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Abstract—The paper reconsiders multilayer perceptron net-
works for the case where the Euclidean inner product is re-
placed by a semi-inner product. This would be of interest, if
the dissimilarity measure between data is given by a general
norm such that the Euclidean inner product is not longer
consistent to that situation. We prove mathematically that the
universal approximation completeness is guaranteed also for
those networks where the used semi-inner products are related
either to uniformly convex or to reflexive Banach-spaces. Most
famous examples of uniformly convex Banach spaces are the
spaces Lp and lp for 1 < p < ∞. The result is valid for all
discriminatory activation functions including the sigmoid and
the ReLU activation.

I. INTRODUCTION AND MOTIVATION

Various types of multilayer perceptrons (MLP) including
deep networks belong nowadays certainly to the standard
neural networks in machine learning for classification and
regression tasks [1], [8]. Biologically motivated by pyramid
cells in brains the corresponding mathematical perceptron is
the basis of those networks [24], see Fig. 1.

Figure 1. Schematic illustration of a mathematical perceptron (left) according
to a pyramid cell (right). The input vector x = (x1, . . . , xn)

T is weighted
by the weight vector w = (w1, . . . , wn)

T to generate the output O.

The capability for these networks is justified by Cybenko’s
theorem with states the universal approximation capability
for MLP’s with sigmoidal activation functions [5]. One key
ingredient in the proof of the respective theorem is the
Hilbert-space-property needed to ensure the application of
the Riesz-Representation-Theorem (RRT). This property is
given for each perceptron in the network, because perceptrons
generate their output based on the Euclidean inner product
(EIP) between the input and the weight vector. Thus the data
space is implicitly assumed to be a Hilbert space equipped

with the Euclidean norm, which is generated by the standard
inner product. However, depending on the task, other than the
Euclidean metric might be more appropriate, e.g. lp-norms
(metrics) with p 6= 2 [18] or kernel metrics [28]. However,
those metrics relate to so-called semi-inner products (SIP, [20])
which show weaker requirements than inner products. Hence, a
consistent approach for a perceptron network should make use
of SIPs instead of the EIP. Consequently the question arises
whether those networks remain universal approximators. The
paper tackles exactly this problem and will provide respective
proofs.

The remainder of the paper is as follows: First we provide
the basic mathematical concepts and definitions needed for
the mathematical analysis of the problem. Thereafter, we
recapitulate the proof of Cybenko’s theorem regarding the
approximation completeness to identify the keypoints of this
proof in the light of the given problem. For this purpose, we
analyze the class of discriminatory activation functions regard-
ing the Euclidean inner product (or general inner products)
and show that both sigmoidal and ReLU activation function
belong to that class. In the next step we provide the results
for SIP-based perceptrons, which we also denote as Banach-
like-perceptrons (BlP). For this purpose, we show that the
class of discriminatory functions with respect to a given SIP
can be appropriately defined and, again sigmoidal and ReLU
activation belong to this class. Further, we show which parts
of the original Cybenko-theorem have to be modified. In
particular, we identify those SIPs (and respective Banach-
spaces), which can be equipped with an RRT compared to
that valid for Hilbert spaces. The technical structure of this
paper follows closely the mathematical description of MLP’s
given in [10].

II. THE STANDARD MULTILAYER PERCEPTRON REVISITED

The mathematical modeling of standard perceptrons as-
sumes stimulus vectors x ∈ Rn and a weight vector w ∈ Rn
to generate the output according to

O (w,x) = f (〈w,x〉+ b) (1)

where b ∈ R is the bias and f is the so-called activation
function. The quantity 〈w,x〉 =

∑n
k=1 xk · wk is the (real)

Euclidean inner product, which is motivated biologically by
the weighted sum of inputs, see Fig. 1. The activation function
f usually is a monotonically increasing function. Common
choices are the the identity id (z) = z (linear perceptron), the
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Heaviside function H (z) (standard perceptron) or the sigmoid
function

fθ (z) =
1

1 + exp (θz)
(2)

as smooth (differentiable) approximation of H (z). Nowadays,
other activation functions became popular, rather motivated
computationally than biologically [22]. Among them, the
function

ReLU (z) = max (0, z) (3)

known as Rectified Linear Unit has gained great focus because
of its easy computation and derivative [8].

