
Deep Reinforcement Learning for Motion Planning
of Quadrotors Using Raw Depth Images

Efe Camci
School of Mechanical and Aerospace

Engineering
Nanyang Technological University

Singapore
efe001@e.ntu.edu.sg

Domenico Campolo
School of Mechanical and Aerospace

Engineering
Nanyang Technological University

Singapore
d.campolo@ntu.edu.sg

Erdal Kayacan
Department of Engineering

Aarhus University
DK-8000 Aarhus C

Denmark
erdal@eng.au.dk

Abstract—In this work, we introduce a novel, end-to-end
motion planner for quadrotor navigation. Informed by a rough
path to goal in partially unknown environments, our method
creates desirable motion plans using raw depth images from
a front-facing camera. It exploits correlations between local
spatial portions of these images to generate desirable motion
primitive sequences on the fly without conducting explicit sensing-
reconstructing-planning. We evaluate our method through an
extensive comparison with three competitor algorithms over
ten different environments in AirSim simulations. Our method
outperforms its competitors in terms of safe navigation distance,
navigation time, and crash rate over 50 flights. We also deploy our
method for real flight tests with DJI F330 Quadrotor equipped
with Intel RealSense D435, and demonstrate its real-time ap-
plicability. Our method successfully performs 15 real flights in
three different environment settings with increasing complexity.
The experiments can be found at https://youtu.be/hw0sxNwliqs.

I. INTRODUCTION

Autonomous navigation of quadrotors requires sensing [1]–
[3], planning [4]–[6], and control [7]–[9]. Majority of state-
of-the-art navigation methods perform these tasks separately
to attain modularity. In this way, each module can easily be
designed, developed, analyzed within their own scope, and
combined with the existing modules in literature. However,
if a module in the pipeline fails, other modules are most
likely to fail as well. If individual modules are not developed
considering possible fails of other modules, overall navigation
can be deteriorated. To circumvent this issue, we develop
a single module which provides end-to-end reasoning from
raw sensory inputs to motion plans using deep reinforcement
learning (RL) [10]–[12].

According to our navigation scenario, the environment is
partially known without exact obstacle location information,
an initial rough path to the goal is given, and the concatenation
of desirable local motion plans for safe and quick navigation
is to be found. To this end, we propose an RL agent which
solely uses a series of raw depth images and relative position
information of a moving setpoint on the initial rough path
in order to generate local motion plans. We particularly train
a deep Q-network (DQN) with around 400,000 parameters

This work is financially supported by the Singapore Ministry of Education
(RG185/17) and Aarhus University, Department of Engineering (28173).

which exploits correlations between these two coarse inputs
to yield desirable motion primitive sequences on the fly.

The specific contribution of this work is a novel end-to-
end motion planner which fuses different types of coarse
inputs (raw image and relative position) without any pre-
processing to generate desirable motion primitive sequences
for a quadrotor.

II. RELATED WORK

The specific problem considered herein has been a topic
of recent research in robotics community. In [5], researchers
present a conservative trajectory-optimization-based local
planner together with a local exploration strategy for quadrotor
navigation. They build upon their previous work [13] in which
a reactive local planning method is proposed to avoid obstacles
using disparity maps. Both methods require an explicit recon-
struction of a local map first, and perform planning within this
map thereafter.

In [14], researchers introduce a collision avoidance method
which exploits point cloud data and samples minimum-time
motion primitives. They suggest that the computational burden
of building a map can be alleviated using k-d tree but the
method still needs some sort of world model representation.
Another computationally lightweight method [15] introduces
neural network control policies which compute control com-
mands directly from sensor inputs. However, the method
requires supervision from time-free model-predictive path-
following controller in order to avoid obstacles. In [16],
researchers develop a vision-based reactive planning algorithm
inspired by model predictive control. This method requires
exact representation of obstacles in order to include them in a
nonlinear program formulation.

From end-to-end learning perspective, researchers in [17]
train a deep RL agent using virtual raw monocular images
in a variety of environments within low fidelity simulations to
extract collision avoidance policies. While the method circum-
vents the challenges of 3D reconstruction and demonstrates
decent results in terms of collision avoidance, it is yet to
be incorporated into a complete path planning framework in
which quadrotor navigates to the goal as quick as possible.
Another learning-based algorithm is proposed in [18] which

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

follows high-level navigation instructions by direct mapping
between images, instructions, pose estimates and control.
In [19], researchers train a network for detecting gates in
drone racing kind of tracks followed by a desired heading
and velocity generation. They demonstrate successful passes
through gates in real flights but sensing and planning modules
are separate in this method.

