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Abstract—Automatic segmentation of liver tumors in medical
images is crucial for computer-aided diagnosis and therapy. It
is a challenging task, since the tumors are notoriously small
against the background voxels. This paper proposes a new three-
stage curriculum learning approach for training deep networks
to tackle this small object segmentation problem. The learning
in the first stage is performed on the whole input volume to
obtain an initial deep network for tumor segmentation. Then the
second stage of learning focuses on the tumor-specific features by
continuing training the network on the tumor patches. Finally, we
retrain the network on the whole input volume in the third stage,
in order that the tumor-specific features and the global context
can be integrated to improve the final segmentation accuracy.
With this approach, we can employ a single network to segment
the tumors directly without the need of liver segmentation. We
evaluate our approach on a clinical dataset from the hospital
and the public MICCAI 2017 Liver Tumor Segmentation (LiTS)
Challenge dataset. In the experiments, our approach exhibits
significant improvement compared with the commonly used
cascade counterpart.

Index Terms—Liver Tumor Segmentation, CT, Curriculum
Learning, Deep Learning

I. INTRODUCTION

Liver cancer is the second most common cause of cancer
death worldwide. Computed Tomography (CT) is the pre-
ferred imaging modality for tumor diagnosis and treatment.
In clinical practices, segmenting malignant tissues is a prereq-
uisite step for final cancer diagnosis and treatment planning.
However, manual segmentation is time-consuming and poorly
reproducible. An accurate and automatic method of liver tumor
segmentation is highly desirable.

In recent years, deep learning has shown outstanding perfor-
mance in liver and tumor segmentation [1]. The best perform-
ing methods are usually based on U-net [2] architecture with
residual connections [3]. For the training of U-net framework,
the cascade approach is commonly applied, which firstly
segment the liver and then segment the tumors inside the
liver. Christ et al. [4] applied two cascade U-net models for

liver and tumor segmentation, respectively. The segmentation
output was further refined based on 3D Conditional Random
Field (3D-CRF). Chlebus et al. [5] employed two cascade
models for tumor segmentation, which are followed by an
object-based post-processing step. In Bellver et al. [6], the
first network focuses on the liver regions, then an independent
detector localizes the tumors in the liver, and finally the tumor
segmentation is performed based on the localizations. They
also used 3D-CRF for post-processing. Han [7], the winner of
the first round of 2017 MICCAI Liver Tumor Segmentation
(LiTS) challenge, developed two cascade networks working
in 2.5D for the liver and tumor segmentation, respectively. Li
et al. [8] proposed a novel hybrid densely connected U-net,
called H-DenseUNet. A 2D DenseUNet is used to efficiently
extract intra-slice features, then a 3D counterpart is employed
to hierarchically aggregate volumetric contexts. Jiang et al.
[9] proposed a cascade model composed of three networks:
the liver localization network, the liver segmentation network,
and the tumor segmentation network.

Despite their success, the above-mentioned cascade models
are still struggling in small tumor segmentation. First, the size
of tumors is much smaller than that of whole CT volumes
as well as that of liver regions. To segment the tumor from
the liver region is still like finding a needle in a haystack.
Second, the cascade approaches for tumor segmentation rely
on the pre-segmented liver mask. Except for the incorrect liver
segmentation results will deteriorate the tumor segmentation,
another defect is that the cases without liver label in the
training cannot be handled. Third, adding the post-processing
[4] or an additional detector [6] to the two-cascade models
[7], or extending the two-cascade model to the three-cascade
one [9] cannot effectively improve the accuracy of liver
tumor segmentation. Training the network to better capture
the essence of tumor-specific features may help to handle this
small object segmentation problem.

This paper proposes a new three-stage curriculum learning
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Fig. 1. An illustration of the three-stage curriculum learning approach with different scale of inputs. Network architecture: U-net based tumor segmentation
network, where “× X” denotes that a residual block is repeated X times.

approach to tackle the problem of small object segmentation
like liver tumor segmentation. Curriculum learning, which first
proposed by [10], introduces different concepts at different
times to guide the learning process. The proposed approach
trains the network on two scales: tumor patches and whole
input volumes. The training on tumor patches helps the model
better capture specific features of tumors, while the training
on the whole input volume makes the tumor-specific features
effectively embedding into the global context. We integrate the
two scales of training in a three-stage schema, which starts
training on the whole input volume; then continues training
on the tumor patches; and finally retrains on the whole input
volume. In this way we can deal with the dilemma that the
interested small object is drowned in the huge background.
Fig. 1 illustrates our approach, which will be explained in the
next section.