MLPs are directed graphs with mathematical perceptrons
as nodes organized in layers [13]. Only the first layer (input
layer) receives direct data inputs. The last layer is denoted as
output layer and delivers the network response o for a given
data vector x. The stimulus vectors of perceptrons in all layers
except the input layer are output vectors of previous layers.
Mathematically speaking, MLPs realize a mapping

FW,B : Rn 3 x 7−→ o ∈ Rm (4)

if m output units are available and W is the set of all weights
w and B is the set of all biases in the network. It was
shown by CYBENKO that under certain conditions MLP’s are
universal approximators [5]. We will consider the proof of this
theorem in detail after giving useful definitions and theorems
from mathematical analysis needed for an adequate problem
description in the proof of the Cybenko-theorem.

A. Basic Concepts, Mathematical Definitions and Theorems

Definition 1. The function σ is n-discriminatory with respect
to the inner product 〈·, ·〉 if for a measure µ ∈M (In) of the
closed (compact) subset In = [0, 1]

n ⊂ Rn with the property∫
In

σ (〈w,x〉+ b) dµ (x) = 0

for all w ∈ Rn and b ∈ R the implication µ ≡ 0 follows. A
function is said to be discriminatory with respect to the inner
product 〈·, ·〉 if it is n-discriminatory for all n.

A function σ is denoted as sigmoidal if

σ (z) −→
{

1 for z →∞
0 for z → −∞

holds. Obviously, fθ (z) from (2) is sigmoidal. Another exam-
ple is

λ (z) =


0 if z < 0

z if z ∈ [0, 1]

1 if z > 1

(5)

defining the set Λ[0,1] of interval-restricted linear functions.
It can easily be shown that the respective span S

(
Λ[0,1]

)
is

dense in C [0, 1] [17].
The following Lemma, proven in [5], relates sigmoidal

functions to discriminatory functions:

Lemma 2. Any bounded, measurable sigmoidal function is
discriminatory with respect to the real inner product 〈·, ·〉 and,
hence, any continuous sigmoidal function is discriminatory.

It turns out that also the function ReLU (z) from (3) is
discriminatory with respect to the inner product 〈·, ·〉. In fact,
we now prove the following lemma about the discriminatory
property of the ReLU -activation with repsect to a real inner
product:

Lemma 3. The ReLU (z) from (3) is discriminatory with
respect to the real inner product 〈·, ·〉 for z (x) = 〈w,x〉+ b.

Proof: We follow [10] and start with the case n = 1
(1-discriminatory), i.e. 〈w, x〉 = w · x and z (x) = w · x + b
for given w and b. For w = 0 we can rewrite an arbitrary
λ (z) ∈ S

(
Λ[0,1]

)
into

λ (b) =

{
ReLU (λ (b)) if λ (b) ≥ 0

−ReLU (−λ (b)) if λ (b) ≤ 0

whereas for w 6= 0 we decompose λ (z (x)) into

λ (x) = ReLU

(
w · x− b

w

)
− ReLU

(
w · x+

1− b
w

)
(6)

using the linearity of the (inner) product w · x. Applying this
decomposition we prove immediately the assertion: Because
λ (z (x)) is discriminatory according to the previous lemma
we have that for the integral I [λ] =

∫
λ (w · x− b) dµ (x)

the equality I [λ] = 0 holds, which further implies that µ ≡ 0
has to be valid. Hence, we get for the decomposition (6)

I [λ] =

∫
ReLU

(
w · x− b

w

)
dµ (x)

−
∫

ReLU

(
w · x+

1− b
w

)
dµ (x)

µ≡0
= 0− 0

which is the desired result.
For n > 1 we consider the span S (G) of the set G =
{g (z (x)) |nonlinear g ∈ C ([0, 1])} of continuous functions
depending on x with parameters w and b. Let h (x) ∈ S (G),
arbitrarily given. According to Kolmogorov’s representation
theorem [14], [2] and [9] exist affine functions gk (zε (x)) ∈
C ([0, 1]) with zε (x) = 〈w,x〉+ b

