is:

Q(s, a)← Q(s, a) + α
[
r + γmax

a′
Q

(
s′, a′

)
− Q(s, a)

]
(10)

where Q(s, a) is the action-state value function of state s and
action a. But traditional Q-learning cannot solve the problems
of large dimensions and complex state space. DQN is a method
combining deep learning and RL [13]. DQN uses multi-layer
neural network to fit Q function. It calculates a loss function
based on the difference between the current Q value and the
target Q value fitted by the neural network [14]. We can use
the loss function to improve the network weights of the deep
learning model [15]. The updated formula of loss function is:

L(ω) = E[(r + γmax
a′

Q(s′, a′, ω−) − Q(s, a, ω))2] (11)

where ω− represents the neural network parameter of the target
Q value, and ω represents the neural network parameter of the
current Q value. ω− will only be updated with the value of ω
after a fixed step size.

III. Improved Algorithm

Minimax-Q is an online learning method. It can get good
effect on Markov game [16]. However, Minimax-Q algorithm
also has its own limitations. Minimax-Q algorithm uses value
iteration to update Q function. The convergence speed of value
iteration is slow. In addition, Minimax-Q algorithm cannot be
applied to the problem of large state space [17]. In response
to these problems, we improve the Minimax-Q algorithm
and propose an improved Minimax-Q algorithm based on
generalized policy iteration (M2GPI).

A. Fitted Q Function

We use neural network to fit the Q function to replace the Q
value table in the process of GPI. In order to fit the Q function,
we design three fully-connected neural networks with the same
structure: current Q network, target Q1 network, and target Q2
network. Current Q network is used to fit the current Q value.
Target Q1 network is used to fit the agent A’s target Q value.
Target Q2 network is used to fit the agent B’s target Q value.

B. GPI

Referring to the definition of GPI for a single agent, we
redefine the GPI of zero-sum games. For the update of agent
A, first, we need to perform the policy evaluation. In the policy
evaluation process, we need to iterate the value function N
times according to the current policy of agent A. During the i
iteration of the policy evaluation, we use the target Q2 network
of agent B’s i − 1 iteration and the current policy of agent
A to calculate the state value function and action-state value
function. From (4) and (5), we can find:

V (st) =
∑
at ,bt

π (at, bt |st) Q (st, at, bt) (12)

For agent A and agent B with zero-sum game, in the case of
fixed agent A’s policy, agent B’s policy is to choose action b
that minimizes the value of the agent B’s action-state value
function. Refer to (1) and (2). The formula for the value
function is:

VT
i (st) =

∑
at

πT (at |st, ω1) min
bt

QT
i−1(st, at, bt, ω2),

i = 1, · · · ,N
(13)

The action-state value function of angen A and agent B is:

QT
i (st, at, bt, ω j) =

∑
st+1

p(st+1|st, at, bt)[r
st+1
at ,bt

+

γVT
i (st+1)], i = 1, · · · ,N, j = 1, 2

(14)

After the policy evaluation obtains the action-state value
function by N iterations, we need to improve the policy. In the
process of policy improvement, linear programming is adopted
to solve the Nash equilibrium policy by using the action-state
value function obtained after N iterations of policy evaluation.
The formula for policy improvement is:

πT+1(s, ω1) = arg max min QT
N(s, a, b, ω1) (15)

After one iteration is completed, we will get a new policy.
Through continuous iteration, the policy will converge to a
stable value. The action-state value function will also converge
to the optimal action-state value function.

C. Update

During the update of the neural network, we use the error of
the current Q value and the target Q value to establish a loss
function. Gradient back propagation updates all parameters of
the fitted Q-network and updates the neural network. With the
continuous iteration of the optimal policy, the fitted Q-network
can also stabilize. The error loss function is:

L(ω) =E(st ,at ,bt ,rt ,st+1)∼B[(Q(st, at, bt, ω) − rt−

γ
∑
st+1

π(at+1|st+1, ω1) min
bt+1

Q(st+1, at+1, bt+1, ω2))2] (16)

where B is the collection of historical experience data, which
is used for the experience replay, ω represents the parameter
of the current Q network, ω1 represents the parameter of the
target Q1 network, ω2 represents the parameter of the target
Q2 network, ω is update all the time, and ω1 is updated with
ω every C1 iterations, and ω2 is updated with ω every C2
iterations, C1, C2 are constants. When L(ω) is small enough,
we consider that the neural network has converged to a stable
state.