Inspired by some of the methods above, our approach
sidesteps separate sensing-reconstructing-planning. It provides
direct reasoning from sensory inputs to local motion plans. It
generates (mostly) smooth motion plans by exploiting Bézier
curves as motion primitives. Besides decent collision avoid-
ance, our method caters for quick navigation to goal in dense
environments.

III. APPROACH

The main challenge in developing RL-based algorithms
successfully is to formulate the RL problem in a fashion that
the agent would be able to derive useful representations of an
environment from sensory inputs, and it could exploit them
for generalization to new situations. In this regard, success
of many RL-based algorithms lies in proper design of main
elements: state, action, and reward. We explain each of these
elements in the next subsections while depicting them in Fig. 1
as the main portions of our RL system.

A. State

State includes information on the current respective situation
of the agent in the environment. It consists of three consecutive
32×32 depth images taken from the front-facing camera and
the relative position of the moving setpoint with respect to
the quadrotor in its body frame, xB , yB , zB . The former
informs the agent about obstacle locations implicitly while
the latter gives insight on the proximity of the agent to the
moving setpoint. Since the agent’s aim is to avoid a priori
unknown obstacles while moving towards the goal, these two
items constitute necessary information for the agent to reason
about its current situation. Depth images are taken directly
from the front-facing camera without any image processing
and fed to the DQN. Relative position is calculated by simply
substracting the quadrotor’s position vector from the moving
setpoint’s (that moves at the approximate navigation speed
which is 1 m/s in this work) and transforming the resultant
vector into the quadrotor’s body frame.

B. Action

Action defines the agent’s move at each time step. It is
designed to be in the form of motion primitives which are
based on Bézier curves. They are parametric curves based on
Bernstein polynomials:

C : [0, 1] −→ R, C(t) =

n∑
i=0

(
n

i

)
PiBn,i(t), (1)

where Pi are control points and Bn,i(t) are Bernstein polyno-
mials of nth degree which are given as:

Bn,i(t) = (1− t)(n−i) ti. (2)

Fig. 1. Overview of the proposed RL system.

The cubic Bézier curves (n=3) are used to represent smooth
motion primitives in xB , yB , zB for each finite time step.

The agent selects an action at each time step among the
action set which consists of 18 different primitives. This set
is constructed on the account that the agent has a forward-
biased motion since it has only a front-facing camera as its
exteroceptive sensor. The set is depicted in Fig. 2. The length
of the curves (and lines) can be adjusted for different case
studies based upon the environment density and the quadrotor
agility. In this work, since we consider the approximate
navigation speed as 1 m/s, we select primitives which result in
at most 1 m of navigation in each axis and which are executed
at 1 Hz of re-planning.

C. Reward

Reward serves as an instructive feedback for the agent to
evaluate its actions. It is designed based upon the relative mo-
tion of the quadrotor with respect to the moving setpoint within
a time step. The Euclidean distance between the quadrotor
and the moving setpoint is calculated at the beginning (dt−)
and end of each time step (dt). A raw reward is obtained
using the change in this quantity through the current time step
(∆d = dt−dt−), and it is discounted using the same quantity
obtained at the end of the current time step. Besides, a primary
logic is added to the reward function to inform the agent about
collisions and excessive deviations from the initial rough path.
In this sense, if the agent moves further away from the initial
path, it gets a lower reward. If it stays closer to the initial
path, it gets a higher reward. If it crashes into obstacles, it
gets a drastic punishment. If it deviates from the initial path
excessively, it gets another milder punishment. This reward
logic is designed for the agent to learn how to avoid obstacles
safely while following an initial rough path fairly in unknown
environments. It is formally defined as:

R =

(Rl) f(dt), for ∆du < ∆d(
Rl + (Ru −Rl)

∆du −∆d

∆du −∆dl

)
f(dt),

for ∆dl ≤ ∆d ≤ ∆du

(Ru) f(dt), for ∆d < ∆dl

Rdp, for dmax < |dt|
Rcp, for collision.

(3)

Fig. 2. Motion primitives as the action set.