Our contributions are summarized as follows:
1) A new three-stage curriculum learning approach is pre-

sented to tackle the problem of small object segmentation
and applied to liver tumor segmentation.

2) To the best of our knowledge, this is the first introduction
of curriculum learning strategy for liver tumor segmen-
tation.

3) As far as we know, it is also the first work based on deep
learning to segment the tumor directly without the need
of liver segmentation.

II. APPROACH

The proposed approach to tumor segmentation is illustrated
in Fig. 1, which is composed of a U-net based deep network

and our three-stage curriculum learning approach for training
this network. The details are given as follows.

A. Tumor Segmentation Network

Recently, successful works for 3D medical image segmen-
tation are mainly based on plain U-net architecture with
residual connections [11], so we also apply this architecture
in this work. However, we only employ one single network to
segment the tumor directly, instead of segmenting the tumor
from the liver as in commonly used cascade approaches.

The tumor segmentation network consists of an encoder and
a decoder symmetrically. The encoder consists of repeated
down-sampling operations which halves the size of feature
map at each block. The decoder contains a set of up-sampling
operations which reconstructs the feature maps in a coarse-to-
fine manner. The skip connections between the encoder layers
and the corresponding decoder layers enable the network
to learn multi-scale semantic features. As the encoder goes
deeper, the contextual information is coarser and the learned
features are more related to semantics. To take full advantage
of the semantic features, we carefully design the numbers of
residual blocks for different layers of the encoder and decoder,
which are given in Fig. 1.

B. Three-stage Curriculum Learning

Since only a very small fraction of voxels belong to a
tumor in both the whole input volume and the liver region, the
commonly used cascade approaches seem as finding a needle
in a haystack and could miss some specific features of tumors.
Moreover, the undesirable liver segmentation result hinders the
performance of subsequent tumor segmentation.



Based on the thoughts above, we propose the three-stage
curriculum learning approach to explore tumor-specific fea-
tures more sufficiently and use it to segment the tumor directly
on the CT volumes. As shown in Fig. 1, these three stages of
learning are performed sequentially. The process and the role
of each stage are described as follows.

• Stage 1: We start to learn the network for segmenting the
tumor from the whole input 3D volumes. Instead of starting
the learning process on the tumor patches, starting the learning
process in this way can improve the accuracy of the final
learning result, which can be seen in Section III-B.

• Stage 2: In this stage, we refine the model on 3D tumor
patches extracted from the whole input volumes. The size of
tumor patch is decided to be the maximum one for all the
tumors in the training dataset. Except the positive samples
of tumor regions, we also cropped the negative samples
with the same size, which do not contain any tumor. Since
tumor regions become the major part of such type of training
samples, the tumor-specific features can be probed sufficiently
and strengthened in the segmentation network.

• Stage 3: The training process of this stage is same as that
of the first stage, but starting from the model outputted from
Stage 2. This stage aims at transferring the knowledge learned
from the tumor patches to the whole input volumes, in order
that the tumor-specific features and the global context can be
integrated sufficiently under our final purpose of segmenting
the tumor from the whole input volume.

In the three-stage curriculum learning, we use the weighted
Dice loss to train the network. Let pc and gc be the pre-
dicted probability and the ground truth probability belong-
ing to class c (background or tumor) for an input volume,
respectively; wc be be the weighting parameter that can help
alleviate the imbalance problem between the numbers of
positive and negative voxels; ε be a very small number to
prevent the denominator being zero, then we have

LDice = 1−
C∑

c=1

wc × 2× (pc × gc) + ε

pc + gc + ε
, (1)

where

wc=(

C∑
i6=c

gi + ε)/(

C∑
i=1

gi + ε). (2)

III. EXPERIMENTS

A. Experimental Setup

Dataset and Preprocessing. Our proposed method is
evaluated on two datasets. One is our clinical tumor dataset
collected from Cancer Hospital and Chinese Academy of
Medical Sciences. It contains 137 cases of Contrast-Enhanced
CT (CECT) with arterial phase, portal venous phase and delay
phase. The axial slices of all scans have the same in plane
resolution of 512 × 512, but the number of slices in each
scan differs among different modalities. The dataset contains
the manually segmented tumors and the final annotation was
validated by a senior radiologist with 15-years’ experience in
abdominal imaging.