N(ε) such that∣∣∣∣∣∣h (x)− g

N(ε)∑
k=1

gk (zε (x))

∣∣∣∣∣∣ < ε

2

for arbitrarily chosen ε > 0 using the non-linearity of g.
Because z (x) =

∑
k,j wkxj 〈ek, ej〉 + b is an affine (linear)

function in each variable xj the introduced functions gk are
affine (linear) functions of xj , i.e. we have gk (zε (x)) =∑n
j=1 ĝk (zε (xj)) with zε (xj) = xj · wj + bj . Each of the

continuous functions ĝk can be further approximated by∣∣∣∣∣∣ĝk (zε (xj))−
Nk(ε)∑
l=1

λk,l (zε (xj))

∣∣∣∣∣∣ < ε

2 ·N (ε) · n

with λk,l ∈ S
(
Λ[0,1]

)
which can be taken as combinations of

ReLU-functions according to (6).



In consequence, we are able approximate each h (x) ∈
S (G) with arbitrary precision which implies the n-
discriminatory property using the first part of the proof. This
completes the proof of the lemma.

Remark 4. We emphasize that for (6) the linearity of the inner
product with respect to the first argument was used.

Definition 5. Let X be a vector space over K ∈ {R,C} and
ϕ : X → K be a functional. If both properties
• positive homogeneity: ϕ (λx) = λϕ (x) for λ ∈ R+ and
ϕ (ix) = iϕ (x) is valid in the complex case

• subadditivity: ϕ (x + y) ≤ ϕ (x) + ϕ (y)

hold, ϕ is denoted as sublinear.

We remark that every norm on a vector space X is sublinear.
A central role in this paper plays the Hahn-Banach-Theorem
which states the following [15], [23]:

Theorem 6. (Hahn-Banach-Theorem) Variant a): Let X be
a vector space over K ∈ {R,C} and Y ⊆ X a subspace. Let
ϕ : X → R be a sublinear functional and f : Y → K be a
linear functional with < (f (y)) ≤ ϕ (y) for all y ∈ Y . Then
there exists a linear functional F : X → K with F |Y = f
and < (F (x)) ≤ ϕ (x) is valid for all x ∈ X .

An alternative formulation is the variant [27], [25] b): Let
X be a normed space and Y is a subspace Y ⊂ X . Let be
f ∈ X∗ with f |Y = 0. The subspace Y is dense in X iff under
these assumptions always follows f (x) = 0 for all x ∈ X .

The following theorem is known as the Theorem of Domi-
nated Convergence from Lebesgue [15], [23]:

Theorem 7. (Dominated-Convergence-Theorem) Let X be
a measure space, µ a Borel-measure on X and g : X −→
R absolute integrable, g ∈ L1 (X). Let further {fk} be a
sequence of measurable functions fk : X −→ R such that
|fk (x)| ≤ g (x) holds for all x ∈ X , i.e. g dominates all
fk. If the sequence {fn} converges point-wise to a function
f , i.e. fk (x)

pointwise−→
k→∞

f (x) then f is absolute integrable, i.e.

f ∈ L1 (X) with

lim
k→∞

∫
fk (x) dµ (x) =

∫
f (x) dµ (x) .

B. Cybenko’s Results for Standard MLP

The main statement regarding the universal approximation
property of MLP’s is given by the following theorem. For
the sake of later considerations we also give the proof of the
theorem as provided in [5]. We will later make use of that
proof structure.

Theorem 8. Let In = [0, 1]
n ⊂ Rn be the closed hypercube

equipped with the Euclidean metric., Let σ be a continuous
discriminatory function with respect to the inner product 〈·, ·〉.
Further, let

Π =

π (x) ∈ C (In) |π (x) =
N∑
j=1

αj · σ (〈wj ,x〉+ bj)


(7)

be the set of continuous functions consisting of finite sums of
perceptrons (1) with an activation function f = σ. Then the
set P = span (Π) of functions π (x) is dense in the space
C (In) of continuous functions over In.