The variables Rl and Ru are the lower and upper limits
on the reward, and they are selected as 0 and 1 in this work.
The terms ∆dl and ∆du are the limits on ∆d beyond which
the reward is saturated to its bounds, and they are selected
as 0 and 1 m, respectively. The term dmax is the limit which
determines the excessive deviation and it is equal to 5 m.
The term Rdp is the mild punishment for excessive deviation
which is equal to -0.5, and Rcp is the drastic punishment
for collision which is equal to -1. Lastly, f is a function to
regulate the discount rate based upon the maximum allowable
deviation (dmax). It is introduced both to avoid unreasonably
high discount rates when the quadrotor is fairly keeping up
with the moving setpoint and to yield very high discount rates
if the quadrotor fails to navigate towards the goal. It is formally
defined as:

f : R −→ (0, 1), f(dt) =
1

2

(
tanh

(
2dmax − dt
dmax

)
+ 1

)
.

(4)
While Rl, Ru, Rdp, Rcp, and f are crafted by trial-

and-error, the terms ∆dl, ∆du, and dmax are determined
considering the usual operational speeds of our quadrotor
in the environments of interest. All of these parameters are
flexible to be adjusted for different case studies.

D. Algorithmic Details

The aim of an RL agent is to find the optimal policy which
maximizes sum of returns over the long run. The essential idea
behind many RL algorithms is to estimate the action-value
function Q(s, a) which can then govern the agent’s policy by
yielding the expected returns for state-action pairs. In theory,
if an agent would have infinite number of action trials and
would use the Bellman equation as an iterative update, it
would converge to the optimal action-value function Q∗(s, a)

eventually. However, it is impractical in real world scenarios
to have infinite number of trials and estimate the action-
value function for each state-action pair separately. Therefore,
function approximators have emerged as a useful choice to
estimate the action-value function by adding a certain level
of generalization [20]. In this work, we use a DQN (Fig. 3)
for this purpose, specifically to approximate the following
function:

Q(s, a) = E
(
Rt+1 + γmax

a′
Q(st+1, a

′)
∣∣st = s, at = a

)
(5)

where st is the state that the agent is in and at is the action
taken at the beginning of the time step t. The terms st+1 and
Rt+1 are the next state which the agent reaches and the reward
it observes at the end of the time step t, respectively. The term
γ is the discount factor which determines the present value of
the future rewards [21].

The proposed RL algorithm in this work is an off-policy,
episodic training algorithm (Algorithm 1). Instead of updating
the network parameters θi at each time step, we update them
(using Adam [22] in PyTorch with default settings) after each
certain number of episodes within which minimum number of
interactions (64 in this work) is reached. During the update,
all data in experience replay (ER) are used through random
minibatches of 64. We use Huber loss while creating gradient
for network parameters update [23]:

Lδ (yj - Q (sj , aj ; θi)) =
1

2
(yj - Q (sj , aj ; θi))

2
, for |yj - Q (sj , aj ; θi)| < δ

δ|yj - Q (sj , aj ; θi)| -
1

2
δ2, otherwise.

(6)

The variable j refers to data sample indice in a minibatch,
δ is a constant for the steepness of the piecewise loss function
and it is equal to 1. The terms yj and Q (sj , aj ; θi) are the
target and estimated values for the network with parameters
θi where i stands for the episode number.

IV. EXPERIMENTS

The experiments for validating the method involve training
and testing stages. First, we train an agent in seven virtual
environments to have diversified retrospective knowledge.
Then, we test the agent in ten virtual environments which
are unseen during the training stage to demonstrate sufficient
generalization. Lastly, we test the same agent in real flights to
demonstrate successful sim-to-real knowledge transfer.

A. Training in AirSim

The simulation software we use is the Microsoft AirSim
[24]. It is an open source software for simulating drones, cars,
and people. It is based on Unreal Engine game software. It
offers high fidelity simulations especially for drones. We create
seven training environments in AirSim as depicted in Fig. 4.
The environments are diversified regarding their complexity,
from obstacle-free environment (Env. 1) and obstacle-free cor-
ridors with different widths (Envs. 2 and 3) to left-right (Envs.

Fig. 3. The proposed DQN architecture. Each element of the state is processed
separately in a few layers first and combined in a few other layers thereafter
in order to resemble the conceivable feature extraction and decision making
paradigms.