Another dataset is the public MICCAI 2017 Liver Tumor
Segmentation (LiTS) Challenge dataset [1]. It contains 130 CT
scans for training and 70 CT scans for testing, which have the
same resolution of 512×512 pixels but with different numbers
of axial slices and slice thicknesses. The available ground truth
is provided only for the training dataset.

We perform the experiments on the two datasets indepen-
dently. On our clinical tumor dataset, all cases are randomly
divided into two non-overlapping groups, 109/28 cases for
training and testing, respectively. On LiTS dataset, 117/13
cases in the training set are randomly divided for training and
validation, respectively, and 70 testing cases are used to test
the approaches.

In medical image segmentation, data preprocessing is a
prerequisite step for effective network training. In this work,
we perform spacing interpolation, window transform, effective
range extraction, and sub-image generation. After the pre-
processing, the size of obtained input patches is determined as
64×256×256 for optimizing the trade-off between the available
GPU memory used in the experiments and the contextual
information in the input patches. Such input patches are used
as whole input volumes in this paper. Our source code of these
preprocessing steps is provided at https://github.com/Huiyu-
Li/Preprocess-of-CT-data.

Implementation details. The tumor segmentation network
is implemented with the PyTorch framework. All the models
were trained from scratch, initialized with Kaiming uniform
[12], and optimized by Adam. The initial learning rate was
0.001 and its decay rate was 0.1 for each subsequent stage of
curriculum learning. The batch size of whole input volume is 1
and the corresponding patch size is 64×256×256 as described
above. As for the size of tumor patches, it is 26×56×56 for
our clinical tumor dataset and 64×190×190 for LiTS dataset.
The corresponding batch sizes are 32 and 2, respectively. All
the experiments are conducted on an NVIDIA 2080Ti GPU.

Evaluation Criteria. We evaluate the performance of the
proposed approach using Dice Score (DS), which consists
of Dice per Case (DC) and Dice Global (DG), Volumetric
Overlap Error (VOE), Relative Volume Difference (RVD), Av-
erage Symmetric Surface Distance (ASSD), Maximum Surface
Distance (MSD), and Root Means Square symmetric surface
Distance (RMSD) [1]. A perfect segmentation yields 1 on DC
and DG, while 0 on each of other metrics (VOE, RVD, ASSD,
MSD and RMSD).

B. Experimental Results

a) The effectiveness of three-stage curriculum learning:
To analyze the effectiveness of our proposed three-stage
curriculum learning, we compared the performance of our
approach with those from other related learning schemas under
the same tumor segmentation network as well as the same
experimental setup. These compared schemas in-cludes:

1) Naı̈ve Learning. Only first stage training of our approach
is considered in this schema, i.e. we naively train the tumor
segmentation network on the whole input volume.



TABLE I
THE PERFORMANCE COMPARISONS BETWEEN OUR APPROACH AND ITS COUNTERPARTS ON OUR CLINICAL TUMOR DATASET.

Approach DC DG VOE RVD ASSD MSD RMSD
Three-stage Curriculum Learning 0.855 0.956 0.033 -0.033 0.075 1.367 0.228

Whole-to-patch Curriculum Learning 0.798 0.899 0.096 -0.093 0.216 2.333 0.414
Patch-to-whole Curriculum Learning 0.652 0.775 0.206 -0.206 0.582 2.633 0.765

Naı̈ve Learning 0.473 0.749 0.273 -0.273 0.846 3.117 1.037

TABLE II
THE PERFORMANCE COMPARISONS BETWEEN OUR APPROACH AND ITS COUNTERPARTS ON THE VALIDATION SUB-SET OF LITS TRAINING DATASET.

