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Abstract—As an important field of research in Human-
Machine Interactions, emotion recognition based on the elec-
troencephalography (EEG) signals has become common research.
The traditional machine learning approaches use well-designed
classifiers with hand-crafted features which may be limited to
domain knowledge. Motivated by the outstanding performance
of deep learning approaches in recognition tasks, we proposed
a 3D convolutional neural network model to extract the spatial-
temporal features automatically in the EEG signals. By the pre-
processing method with baseline signals and the electrode topo-
logical structure relocated, the proposed model achieves a high
accuracy rate of 96.61%, 96.43% in the Two class classification
task (low/high arousal, low/high valence) and 93.53% in the Four
class classification task (low arousal and low valence/high arousal
and low valence/low arousal and high valence/high arousal and
high valence) in the DEAP dataset, and 97.52%, 96.96% in
the Two class classification task and 95.86% in the Four class
classification task in the AMIGOS dataset.

Index Terms—Emotion Recognition, Electroencephalography
(EEG), 3D Convolutional Neural Network (3D CNN), Spatio-
temporal Features, Deep Learning

I. INTRODUCTION

Emotion recognition plays a crucial role in human-machine
interaction and health care. The recognition method based on
physiological signals, especially the electroencephalography
(EEG) signals has become a research hotspot because the
signals could represent the inner emotional states and cannot
be controlled subjectively compare with other signals such as
facial expressions or speech.

The traditional machine learning approaches which use
well-designed classifiers with hand-crafted features have been
studied for many years. The most common features [1], [2]
contains Time Domain Features: Event Related Potentials
(ERP) [3], Statistics of Signal [4] (Power, Mean, Standard
deviation, 1st difference, 2nd difference et al.), Higher Order
Crossings (HOC) [4] et al; Frequency Domain Features: Power
Spectra Density (PSD) [2], Higher Order Spectra (HOS) et al;
Time Frequency Domain Features: Hilbert-Huang Spectrum
(HHS), Magnitude Squared Coherence Estimate (MSCE) et
al. A traditional approach which could achieve a high emotion
recognition accuracy mostly depended on the well-designed
hand-crafted features. So the new and effective feature ex-
traction methods which based on phase space reconstruction
[5] and flexible analytic wavelet transform (FAWT) [6] make a
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good performance in the emotion recognition task. Soroush [7]
made the EEG signals reconstructed in phase space and then
in angle space, then extracted features from angle variability
and length variability, and used Dempster-Shafer theory for
emotion recognition, finally, used ten-fold cross-validation to
evaluate their model. To our best knowledge, their method
achieved the best performance in traditional machine learning
approaches - classification accuracy was about 90% on average
classified into four classes.

Motivated by the outstanding performance of deep learning
approaches in pattern recognition tasks, many researchers had
used these approaches in the emotion recognition task [8], [9].
Lin [10] and Liu [11] converted the EEG signals into 2D image
format and used the pre-trained deep learning model AlexNet
and ResNets to extract depth level features respectively, then
combine the extract hand-crafted features for classification.
Mei [12] and Kwon [13] used 2D Convolutional Neural Net-
work Model for feature extraction and classification. These 2D
conventional methods ignore the spatial characteristics of EEG
signals, so the spatial-temporal features extraction methods
had been proposed. Salama [14] proposed a 3D Convolutional
Neural Network Model for spatial-temporal features extraction
and classification in EEG signals, and stated that their model
is outperforming the state of the art methods. Wang [15]
converted the EEG channels into 2D electrode topological
plate which could include topological position information
and used the 3D CNN Model for spatial-temporal features
extraction and classification. They found that compared with
the 2D CNN Model used unconverted data, the 3D CNN
Model made a better performance. Yang [16] implemented
the 2D CNN module and LSTM module extract spatial and
temporal features respectively and combined the features for
classification, and achieved a high accuracy rate in the emotion
recognition task.

Compared with the deep learning approaches, the perfor-
mance of traditional machine learning approaches is little poor
which may be limited to domain knowledge. In this paper, we
proposed a 3D convolutional neural network model to extract
the spatial-temporal features automatically in the EEG signals.
By the pre-processing method with baseline signals and the
electrode topological structure relocated, the proposed model
achieves a high accuracy rate in emotion recognition tasks.

The remainder of this paper is organized as follows: Section
2 overview an open dataset DEAP [17] and AMIGOS [18]
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which are used for researchers to validate the performance of
their models; In Section 3, the method of data pre-processing
and the architecture of the 3D convolutional neural network
model are described; In Section 4, we present the result in
DEAP and AMIGOS to evaluate the proposed model and
comparing it with previous studies. In Section 5, we conclude
our work.