Proof: The set P is dense in C (In) iff for any function
g (x) ∈ C (In) and ε > 0 exists a function π (x) ∈ P with
|π (x)− g (x)| < ε for all x ∈ In. This statement is proven
if we can show that for the closure P of P the equality P =
C (In) holds. We apply a proof by contradiction:

Obviously, P is a linear subspace of C (In). Thus, the
closure P is a closed subspace of C (In). We remark that In
is equipped with the Euclidean norm such that it is a Banach-
space or, more precisely, a Hilbert space. Now we suppose
that P 6= C (In), i.e. P is not dense in C (In) and show that
this assumption leads to a contradiction:

It follows from the assumed equality according to the Hahn-
Banach-theorem that there is a bounded linear functional L on
C (In) with L (h) 6= 0, i.e. it is not completely vanishing for
h ∈ C (In) but L (P) = L

(
P
)

= 0 is valid. We remark that L
is continuous and we have L ∈ C∗ (In) being the dual space
of C (In).

According to the Hilbert-space property of In we can apply
the Riesz-Representation-Theorem (RRT, [23]), which states
that the functional L can be written in the form

L (h) =

∫
In

h (x) dµ (x) (8)

for some measure µ ∈ M (In) and a continuous function
h ∈ C (In). Yet, so far µ is unspecified.

Because for the continuous function σ (〈w,x〉+ b) ∈ P is
valid for all w and b we must have that

L (σ) =

∫
In

σ (〈w,x〉+ b) dµ (x) = 0

holds for all choices w and b according to L
(
P
)

= 0. Since σ
is assumed to be discriminatory, the zero integral implies that
µ ≡ 0 has to be valid, which further implies, however, that
L (h) ≡ 0 for any h ∈ C (In). This contradicts the assumption
P 6= C (In). Hence, G is dense in C (In) which completes the
proof.

According to this result and the Lemma 3 we can conclude
that also the ReLU-activation ensures the universal approxi-
mation property.
Remark 9. In the proof of the Cybenko-theorem the Hilbert-
space property of In was explicitly used which is guaranteed
by the Euclidean metric/norm. Further, the Euclidean norm in
In is consistent with the mathematical structure of the dis-
criminatory functions σ (〈w,x〉+ b) containing the Euclidean
inner product in the argument.

Remark 10. We explicitly remark that the validity of the RRT
provided by eq. (8) is essential to complete the proof. The
RRT, however, originally requires the Hilbert-space property.

III. GENERALIZATIONS OF CYBENKO’S RESULTS FOR
MLPS WITH GENERALIZED INNER PRODUCTS

In this chapter we generalize the Cybenko-Theorem (8).
First, we make the easy step to kernel-based inner products



replacing the inner product in perceptrons. Thereafter, we
consider more general inner product variants, namely, semi-
inner products and variants thereof.

A. Kernels for Hilbert-Spaces

Obviously, the proof of the Cybenko-theorem remains valid
if we replace the Euclidean inner product 〈w,x〉 in the
standard perceptron (1) by an arbitrary inner product and use
the resulting norm as norm for the n-dimensional real space
Rn. We can continue this idea and, more generally, replace
the inner product by a kernel κ, i.e. we consider

κ (w,x) = 〈φ (w) , φ (x)〉

with φ (w) ∈ H whereH is a reproducing kernel Hilbert space
(RKHS) [26]. Then In = φ (In) is compact in the Hilbert
space H and the Cybenko’s theorem is still applicable also
for In.

B. Semi-Inner Products

In the second, more challenging case we want to exchange
in the perceptron (1) the inner product 〈w,x〉 by a semi-inner
product (SIP) [w,x] [20].