4 and 5) and up-down (Envs. 6 and 7) slalom environments.
The start points in these environments are on the side where
the quadrotor is located in Fig. 4. Accordingly, the goal points
are on the other side, and the quadrotor tries to navigate there
safely by avoiding obstacles. The distance between start and
goal points is 12 m in all the training environments. We merge
these environments in a single AirSim session. The agent
visits them randomly during the training stage in order to
randomize the learning process sufficiently. We find merging
them particularly helpful for improved learning performance
as compared to training in different environments sequentially.
Diversification of data samples during learning is enhanced by
this way, which possibly improves the data sample efficiency.

We train the agent for 2000 episodes using an ε-greedy
policy. We utilize linear decay on ε from 1.0 to 0.1 for the
first half of the training and keep it constant at 0.1 for the
second half. We utilize the discount factor γ as 0.5 to have
a balance between stable but short-sighted and far-sighted but
unstable agents. The average reward throughout the episodes
can be seen in Fig. 5. The average reward first increases at
the earlier episodes, then stabilizes towards the end when the
agent gains sufficient knowledge for near-optimal behaviour.

Algorithm 1 Episodic deep Q-learning
for i in episodes do

observe state s
for t in time steps do

take action a governed by ε-greedy policy
observe state s′ and reward R
save data sample (s,a,s′,R)
if R < 0 then

break
end if
s = s′

end for
update ER with new data
if min interaction limit is reached since the last update
then

divide ER into random minibatches of size n
for j in minibatches do

pick the minibatch with indice j
apply y1:n = R1:n + γmaxa′ Q(s′1:n,a′; θi)
update DQN weights by Lδ(y1:n - Q(s1:n,a1:n; θi))

end for
end if

end for

1 2 3 4 5 6 7

Quadrotor

Fig. 4. Training environments: obstacle-free, corridor, and slalom tracks.

Fig. 5. Average reward through the training episodes. The white line
represents the mean value of each 100 episodes over a sliding window.

B. Testing in AirSim

Following the training stage, we deploy the agent in ten
different test environments (Fig. 6) which are unseen during
training. They consist of obstacles with different shape, size,
and orientation as well as corridors with different width and
length to assess the generalization capability of the proposed
agent. In each environment, the quadrotor starts on the end
where it is located in Fig. 6 and tries to navigate towards the
other end. The distance between these two ends is 30 m for

1 2 3 4 5 6 7 8 9 10

Quadrotor

Fig. 6. Test environments with obstacles of different shapes and sizes.

all the test environments1.
We test the proposed DQN in each environment for five

times to have generalized evaluative results. We also compare
it with three competitor algorithms. Two of these are the
preliminary versions of the proposed DQN: DQN-β.1 and
DQN-β.2. DQN-β.1 is a version in which the relative position
information of the moving setpoint is omitted in the state
definition. DQN-β.2 is another version in which the relative
position information is kept, but paired with only a single
depth image instead of three images. By the comparison
with these two versions, we aim at an ablation study which
justifies our design choices for the proposed DQN. We also
include a comparison with a conventional method in literature:
potential fields (PF) based planning [25]. In the case of PF, the
explicit sensing-reconstructing-planning process is conducted
using the depth sensor. We keep the resolution (32×32) and
update frequency (1 Hz) of depth images as the same for a
fair comparison. We create online point cloud representation
of the environment by these depth images and convert it into a
probabilistic voxel map with a voxel size of 0.5 m, incremen-
tally. Each voxel creates a repulsive force proportional to its
occupancy probability and inversely proportional to the square
of its distance to the quadrotor. The moving setpoint creates
an attractive force proportional to the square of its distance to
the quadrotor2. We calculate the overall force vector and map
it into linear velocities with maximum velocity being 1 m/s.

Table I states average navigation distance, navigation time,
and crash rate for the proposed DQN along with its com-
petitors. In terms of averaged navigation distance over five
trials, the proposed DQN either outperforms its competitors or
yields a similar performance to them in 8 of 10 environments.
PF yields a similar but little downgraded navigation distance
performance especially in Envs. 3, 7, and 9. DQN-β.1 and
DQN-β.2 yields worse results. The former does not have
enough guidance to move towards goal, confuses its way
towards dense regions, and ends up with a crash. The latter
avoids the obstacles at the first glance but does not have a sense
of passing them due to the lack of previous depth images. It
crashes into the obstacles mostly from the side when they are
out of sight.

1We consider tracks with the same straight length in order to have consistent
benchmarking in this work. However, the proposed method is flexible to be
employed in different environments with a variety of lengths of straight lines,
a concatenation of straight lines, or turns. Once the intermediate goal points
are put to create straight path segments as initial rough paths, it is trivial to
utilize the method in these environments since the RL system is designed with
respect to the quadrotor’s body frame.