IV. Experiments

A. Chaser-Invader Game

The game is played on a grid map. As shown in the Fig.1,
two players, player A and player B occupy different squares.
Player A and Player B can choose one of five actions at each
step: N, S, E, W, and Stand. Player A is Chaser. Player B
is Invader. Goal is the target point. Chaser’s goal is to catch
Invader. If the Invader is located in a 3 * 3 grid centered on
the Chaser after an action step, we think the Chaser catch
the Invader. Invader’s goal is to avoid Chaser’s pursuit and
reach the target point. When Invader reaches the target point
or Chaser catches Invader, the game resets and the positions of
Chaser and Invader are randomly generated. If Chaser catches
the Invader, Chaser gets 1 point. If Invader reaches Goal,
Chaser receives -10 points. If Chaser does not catch Invader
and Invader does not reach Goal, the reward is calculated based
on the distance between Invader and Goal and the distance
between Invader and Chaser. The detailed reward rules are:

r =

1 Chaser catches Invader
−10 Invader reaches Goal
D(PA, PB, PA′ , PB′ , PG) others

. (17)

where D(PA, PB, PA′ , PB′ , PG) is the function that calculates
the reward in the case of Chaser does not catch Invader and
Invader does not reach Goal, PA, PB, PG are the positions
of player A ,player B, and Goal position. PA′ , PB′ are the
positions for next state. The specific form of the reward
function D is:

D =0.1[(PA − PB) − (PA′ − PB′)
+ (PB′ − PG) − (PB − PG)]

(18)

Fig. 1. The Chaser-Invader Game

B. Experiment

We design a learning experiment for the M2GPI algorithm.
The experimental parameters are set as follows. During the
M2GPI iterative policy evaluation phase, the iteration number
of the value function is one. In order to fit the Q function, we
design three fully-connected neural networks with the same
structure: current Q network, target Q1 network for Chaser,
and target Q2 network for Invader. The number of the neural
network layer is 3. The number of nodes in the hidden layer
is 15. The network input is state s. The network output
is Q(s, a, b). The current Q network is constantly updating
parameters. Target Q1 network updates network parameters
every 100 steps. Target Q2 network updates parameters every
1000 steps. The learning step is 250,000. The learning rate is
0.0005. The size of the experience replay is 10,000. The size
of minibatch is 16. The discount factor is 0.95.

In the learning experiment, agent A and agent B both use
the M2GPI algorithm. The two agents share and update the
same network. When agent A makes a decision, it uses linear
programming method to select the policy that maximizes the
worse output of target Q1 network. When agent B makes a
decision, in combination with agent A’s policy, it chooses the
policy that minimizes the output of target Q2 network.
1) 10 * 10 Chaser-Invader Experiment

In order to show the effect of the M2GPI algorithm and
the changes in the learning process, we design three sets of
comparative experiments in a 10 * 10 Chaser-Invader grid
map. The first set of experiments is to use the optimal policy
learned by the M2GPI algorithm to compare against Monte
Carlo Tree Search(MCTS). The second set of experiments uses
MCTS to compare against MCTS. The third set of experiments
extracts network parameters every 10,000 steps iteration in
the M2GPI learning process. We compare the policies in
the learning process with MCTS. The results are in Table
I. MCTS is mainly used to solve the Combinatorial Game
[18] [19]. MCTS explores and uses the tree structure through
the four steps of Selection, Expansion, Simulation, and Back-

propagation to find a search policy that approximates Nash
equilibrium [20]. M2GPI also learns policy for approaching
Nash equilibrium. So comparing M2GPI and MCTS can well
verify the effect of M2GPI.
2) 200 * 200 Chaser-Invader Experiment

In order to verify the performance of M2GPI in a large
space environment, we conduct three sets of comparative
experiments in a 200 * 200 Chaser-Invader grid map.

Befor the comparative experiments, we learn four different
algorithms. They are M2GPI algorithm, Minimax-Q algorithm
(M2Q), DQN algorithm, and DQNSelfplay algorithm. For
M2GPI’s policy learning, we set the M2GPI algorithm to
Chaser, the Invader also uses the M2GPI algorithm. Chaser
and Invader share and update the same network. For the
M2Q, we set the M2Q algorithm to Chaser and Invader to
be a random policy opponent. For the DQN algorithm, we
set the DQN algorithm to Chaser and Invader to be random
policy opponent. For the DQNSelfplay algorithm, we set the
DQNSelfplay algorithm to Chaser and Invader also adopts
the DQN algorithm. Chaser and Invader use and update the
same network. In addition, We use four DQN networks to
fight the optimal policies learned by the M2GPI, M2Q, DQN,
and DQNSelfplay algorithms. The challenge DQN network
is Invader, the optimal policies of M2GPI, M2Q, DQN, and
DQNSelfplay algorithms are Chaser. With the four challenege
DQN networks, we can learn four challenger policies of the
four optimal policies.