Definition 11. A mapping [·, ·] : B×B → C is called a semi-
inner product (SIP) if the following relations are fulfilled:

1) linearity: [λx + z,y] = λ [x,y] + [z,y] for λ ∈ C
2) positiveness: [x,x] > 0 for x 6= 0
3) Cauchy-Schwarz-inequality: |[x,y]|2 ≤ [x,x] [y,y]

LUMER has shown that a SIP always generates a norm by
‖x‖ =

√
[x,x] as well as he has proofed that every Banach-

space with norm ‖x‖B is equipped with a SIP generating
this norm [20]. Generally, there may exist several SIPs gen-
erating a given norm. Additional requirements are needed to
ensure uniqueness. Further, given a norm, generally there is
no constructive way to derive a respective SIP. Despite this
impossibility, one can show that the homogeneity property
[x, λy] = λ [x,y] can be imposed without causing any
significant restriction of the LUMER results [7].

Now we equip In with the norm ‖x‖ =
√

[x,x] denoted
as IBn ⊂ RnB. Thus RnB becomes an n-dimensional real
Banach-space. Considering now Banach-like perceptrons (B-
perceptron) with output

O (w,x) = f ([w,x] + b) (9)

using real SIPs, we cannot simply apply the original Cybenko-
theorem to show approximation completeness, because its
proof requires the Hilbert-space property needed to apply the
RRT. However, as mentioned before, IBn is not conained in
a Hilbert space. Fortunately, there exist variants of the RRT
which suppose weaker but special Banach-spaces instead of a
Hilbert-space.

Before we will characterize those Banach-spaces, we have
to extend the definition of a discriminatory functions:

Definition 12. The function σ is n-discriminatory with re-
spect to the real-valued linear functional l (w,x) in x, if

for a measure µ ∈ M (In) of the closed (compact) subset
In = [0, 1]

n ⊂ Rn with the property∫
In

σ (l (w,x) + b) dµ (x) = 0

for all w ∈ Rn and b ∈ R the implication µ ≡ 0 follows. The
function σ is said to be discriminatory with respect to the real-
valued linear functional l (w,x) in x, if it is n-discriminatory
with respect to the real-valued linear functional l (w,x) for
all n.

Lemma 13. Any bounded, measurable sigmoidal function is
discriminatory with respect to the real-valued linear functional
l (w,x) and, hence, any continuous sigmoidal function is
discriminatory.

Proof: The proof we give here follows the argu-
mentation in [5]. Doing so, we suppose a sigmoid func-
tion σ and a real-valued linear functional l (w,x) with∫
In
σ (l (w,x) + b) dµ (x) = 0 for given signed measure µ.

We have to show that µ ≡ 0 follows.
For this purpose we consider the function

σλ (x) = σ (λ · (l (w,x) + b) + ϕ)

which converges point-wise and boundedly to the function

γ (x) =

 1 for l (w,x) + b > 0
0 for l (w,x) + b < 0

σ (ϕ) for l (w,x) + b = 0

in the limit λ −→ +∞, i.e. σλ (x)
pointwise−→
λ→+∞

γ (x).

Hence, |σλ (x)| ≤ γ (x) is valid. Applying the Dominant-
Convergence-theorem 7 we have∫

In

γ (x) dµ (x) = lim
λ→+∞

∫
In

σλ (x) dµ (x)

with
∫
In
σλ (x) dµ (x) = 0 according to the assumed discrim-

inatory property of σ. Thus we can further calculate for an
arbitrary choice of w, b, and ϕ∫

In

γ (x) dµ (x) =

∫
X+

w,b

1dµ (x) +

∫
X−

w,b

0dµ (x)

+

∫
X0

w,b

σ (ϕ) dµ (x) (10)

= µ
(
X+

w,b

)
+ σ (ϕ)µ

(
X0

w,b

)
(11)

= 0

using the definition of γ (x) in the first equation together
with the half-planes X+

w,b = {x ∈ In|l (w,x) + b > 0}
and X−w,b = {x ∈ In|l (w,x) + b < 0} whereas X0

w,b =
{x ∈ In|l (w,x) + b = 0} is a hyperplane according to the
linearity of l (w,x). For ϕ→ +∞ we observe σ → 1, because
σ is sigmoid. Hence,

µ
(
X+

w,b

)
+ µ

(
X0

w,b

)
= 0

must be valid in (11). Otherwise, if ϕ→ −∞ we observe that
σ → 0 holds in (11) and, therefore, µ

(
X+

w,b

)
= 0 must be

valid. Thus we have shown that the measures of all half-planes



are zero. It remains to show that from this property it follows
that the measure µ has to be zero. This would be trivial for
positive measures, but this is not assumed here.