2We tune the respective hyperparameters of PF by trial-and-error for the
fastest possible navigation in test environments.

TABLE I
AVERAGED TEST RESULTS IN AIRSIM.

Env.# Algorithm Navigation Navigation Crash
distance (m) time (s) rate

Env. 1

DQN-β.1 30.00 33.44 0%
DQN-β.2 30.00 33.18 0%

PF 30.00 33.24 0%
DQN 30.00 33.70 0%

Env. 2

DQN-β.1 30.00 33.35 0%
DQN-β.2 30.00 33.45 0%

PF 30.00 34.04 0%
DQN 30.00 33.43 0%

Env. 3

DQN-β.1 15.07 - 100%
DQN-β.2 23.72 - 100%

PF 28.59 47.29 20%
DQN 30.00 35.21 0%

Env. 4

DQN-β.1 10.36 38.56 80%
DQN-β.2 30.00 36.37 0%

PF 30.00 41.64 0%
DQN 30.00 35.80 0%

Env. 5

DQN-β.1 25.97 42.04 60%
DQN-β.2 25.36 41.75 40%

PF 30.00 41.24 0%
DQN 30.00 34.49 0%

Env. 6

DQN-β.1 19.43 38.18 60%
DQN-β.2 30.00 36.35 0%

PF 30.00 39.24 0%
DQN 26.48 35.63 20%

Env. 7

DQN-β.1 30.00 36.14 0%
DQN-β.2 28.29 38.50 40%

PF 25.38 47.04 40%
DQN 29.02 35.88 20%

Env. 8

DQN-β.1 30.00 33.40 0%
DQN-β.2 30.00 33.17 0%

PF 30.00 32.84 0%
DQN 30.00 33.46 0%

Env. 9

DQN-β.1 30.00 36.66 0%
DQN-β.2 8.59 - 100%

PF 27.44 36.54 20%
DQN 30.00 36.49 0%

Env. 10

DQN-β.1 30.00 37.75 0%
DQN-β.2 30.00 36.19 0%

PF 30.00 35.64 0%
DQN 30.00 36.01 0%

In terms of averaged navigation time over five trials, the
proposed DQN either outperforms the others or yields a similar
performance to them in all the environments. Especially when
compared with its closest competitor PF, the proposed DQN’s
performance is superior on navigation time. It can navigate
to the goal around 20% faster when the obstacles are densely
located (Envs. 3, 4, 5, 6, 7), which naturally decreases the
velocities generated by PF. DQN-β.1 yields slightly slower
behaviour than the proposed DQN since it is deprived of the
moving setpoint’s relative position information as its incentive
to move forward. DQN-β.2 has the incentive, but it probably
does not have as much grasp as the proposed DQN over the
environments due to the lack of sequential depth images.

In terms of averaged crash rate over five trials, the proposed
DQN either outperforms the others or yields a similar perfor-
mance to them in 8 of 10 environments. Over the 50 flights
(5 trials in 10 environments), the number of safe flights is 48

for the proposed DQN, 46 for PF, 36 for DQN-β.2, and 35
for DQN-β.1. Even these results alone reveal the superiority
of the proposed DQN to its preliminary versions DQN-β.1
and DQN-β.2. Thus, they justify the proposed state definition
consisting of depth images and relative position information.
Moreover, a crash rate slightly better than the renowned PF
reveals the reliability of the proposed DQN.

C. Testing in Real Flights

Following the extensive comparative testing in AirSim, we
deploy the proposed DQN directly on a DJI F330 Quadrotor
(Fig. 7) in our lab. Our vehicle is equipped with the flight
controller PX4 FMU, the companion computer Nvidia Jetson
TX2, and the extrecoptive sensor Intel RealSense D435. The
planning codes are running on TX2 utilizing its GPU for DQN
in PyTorch with Cuda option. D435 provides live depth images
as an input to DQN while PX4 is responsible for the low-level
control of the vehicle. Odometry information is obtained using
motion capture system. All modules communicate over Robot
Operating System (ROS).