II. DATABASE

The DEAP [17] is an open dataset for researchers to validate
their model. This dataset contains 32 channels EEG signals
and 8 channels peripheral physiological signals which be col-
lected when 32 participants watched 40 videos each with one-
minute duration. Each trial contains 63s signals and the first 3s
is the baseline signals. The baseline signals are recorded when
the participant under no stimulus. After watching a minute
video, the participants rated a self-assessment of arousal,
valence, liking, and dominance on a scale from 1 to 9. A
preprocessed version had been provided: the data was down-
sampled from 512Hz to 128Hz, and a bandpass frequency filter
from 4.0-45.0Hz was applied. The EEG data size of DEAP is
32(participants)x40(videos)x32(EEG channels)x8064(signals),
and the 8064 signals contain 384 baseline signals.

The AMIGOS [18] is a new open dataset. This dataset
contains 14 channels EEG signals and 3 channels peripheral
physiological signals which be collected when 40 participants
watched 20 videos (16 short videos + 4 long videos). Each
trial contains 5s baseline signals in first and the length of other
signals depend on the duration of the video. The participants
also rated a self-assessment of arousal, valence, liking, and
dominance on a scale from 1 to 9 after watching the video. A
preprocessed version had been provided: the data was down-
sampled to 128Hz, and a bandpass frequency filter from 4.0-
45.0Hz was applied.

III. MODEL

A. Pre-processing

A pre-processing method with baseline signals which first
elaborated by Yang [16] is an effective way to improve
recognition accuracy. They reported that the pre-processing
method can increase recognition accuracy by 32% approxi-
mately in the emotion recognition task. The pre-processing
method contains: extract the baseline signals from all channels
C and cut it in N segments with fixed length L, get N segments
C x L matrixes; calculate the mean value of the baseline
signals with segmented data, get the baseline signals mean
value M, a C x L matrixes; cut the EEG signals which without
baseline signals with length L and minus the baseline signals
mean value M, get the preprocessed signals.

The international 10-20 system describes the location of
scalp electrodes, and widely used in EEG experiments. The red
nodes on the left side of Fig.1 and Fig.2 show the electrodes
contained in the DEAP and AMIGOS dataset respectively. The
raw EEG signals in DEAP and AMIGOS lost the topological
position information of the electrodes. To solve this problem,
the 32 electrodes used in DEAP and 17 electrodes used

(a) 10-20 System (b) 2D Electrode Topological Structure

Fig. 1. (a) The international 10-20 system describes the location of scalp
electrodes, and the red nodes show the 32 electrodes used in DEAP dataset.
(b) The 32 channels EEG signals are mapped into a 9x9 matrixes.

(a) 10-20 System (b) 2D Electrode Topological Structure

Fig. 2. (a) The international 10-20 system describes the location of scalp
electrodes, and the red nodes show the 14 electrodes used in AMIGOS dataset.
(b) The 14 channels EEG signals are mapped into a 9x9 matrixes.

in AMIGOS are relocated to the 2D electrode topological
structure respectively based on the 10-20 system positioning.
For each time sample point, the 32 channels EEG signals in
DEAP are mapped into a 9x9 matrixes as shown in the right
side of Fig.1 and the 17 channels EEG signals in AMIGOS
are mapped into a 9x9 matrixes as shown in the right side
of Fig.2. The unused electrodes are filled with zero. Z-score
normalization is used in each transformation.

B. 3D Convolutional Neural Network Model

The architecture of the 3D convolutional neural network
model contains two convolution layers, each followed by a
max-pooling layer, and a fully-connected layer. A detailed
illustration of the architecture is shown in Fig.3. The input size
is 9x9x128, the 9x9 is the 2D electrode topological structure
and the 128 is the number of the consecutive time sample point
processed at once. The kernel size of the convolution layer is
3x3x4, which means the spatial-temporal features are gener-
ated based on a local topology of 3x3 and a time period of
4-time sample points. To prevent missing information of input
data, the zero-padding be used in each convolutional layers.
The RELU activation function is used after the convolution
operation. The pooling size of a max-pooling layer is 1x1x2



which used to reduce the data size in the temporal dimension
and improve the robustness of extracted features. The numbers
of feature maps in the first and second convolutional layers
are 32 and 64 respectively. Before passing the 64 resulting
feature maps to the fully-connected layer, the output feature
maps are reshaped in a vector. The fully-connected layer maps
the feature maps into a final feature vector of 1024. And
a dropout regularization after fully connected layers used to
avoid overfitting. The N in the output layer means the numbers
of the label in the task.

IV. RESULT

We use 2 classification tasks based on EEG signals to evalu-
ate the proposed model: Two class classification task and Four
class classification task. The proposed model is implemented
by using Tensorflow framework [19] and deployed on NVIDIA
Tesla K40c. The learning rate is set to 1E-3 with Adam
Optimizer, and the keep probability of dropout operation is
0.5. The batch size for training and testing is set to 240. We
use 10-fold cross-validation to evaluate the performance of our
model.