Thus, we now fix w and consider the linear functional

F (h) =

∫
In

h (l (w,x)) dµ (x)

for a bounded measurable function h. Hence, F (h) is a
bounded functional on L∞ (R) because µ is a finite signed
measure. We consider two choices for h: First we take the
indicator function 1[b,∞) obtaining

F
(
1[b,∞)

)
=

∫
In

1[b,∞) (l (w,x)) dµ (x)

= µ
(
X+

w,b

)
+ µ

(
X0

w,b

)
= 0

for the functional. Second, we have the indicator function
1(b,∞) obtaining

F
(
1(b,∞)

)
=

∫
In

1(b,∞) (l (w,x)) dµ (x)

= µ
(
X+

w,b

)
= 0

for the open interval (b,∞). We can decompose indicator
functions h1 of arbitrary sets into sums of indicator functions
of the above types. Due to the linearity of the functional F
(linearity of the integral operator) all these integrals vanish
and, hence, F (h1) vanishes for indicator functions. Yet, indi-
cator functions are dense in L∞ (R) and, therefore, F (h) = 0
for all h ∈ L∞ (R) has to be valid.

In the last step of the proof we consider the functions
hs (z) = sin (z) and hc (z) = cos (z), which are both in
L∞ (R). We take z (x) = l (w,x) and calculate

F (hc + i · hs) =

∫
In

hc (z (x)) + i · hs (z (x)) dµ (x)

=

∫
In

exp (i · z (x)) dµ (x)

which is the Fourier-transform of the linear functional l (w,x)
with an arbitrary chosen parameter w. However, the Fourier-
transform has to be zero in any case which is only possible
for µ ≡ 0, which completes the proof.

Lemma 14. The ReLU (z) from (3) is discriminatory for
z (x) = l (w,x) + b, where l (w,x) is a real-valued linear
functional in x and w.

Proof: The proof is in complete analogy to the proof for
Lemma 3: Because in this proof only the linearity of the inner
product was used as the essential property of the inner product,
the argumentation remains valid also for linear functionals.

Now we start to characterize special Banach-spaces such
that we can take them for a Cybenko-like theorem. In partic-
ular, we have to identify those Banach-spaces which preserve
the possibility to apply an appropriate RRT as it was empha-
sized in Remark 10

Theorem 15. Let B be an uniformly convex Banach space
with continuous SIP [·, ·]. Then a RRT analogously to (8) is
valid.

Proof: The proof can be found in [7, Theorem 6].
The theorem can be extended to:

Theorem 16. Let B be a reflexive Banach space. Then a RRT
analogously to (8) is valid.

Proof: Let B be a reflexive Banach space and h ∈ B∗ =
C (B). Then exists a SIP [·, ·] and an element β ∈ B such that
ϕ (x) = [x, β] is a continuous linear functional [6]. Hence,
the respective SIP determines a RRT analogously to (8).

Both theorems are related according to the following lemma:

Lemma 17. Every smooth (continuous) uniformly convex
Banach space is also reflexive and strictly convex. The reverse
direction is not valid. Hence, Theorem 15 is a special case of
Theorem 16.

Proof: The proof can be found in [6].
Now we are able to formulate a theorem which states

the universal approximation property for perceptron networks
consisting of Banach-like perceptrons.

Theorem 18. (Cybenko theorem for Banach-like perceptron
networks) Let σ be a continuous general discriminatory func-
tion with respect to the SIP [·, ·] for IBn ⊂ RnB equipped with the
norm ‖x‖ =

√
[x,x] such that RnB is a reflexive n-dimensional

real Banach-space. Additionally, let

ΠB (x) =
N∑
j=1

αj · σ ([wj ,x] + bj) (12)

be the finite sum of Banach-like perceptrons (9) with activation
function f = σ. Then ΠB (x) is an universal approximator.