We consider three different environment configurations
(Fig. 8): one as obstacle-free, one with a short but wide
obstacle to test up-down slalom performance, and the other
one with a narrow but long obstacle to test left-right slalom
performance. Since our lab space is limited to roughly 3 m
by 3 m area, we set the initial rough path of 4 m diagonally.
We consider the approximate speed of the vehicle as 0.5 m/s
in order not to cause dangerous movements of the quadrotor.
Accordingly, we decrease the length of motion primitives to
a maximum movement of 0.5 m in each axis. The rest of our
RL system parameters is exactly the same as in AirSim.

We conduct five trials in each environment for real flights as
well to demonstrate reliability. The proposed DQN completes
15 out of 15 flights without a crash. It navigates to the
goal point in all the three environments while avoiding the
obstacles successfully. A remark in real flights is that the
average navigation time is higher as compared to AirSim trials.
This is mostly due to the control ability of our quadrotor. We
simply use PX4’s position controller with default parameters
which are quite sensitive to the power available in the battery.
As compared to the precise execution of high-level commands
in AirSim without considering any motor-ESC-propeller or
battery efficiency issues, real flight control ability is obviously
less. Still, the proposed DQN yields adequate end-to-end
reasoning through relatively noisy depth images from D435
and completes the task in a slower manner but with 100%
accuracy.

From the real-time applicability aspect, the proposed DQN
requires the highest computation time on TX2 as can be seen
in Table III. This computation demand mostly results from the
presence of three depth images because it increases the number
of connections in the DQN drastically. This can be seen when
the computation time for DQN is compared with the one for
DQN-β.2 which uses a single depth image. However, this
result is obtained without any code or network optimization,
and it is still close to the PF’s computation time. Further

TABLE II
AVERAGED TEST RESULTS IN REAL FLIGHTS.

Env.# Navigation Navigation Crash
distance (m) time (s) rate

Env.1 4.00 22.60 0%
Env.2 4.00 19.49 0%
Env.3 4.00 21.14 0%

TABLE III
COMPUTATION TIME ANALYSIS ON TX2.

Algorithm Computation time (s)

DQN-β.1 0.0340
DQN-β.2 0.0161

PF 0.0304
DQN 0.0368

Fig. 7. DJI F330 Quadrotor with Pixhawk as flight controller, Jetson TX2 as
companion computer, and RealSense D435 as exteroceptive sensor.

Fig. 8. Real environments with corresponding trajectory results for the trials
with the shortest navigation duration.

development can bring this number down easily and allow
for deployment with low-cost hardware.

V. CONCLUSION AND FUTURE WORK

A. Conclusion

In this work, we have developed a novel, end-to-end motion
planner based upon deep RL. The proposed method has proven
decent generalization capability by performing in a variety of
environments which are unseen during training. It has achieved
successful flights in 63 of 65 trials in these previously unseen
environments. While 50 of these flights were in simulations,
15 of them was in real flights, which proved sufficient sim-to-
real knowledge transfer as well. We have also conducted an
extensive comparison with three competitors. The proposed

method has yielded substantially better performance as com-
pared to its two preliminary versions in all the three metrics:
navigation time, navigation distance, and crash rate. It has
yielded similar performance to PF-based planner regarding the
last two metrics but superior performance regarding navigation
time.

B. Future Work

Looking forward, there are a few aspects that can be studied
as an extension of this work. Firstly, the current planning
frequency of 1 Hz could be increased to possibly operate in
much denser areas. Secondly, one can try to create a larger net-
work which takes more depth images possibly from multiple
depth sensors around the vehicle to increase the situational
awareness. Lastly, the action set can be enhanced to have
more freedom during planning. We are particularly interested
in the last branch because smoother and safer motions can be
achieved in this way.

ACKNOWLEDGMENT

We would like to acknowledge the Air Lab members
Rogerio Bonatti, Wenshan Wang, and Sebastian Scherer at
Carnegie Mellon University, PA, USA for substantially helpful
discussions.

REFERENCES

[1] A. S. Huang, A. Bachrach, P. Henry, M. Krainin, D. Maturana, D. Fox,
and N. Roy, “Visual odometry and mapping for autonomous flight
using an rgb-d camera,” in Robotics Research: The 15th International
Symposium ISRR, vol. 100. Springer, 2016, p. 235.

[2] K. Sun, K. Mohta, B. Pfrommer, M. Watterson, S. Liu, Y. Mulgaonkar,
C. J. Taylor, and V. Kumar, “Robust stereo visual inertial odometry for
fast autonomous flight,” IEEE Robotics and Automation Letters, vol. 3,
no. 2, pp. 965–972, 2018.