In the first set of experiments, we compare the optimal
policies trained by M2Q, DQN, and DQNSelfplay algorithms
with the optimal policy trained by M2GPI. The optimal
policy trained by M2GPI is Invader. The optimal policies
trained by the other three algorithms are Chaser for each
experiment. The results are in Table II. In the second set of
experiments, we compare the optimal policies trained by the
M2GPI, M2Q, DQN, and DQNSelfplay algorithms with their
respective challenger policies. The optimal policies trained by
the four algorithms are Chaser. The four challenger policies
are Invader. The results are in Table III. In the third set
of experiments, we compare the optimal policies trained by
M2GPI, M2Q, and DQNSelfplay with MCTS. Among them,
three tested policies are Chaser, the MCTS is Invader. The
results are in Table IV.

C. Results and Evaluation

During the game, players from both sides use their own
policies to play according to preset allocations. There are 100
games in each experiment. Each step has a probability of 1%
being judged as a draw. We use this method to simulate the
discount factor.
1) 10 * 10 Chaser-Invader Experiment

In the environment with 10 * 10 Chaser-Invader grid map,
the results of the comparative experiment are shown in Table
I. We can see that the results of the optimal policy trained by
M2GPI against MCTS are basically the same as the results
of MCTS self-confrontation. M2GPI has a 50% win rate
with MCTS. The experimental results of comparing policies

in the learning process with MCTS are shown in Fig. 2.
Every 10,000 steps in learning step, we extract the currently
learned policy and test it with MCTS. The abscissa indicates
the number of tests. The ordinate indicates the M2GPI win
rate. At the beginning, the M2GPI’s win rate is very low.
It is almost impossible to beat MCTS. However, with the
continuous increase of the number of iterations, the M2GPI’s
win rate is more than 50% in the 100,000 steps. In the final
stage of iterative learning, the winning percentage of M2GPI
fluctuates around 50%. These results show that M2GPI can
reach the same level as MCTS in the ability to approach Nash
equilibrium.

Fig. 2. M2GPI Policies in Learning Process vs MCTS in 10*10 Map

TABLE I
M2GPI vsMCTS in Small-Size

Chaser win Invader win
M2GPI vs MCTS 48% 47%
MCTS vs MCTS 47% 47%

TABLE II
M2GPI vsM2Q, DQN, DQNSelfplay in Large-Size

Chaser win Invader win
M2Qvs M2GPI 26% 68%
DQN vs M2GPI 31% 63%
DQNSelfplay vs M2GPI 31% 64%

TABLE III
Challengers vsM2GPI, M2Q, DQN, DQNSelfplay in Large-Size

Chaser win Invader win
M2GPI vs Challenger 52% 40%
M2Q vs Challenger 22% 73%
DQN vs Challenger 8% 84%
DQNSelfplay vs Challenger 11% 83%

2) 200 * 200 Chaser-Invader Experiment
In the environment with 200 * 200 Chaser-Invader grid

map, the results of the first experiment are shown in Table
II. Compared with M2GPI and M2Q, M2GPI gets the higher

TABLE IV
MCTS vsM2GPI, M2Q, DQNSelfplay in Large-Size

Chaser win Invader win
M2GPI vs MCTS 52% 42%
MCTS vs MCTS 41% 41%
M2Q vs MCTS 19% 73%
DQNSelfplay vs MCTS 5% 88%

win rate. Because M2Q adopts the method of Q value table
to update and iterate, it can not achieve good results in the
face of complex experimental environments. When M2GPI
compare with the optimal policies of DQN and DQNSelfplay
algorithms, the optimal policy trained by M2GPI shows a
higher win rate. DQN algorithm can train better results for
specific policies, but it is difficult to show good results with
M2GPI algorithm without training.

In the second set of experiments, from Table III, we can
see that except M2GPI algorithm, the challengers trained by
the DQN algorithm can beat the opponent with a large score
advantage. This is related to the advantages of the DQN
algorithm. DQN can learn effective countermeasures based on
the determined policies. The opponent simulated by M2GPI
is a perfect opponent. What M2GPI can learn is the policy
that can obtain the maximum profit in the face of a perfect
opponent. But the DQN Challenger is not a perfect opponent.
Therefore, the DQN challenger does not defeat the M2GPI
algorithm.

In the third set of experiments, the optimal policies learned
by the M2GPI, M2Q, and DQNSelfplay algorithms are com-
pared with MCTS. Unlike the results in Table I, the state space
is larger in the second experimental environment. The search
speed and results of MCTS are affected by the larger state
space. In Table IV, we can see that M2GPI performs better
than MCTS. M2GPI’s ability to search for optimal policy will
not change much due to the changes in state space. But it is
difficult for MCTS to approach Nash equilibrium policy in a
large state space. Compare MCTS with M2Q, M2Q performs
much worse than MCTS in large state space. DQN works well
for specific policies, but it is far less than the approximates
Nash equilibrium policy of MCTS.