Proof: The proof is in complete analogy to the proof of
the Cybenko-theorem. The application of the Hahn-Banach-
theorem is not affected by the weaker assumption regarding the
Banach-space. The existence of a respective RRT is guaranteed
by the previous lemmata.

The most famous examples for (real) Banach-spaces are the
spaces Lp and lp. The latter one is equipped with the unique
SIP

[w,x]p =
1

‖x‖p−2p

∑
k

wk · |xk|p−1 · sgn (xk) (13)

with 1 ≤ p < ∞ [7]. Thus we can equip IBn with the SIP
[w,x]p. Further, the following lemma holds:

Lemma 19. Both Lp and lp are uniformly convex for 1 <
p <∞.

Proof: The proof can be found in [12].

Corollary 20. The compact set IBn with the SIP [w,x]p from
(13) is contained in the uniformly reflexive Banach space lp
for 1 < p <∞. Hence, a RRT analogously to (8) is valid.

Proof: Just applying Theorem 16 gives the desired result.

The last corollary leads to the following statement:



Lemma 21. A MLP using Banach-like perceptrons with output

Op (w,x) = f
(

[w,x]p + b
)

(14)

according to (9) generated by the SIP [w,x]p from (13) is an
universal approximator in case of 1 < p <∞.

Proof: The previous corollary about uniform convex-
ity of the lp-space together with Lemma 17 guarantees that
Theorem 18 is applicable.

The particular B-perceptron (14) is denoted as Bp-
perceptron.

ZHANG & ZHANG considered generalized SIPs (gSIP) [31]
extending a first attempt by NATH [21]. They considered
SIPs [w,x]ξ for a function ξ : R+ → R+ fulfilling the
requirements 1) and 2) of Def. 11. The Cauchy-Schwarz-
inequality is replaced by∣∣∣[w,x]ξ

∣∣∣ ≤ ξ ([w,w]ξ

)
· ψ
(

[x,x]ξ

)
for a conjugate function ψ : R+ → R+, i.e. ξ (t) · ψ (t) = t
has to be valid. According to statement in [31] a RRT is also
valid for generalized SIP-spaces: For a RRT regarding those
gSIPs it is assumed that ξ (t) is a so-called gauge function,
i.e. ξ (0) = 0 and limt→∞ ξ (t) = ∞. If ξ (t) is surjective
onto R+ and ζ (t) = ξ−1(t)

t is a gauge function on R+ then
a RRT can be formulated, because the resulting Banach-space
is reflexive and strictly convex [31].

C. Kernels for Banach-Spaces

In the last step we extend Cybenko’s theorem to the case of
kernels regarding reproducing kernel Banach spaces (RKBS).
As stated in [30, Theorem 4], a RKBS is always reflexive.
Thus, we suppose a kernel κB corresponding to the kernel
feature map φB : In → In ⊂ B with B being a RKBS [18].
From Theorem 16 we can conclude that Cybenko’s theorem is
applicable, accordingly.

IV. NUMERICAL SIMULATIONS

In the simulation part we trained MLPs using B-perceptrons
with SIP [w,x]p from (13) for the two well-known data sets
MNIST and CIFAR10 [19], [16]. For the MNIST-problem,
the gray-value images were vectorized and taken as an input
for an MLP with only one hidden layer consisting of 32 Bp-
perceptrons with sigmoid activation. For CIFAR10 we used a
convolutional network with four convolutional layers and three
max-pooling layers. The final dense layer was performed by
10 Bp-perceptrons with ReLU-activation. The convolutional
layers were trained using the dense layer for p = 2. After
this training, the convolutional layers were kept fix - only the
dense layer was trained using different p-values.

Both networks were trained using cross-entropy loss for
different p-values for the SIP [w,x]p. The MNIST-results are
depicted in Fig. 2 and Fig. 3.