Approach DC DG VOE RVD ASSD MSD RMSD
Three-stage Curriculum Learning 0.822 0.955 0.235 0.237 2.458 41.100 5.149

Whole-to-patch Curriculum Learning 0.799 0.947 0.265 0.329 2.533 47.112 5.904
Cascade Architecture 0.702 0.820 0.378 0.388 7.151 36.055 9.678

Patch-to-whole Curriculum Learning 0.633 0.852 0.457 0.473 7.513 46.936 11.249
Naı̈ve Learning 0.671 0.809 0.421 0.860 5.115 37.407 7.965

Fig. 2. Examples of liver tumor segmentation results from different training
stages on the LiTS validation dataset, where each column from left to
right represents ground truth, segmenta-tion results of three stages learning,
respectively, and the tumors are indicted in green.

Fig. 3. Examples of final liver tumor segmentation results from the LiTS
validation dataset, where each row from top to bot-tom represents input image,
ground truth, and segmentation result, respectively, and the tumors are indicted
in green.

2) Whole-to-patch Curriculum Learning. In this schema,
we train the network using first two stages of our approach,
starting training on the whole input volume and ending training
on tumor patches.

3) Patch-to-whole Curriculum Learning. This schema is
actually the last two stages of our approach. We start training
on tumor patches and end training on the whole input volume.

4) Cascade Architecture. In the cascade schema, the first
network is used to segment the liver and the second network is
used to segment the tumor in liver. As described in section I,
this is the commonly used approach in deep learning based
liver tumor segmentation.

To validate the effectiveness and robustness of our approach,
we conduct these experiments on our clinical tumor dataset
and the public LiTS dataset. Noted that our clinical tumor
dataset only contains tumor annotations, thus the cascade
architecture cannot be tested on it. The comparison results
of the aforementioned schemas on the clinical tumor dataset
and public LiTS dataset are provided in Table I and Table II,
respectively. From the results, we can conclude that:

1) Our proposed three-stage curriculum learning approach
exhibits promising effectiveness for the segmentation of liver
tumors. On our clinical tumor dataset, our approach achieves
the best performance on all the criteria. Especially on DC
and DG, two main indicators of segmentation accuracy, our
approach achieves 0.855 and 0.956, respectively. On the LiTS
dataset, our approach also exhibits competitive results on
almost all the criteria.

2) The naive learning approach achieves poor performance,
which demonstrates that learning the tumor-specific features
from the whole input volume is infeasible.

3) The whole-to-patch curriculum learning exceeds the
performance of the remaining three approaches. It reflects that
the first two-stage of our approach is more effective than the
last two stages (patch-to-whole curriculum learning). It should
be noted that the last two stages of our approach have some
similarities with the approach of Haarburger et al. [13], which
is used to classify breast malignancy from MRI images. As the
results shown in Table I and Table II, such two stages of the



TABLE III
THE PERFORMANCE COMPARISONS AMONG DIFFERENT APPROACHES ON LITS TESTING DATASET, WHERE THE APPROACHES ARE RANKED BY DC.

SCORES EXCEPT OURS ARE REPORTED AS PRESENTED IN THE ORIGINAL PAPERS.

Approach DC DG VOE RVD ASSD MSD RMSD
Li et al. [8] 0.722 0.824 0.366 4.272 1.102 6.228 1.595

Tian et al. [1] 0.702 0.794 0.394 5.921 1.189 6.682 1.726
Ours 0.690 0.830 0.370 -0.052 1.087 6.656 1.618

Li et al. [1] 0.686 0.829 0.356 5.164 1.073 6.055 1.562
Chlebus et al. [1] 0.676 0.796 0.383 0.464 1.143 7.322 1.728

Vorontsov et al. [1] 0.661 0.783 0.357 12.124 1.075 6.317 1.596
Yuan et al. [1] 0.657 0.820 0.378 0.288 1.151 6.269 1.678
Ma et al. [1] 0.655 0.768 0.451 5.949 1.607 9.363 2.313
Bi et al. [1] 0.645 0.735 0.356 3.431 1.006 6.472 1.520

Kaluva et al. [1] 0.640 0.770 0.340 0.190 1.040 7.250 1.680

patch-to-whole curriculum learning is not suitable to our liver
tumor segmentation problem and leads to weak performance.

4) According to the inferior performance of patch-to-whole
curriculum learning compared with three-stage curriculum
learning, we can see the first learning stage provides a good
start point for the last two stages.