V. Conclusion and FutureWork

In this paper, an improved Minimax-Q algorithm based on
generalized policy iteration is proposed. First, we use GPI
instead of value iteration, so that each decision of the current
agent will make corresponding adjustments based on the
decision of the other agent, which improves the effectiveness
of the algorithm. Secondly, the Deep Q Network is used to fit
the Q function. The method of small batches of experience
replay is used to train network parameters to reduce the
impact of correlation between data on the experiment, so
that the M2GPI algorithm can adapt to more complex and
larger dimensional experimental environments. By comparing
the M2GPI learning process with MCTS in 10*10 grid map, it
proves that M2GPI is constantly optimizing its own policy, and

finally achieves the same effect as MCTS. The comparisons
of M2GPI with M2Q, DQN, DQNSelfplay, and MCTS in
200*200 grid map proves that M2GPI can achieve better
results in complex environments. There are still shortcomings
in this work, which can be further studied and improved.
For example, convolutional neural networks can be used to
replace fully connected neural networks to solve more complex
problems in continuous environments.

References
[1] D. Zhao, Y. Zhu, L. Lv, Y. Chen, and Q. Zhang, “Convolutional fitted

Q iteration for vision-based control problems,” in 2016 International
Joint Conference on Neural Networks (IJCNN), 2016, pp. 4539–4544.

[2] A. Majumdar, P. Benavidez, and M. Jamshidi, “Multi-agent exploration
for faster and reliable deep Q-learning convergence in reinforcement
learning,” in 2018 World Automation Congress (WAC), 2018, pp. 1–6.

[3] S. Li et al., “Robust multi-agent reinforcement learning via minimax
deep deterministic policy gradient,” in AAAI Conference on Artificial
Intelligence (AAAI), 2019.

[4] M. L. Littman, “Markov games as a framework for multi-agent
reinforcement learning,” in Machine learning proceedings, pp. 157–163.
1994.

[5] F. A. Dahl, A. Fredrik, and O. M. Halck, “Minimax TD-learning with
neural nets in a markov game,” in European Conference on Machine
Learning, 2000, pp. 117–128.

[6] K. Shao, Y. Zhu, and D. Zhao, “Starcraft micromanagement with rein-
forcement learning and curriculum transfer learning,” IEEE Transactions
on Emerging Topics in Computational Intelligence, vol. 3, no. 1, pp. 73–
84, 2018.

[7] A. T. Bilgin and E. Kadioglu-Urtis, “An approach to multi-agent pursuit
evasion games using reinforcement learning,” in 2015 International
Conference on Advanced Robotics (ICAR), 2015, pp. 164–169.

[8] A. Greenwald, K. Hall, and R. Serrano, “Correlated Q-learning,” in
ICML, 2003, vol. 3, pp. 242–249.

[9] Y. Zhu, D. Zhao, and H. He, “Invariant adaptive dynamic programming
for discrete-time optimal control,” IEEE Transactions on Systems, Man,
and Cybernetics: Systems, 2019.

[10] W. Li, Y. Zhu, and D. Zhao, “Multi-agent reinforcement learning
based on clustering in two-player games,” in Symposium Series on
Computational Intelligence (SSCI), 2019.

[11] M. L. Littman, “Friend-or-foe Q-learning in general-sum games,” in
ICML, 2001, vol. 1, pp. 322–328.

[12] R. B. Diddigi, C. Kamanchi, and S. Bhatnagar, “Solution of two-
player zero-sum game by successive relaxation,” arXiv preprint
arXiv:1906.06659, 2019.

[13] V. François-Lavet et al., “An introduction to deep reinforcement
learning,” Foundations and Trends® in Machine Learning, vol. 11,
no. 3-4, pp. 219–354, 2018.

[14] V. Mnih et al., “Playing atari with deep reinforcement learning,” arXiv
preprint arXiv:1312.5602, 2013.

[15] V. Mnih et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518, no. 7540, pp. 529, 2015.

[16] G. Neto and P. Lima, “Minimax value iteration applied to robotic soc-
cer,” in Proceedings of the IEEE ICRA 2005 Workshop on Cooperative
Robotics, 2005.

[17] S. Mukhopadhyay, O. Tilak, and S. Chakrabarti, “Reinforcement learn-
ing algorithms for uncertain, dynamic, zero-sum games,” in 2018 17th
IEEE International Conference on Machine Learning and Applications
(ICMLA), 2018, pp. 48–54.

[18] D. Silver et al., “Mastering the game of go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, pp. 484, 2016.

[19] D. Silver et al., “Mastering the game of go without human knowledge,”
Nature, vol. 550, no. 7676, pp. 354–359, 2017.

[20] T. Anthony, R. Nishihara, P. Moritz, T. Salimans, and J. Schulman,
“Policy gradient search: Online planning and expert iteration without
search trees,” arXiv preprint arXiv:1904.03646, 2019.