The MLP is always capable to solve the classification
problem appropriately. For large and small p-values, numer-
ical instabilities and difficulties lead to a slightly decreased
performance.
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Figure 2. Obtained accuracies of an MLP with Bp-perceptrons for the MNIST
data set depending on the p-value for the SIP [w,x]p. We observe a broad
range of p-values delivering the same good accuracy.
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Figure 3. Investigation of the convergence behavior of MLPs with Bp-
perceptrons for the MNIST data set depending on the p-value for the SIP
[w,x]p. A linear correlation between early stopping (number of learning
epochs until convergence) and p-value is observable.

Figure 4. Obtained accuracies of CNN-networks with final dense layers
consisting of Bp-perceptrons for the CIFAR10 data set depending on the
p-value for the SIP [w,x]p. We observe a broad range of p-values delivering
the same good accuracy. Particulalrly, p-values lower than one provide good
performance.



Figure 5. Investigation of the convergence behavior of CNN-networks with
final dense layer using Bp-perceptrons for the CIFAR10 data set depending
on the p-value for the SIP [w,x]p. A rough linear correlation between
early stopping (number of learning epochs until convergence) and p-value
is observable.

For the CIFAR10 data set the results are depicted in Fig. 4
and Fig. 5.

Again, we can recognize a overall good performance for a
wide range of p-values. The decrease of the performance for
higher and very low p-values is again attributed to numeri-
cal difficulties. These can be observed also from the early-
stopping analysis reflecting the somewhat instable convergence
behavior.

In this paper we investigated the approximation complete-
ness of multilayer perceptrons consisting of Banach-like per-
ceptrons. These perceptrons use semi-inner products whereas
usual perceptrons rely on the standard Euclidean inner product.
Semi-inner products are related to Banach-spaces. We prove
mathematically that for semi-inner products determining re-
flexive Banach-spaces the respective perceptron networks are
approximation complete. The proof is valid for discriminatory
activation functions which comprise both sigmoid and ReLU -
functions. Numerical simulations accompany the theoretical
considerations.

Future work will deal with indefinite inner products as well
as will include the investigation of ResNets. Further, other
more promising activation functions like swish (see [22], [29],
[3]) should consideres as well as networks with bounded width
[11]
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APPENDIX

In this appendix we give some useful definitions regarding
SIPs and Banach spaces, which are used in the text as well as
some basic statements and remarks.

Definition 22. A Banach space B is denoted as strictly convex
iff for x,y 6= 0 with ‖x‖ + ‖y‖ = ‖x + y‖ we can always
conclude that x = λy for some λ > 0.

Lemma 23. A Banach space B with SIP [·, ·] is strictly convex
iff for x,y 6= 0 with [x,y] = ‖x‖·‖y‖ we can always conclude
that x = λy for some λ > 0.

Proof: The proof can be found in [7].
The following definition for the uniform convexity was

introduced in [4]:

Definition 24. A Banach space B is denoted as uniformly
convex iff for each ε > 0 exists a δ (ε) > 0 such that if
‖x‖ = ‖y‖ = 1 with ‖x− y‖ > ε then ‖(x+y)‖

2 < 1 − δ (ε)
is valid.

Definition 25. A Banach space B with SIP [·, ·] is denoted as
continuous iff

<{[x,y + λx]} −→
λ→0
<{[x,y]}

is valid for λ ∈ R. The space is uniformly continuous iff this
limit is approached uniformly.

Definition 26. A Banach space B is denoted as reflexive iff
the mapping J : B → B∗∗ = (B∗)∗ is surjective, where the
star indicates the dual space.

Theorem 27. Let B be a Banach space. Then a necessary
and sufficient condition for B to be reflexive is that for every
f ∈ B∗ exists an SIP [·, ·] and an element y ∈ B with f (x) =
[x,y] for all x ∈ B. If B is strictly convex then y is unique.

Proof: The proof can be found in [6, Theorem 2].

Definition 28. A Banach space B is denoted as smooth iff for
each x ∈ B with ‖x‖ = 1 there exists a linear functional fx ∈
B∗ with fx (x) = ‖fx‖. The existence of fx is guaranteed by
the Hahn-Banach-Theorem.