[3] J. Zhao, C. Hu, C. Zhang, Z. Wang, and S. Yue, “A bio-inspired collision
detector for small quadcopter,” in 2018 International Joint Conference
on Neural Networks (IJCNN). IEEE, 2018, pp. 1–7.

[4] E. Camci and E. Kayacan, “Planning swift maneuvers of quadcopter
using motion primitives explored by reinforcement learning,” in 2019
American Control Conference (ACC). IEEE, 2019, pp. 279–285.

[5] H. Oleynikova, Z. Taylor, R. Siegwart, and J. Nieto, “Safe local explo-
ration for replanning in cluttered unknown environments for microaerial
vehicles,” IEEE Robotics and Automation Letters, vol. 3, no. 3, pp.
1474–1481, 2018.

[6] E. Camci and E. Kayacan, “Learning motion primitives for planning
swift maneuvers of quadrotor,” Autonomous Robots, vol. 43, no. 7, pp.
1733–1745, 2019.

[7] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and
control for quadrotors,” in 2011 IEEE International Conference on
Robotics and Automation. IEEE, 2011, pp. 2520–2525.

[8] M. Mehndiratta, E. Camci, and E. Kayacan, “Automated tuning of
nonlinear model predictive controller by reinforcement learning,” in
2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2018, pp. 3016–3021.

[9] E. Tal and S. Karaman, “Accurate tracking of aggressive quadrotor tra-
jectories using incremental nonlinear dynamic inversion and differential
flatness,” in 2018 IEEE Conference on Decision and Control (CDC).
IEEE, 2018, pp. 4282–4288.

[10] J. Wang, Q. Zhang, D. Zhao, and Y. Chen, “Lane change decision-
making through deep reinforcement learning with rule-based con-
straints,” in 2019 International Joint Conference on Neural Networks
(IJCNN). IEEE, 2019, pp. 1–6.

[11] E. Camci and E. Kayacan, “End-to-end motion planning of quadrotors
using deep reinforcement learning,” arXiv preprint arXiv:1909.13599,
2019.

[12] M. Gschwindt, E. Camci, R. Bonatti, W. Wang, E. Kayacan, and
S. Scherer, “Can a Robot Become a Movie Director? Learning Artistic
Principles for Aerial Cinematography,” in 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2019, pp.
1107–1114.

[13] H. Oleynikova, D. Honegger, and M. Pollefeys, “Reactive avoidance
using embedded stereo vision for mav flight,” in 2015 IEEE Interna-
tional Conference on Robotics and Automation (ICRA). IEEE, 2015,
pp. 50–56.

[14] B. T. Lopez and J. P. How, “Aggressive 3-d collision avoidance for high-
speed navigation,” in 2017 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2017, pp. 5759–5765.

[15] S. Stevšić, T. Nägeli, J. Alonso-Mora, and O. Hilliges, “Sample effi-
cient learning of path following and obstacle avoidance behavior for
quadrotors,” IEEE Robotics and Automation Letters, vol. 3, no. 4, pp.
3852–3859, 2018.

[16] B. Penin, P. R. Giordano, and F. Chaumette, “Vision-based reactive
planning for aggressive target tracking while avoiding collisions and
occlusions,” IEEE Robotics and Automation Letters, vol. 3, no. 4, pp.
3725–3732, 2018.

[17] F. Sadeghi and S. Levine, “Cad2rl: Real single-image flight without a
single real image,” arXiv preprint arXiv:1611.04201, 2016.

[18] V. Blukis, N. Brukhim, A. Bennett, R. A. Knepper, and Y. Artzi,
“Following high-level navigation instructions on a simulated quadcopter
with imitation learning,” arXiv preprint arXiv:1806.00047, 2018.

[19] S. Jung, S. Hwang, H. Shin, and D. H. Shim, “Perception, guidance, and
navigation for indoor autonomous drone racing using deep learning,”
IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 2539–2544,
2018.

[20] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[21] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press Cambridge, 1998, vol. 1, no. 1.

[22] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[23] P. J. Huber et al., “Robust estimation of a location parameter,” The
annals of mathematical statistics, vol. 35, no. 1, pp. 73–101, 1964.

[24] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-fidelity visual
and physical simulation for autonomous vehicles,” in Field and service
robotics. Springer, 2018, pp. 621–635.

[25] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” in Autonomous robot vehicles. Springer, 1986, pp. 396–404.