5) Considering the inferior performance of whole-to-patch
curriculum learning compared with three-stage curriculum
learning, the third learning stage contributes a lot to improve
the overall performance.

The examples of segmentation results in different learning
stages are shown in Fig. 2. We can observe that the first
learning stage can help to locate the large tumors but could
miss the small tumors. The first two stages of learning can
segment most of the small tumors, indicating that the tumor-
specific features are effectively probed through learning on
tumor patches. After the three stages of learning, we can
observe that most small objects as well as large tumors can be
well segmented, which further highlights the effectiveness of
our proposed approach. From such visual comparison, we can
claim that the performance improvement on small tumors is
mainly attributed to the tumor-specific features learning. More
qualitative results from our approach are visualized in Fig. 3.
It shows various situations of segmentation. For the situations
shown in the first two columns of the figure, there is only
one tumor in each input slice but the sizes of tumors could be
varied greatly across the slices. For the last two columns, there
are multiple tumors in each input slice with various sizes and
shapes. These cases demonstrate that the proposed approach
can handle various situations and lead to satisfactory results.

B the proposeyd three-stage curriculum learning approach,
we can use a single network to segment the tumor directly
from the whole input volume. Compared with the commonly
used cascade architecture, we can obtain obvious performance
improvement, as shown in Table I and Table II. Furthermore,
although such curriculum learning increases the training time,
it can substantially save time for tumor segmentation during
inference. In our experiments, segmenting one input volume
with the size of 64×256×256 can be performed under 0.75 sec-
onds by using the single network learned from our approach,
while 2.64 seconds are needed for the two-cascade counterpart.

b) Comparison with Other Methods on LiTS testing
dataset: We further compare our approach with a number
of excellent competitors by submitting the result to the LiTS
leaderboard. Table III shows the details. We reached a Dice per
case of 0.690, Dice global of 0.830, VOE of 0.370, RVD of
-0.052, ASSD of 1.087, MSD of 6.656, and RMSD of 1.618.
which is a desirable performance on the LiTS challenge for
tumor segmentation.

IV. CONCLUSION

In this paper, we have presented a new three-stage curricu-
lum learning approach for handling small object segmentation
and applied it to liver tumor segmentation. Compared with
the commonly used cascade model, the proposed approach
can lead to more precise segmentation and save computational
time during inference. On our clinical tumor dataset and the
LiTS dataset, the proposed approach achieves promising per-
formance without using ensemble learning and post-processing
and demonstrate the superiority over cascade counterpart. The
comparison study among various combinations of learning
stages further justifies the reasonability of our design. For the
future work, we will validate the proposed approach on other
popular medical image segmentation benchmarks, such as the
kidney tumor segmentation challenge (KiTS) dataset.

ACKNOWLEDGMENT

This work was supported in part by Beijing Mu-
nicipal Science and Technology Project [grant number
Z181100001918002]

REFERENCES

[1] P. Bilic, P. F. Christ, E. Vorontsov, G. Chlebus, H. Chen, Q. Dou, C.-W.
Fu, X. Han, P.-A. Heng, J. Hesser et al., “The liver tumor segmentation
benchmark (lits),” arXiv preprint arXiv:1901.04056, 2019.

[2] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in International Conference on
Medical image computing and computer-assisted intervention. Springer,
2015, pp. 234–241.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[4] P. F. Christ, M. E. A. Elshaer, F. Ettlinger, S. Tatavarty, M. Bickel,
P. Bilic, M. Rempfler, M. Armbruster, F. Hofmann, M. D Anastasi
et al., “Automatic liver and lesion segmentation in ct using cascaded
fully convolutional neural networks and 3d conditional random fields,” in
International Conference on Medical Image Computing and Computer-
Assisted Intervention. Springer, 2016, pp. 415–423.



[5] G. Chlebus, A. Schenk, J. H. Moltz, B. van Ginneken, H. K. Hahn, and
H. Meine, “Automatic liver tumor segmentation in ct with fully con-
volutional neural networks and object-based postprocessing,” Scientific
reports, vol. 8, no. 1, pp. 1–7, 2018.

[6] M. Bellver, K.-K. Maninis, J. Pont-Tuset, X. Giró-i Nieto, J. Torres,
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