A. Result in DEAP Dataset

In the process of data pre-processing for one trial signals
(32x8064), the baseline signals (32x384) have been cut in
3 segments (3 32x128), and calculate the mean value of
the baseline signals (1 32x128). And the EEG data without
baseline signals cut in 60 segments (60 32x128) then minus
the baseline signals mean value, get the preprocessed signals
(32x7680). For each time sample point, the 32 channels EEG
signals are mapped into a 9x9 matrixes, get the 2D electrode
topological structure (7680 9x9) with Z-score normalization.
Finally, the signals are cut into 60 segments with 1s length
(60 9x9x128), and the 1s length was reported as the most
suitable time window length in [20]. The final data size after
processing is 76800 9x9x128.

Two class classification task contains two subtasks: the
low/high arousal (LA/HA) classification task and the low/high
valence (LV/HV) classification task which based on the arousal
and valence value with the threshold of 5 respectively. Four
class classification task contains 4 classes: low arousal low va-
lence (LALV), high arousal low valence (HALV), low arousal
high valence (LAHV), high arousal high valence (HAHV). The
corresponding instance numbers in DEAP dataset are shown
in Table I.

We use 10-fold cross-validation to evaluate the performance
of our model. The result of each cross-validation round is
shown in Table II, and the average accuracy of the 10-fold
validation processes is taken as the task’s final results.

For the Two class classification task, the proposed model
can achieve a better accuracy of 96.61% and 96.43% in arousal
and valence respectively. The comparison of our model with
previous studies which mostly using 10-fold cross-validation
on the DEAP database is shown in Table III. The previous
studies in comparison contain two traditional machine learning
approaches and seven deep learning approaches. Compare

TABLE I
CORRESPONDING INSTANCE NUMBERS IN THE DEAP DATASET

Two Class Classification Task

Arousal Valence

Label LA HA LV HV

Threshold ≤5 >5 ≤5 >5

Instances 32580 44220 34320 42480

Total 76800 76800

Four Class Classification Task

Label LALV HALV LAHV HAHV

Arousal ≤5 >5 ≤5 >5

Valence ≤5 ≤5 >5 >5

Instances 16440 17880 16140 26340

Total 76800

TABLE II
RECOGNITION ACCURACY (%) IN DEAP DATASET

Fold ID

mean & std.dev

2 Classes
4 Classes

Arousal Valence

Fold 1 95.94 95.15 94.04

Fold 2 96.67 97.25 93.18

Fold 3 96.22 97.05 93.76

Fold 4 96.58 96.70 93.37

Fold 5 96.38 96.53 94.23

Fold 6 97.63 96.66 93.63

Fold 7 96.19 95.91 93.10

Fold 8 96.58 97.05 93.32

Fold 9 96.75 96.25 93.53

Fold 10 97.17 95.73 93.16

Mean 96.61 96.43 93.53

StandardDeviation 0.47 0.63 0.36

with the traditional machine learning approaches proposed by
Gupta et al. [6] and Soroush et al. [5], our model achieved
a better result about 16% and 9% higher respectively. The
deep learning method proposed in Yang et al. [16] and Liu
et al. [11] achieved the best performance to our knowledge,
and our model achieves about 5% higher than these models.
Compare with the 3D CNN models proposed in Wang et al.
[15] and Salama et al. [14], our model uses a simpler and
more efficient structure, moreover, a pre-processing method is
used to relocate the electrodes into 2D topological structure
and data process. The accuracy of our model achieved about
8% and 23% of rising respectively.

For the Four class classification task, the proposed model
can achieve better accuracy of 93.53% in the DEAP dataset.
The comparison of our model with previous studies which
mostly using 10-fold cross-validation on the DEAP database as
shown in Table IV. The previous studies in comparison contain
three traditional machine learning approaches and three deep



Fig. 3. 3D Convolutional Neural Network Model

TABLE III
THE COMPARISON OF OUR MODEL WITH PREVIOUS STUDIES IN THE TWO CLASS CLASSIFICATION TASK (DEAP)

Research Method
Accuracy Increase

Year EEG Only
Arousal Valence Arousal Valence

Mei et al. [12] 2D-CNN 83 83.6 13.61 12.83 2017 Yes

Lin et al. [10] AlexNet+MF 87.3 85.5 9.31 10.93 2017 No

Wang et al. [15] 3D-CNN 73.3 72.1 23.31 24.33 2018 Yes

Salama et al. [14] 3D-CNN 88.49 87.44 8.12 8.99 2018 Yes

Kwon et al. [13] 2D-CNN+STZCR 76.56 80.46 20.05 15.97 2018 No

Liu et al. [11] ResNet+LFCC+KNN 89.06 90.39 7.55 6.04 2018 Yes

Yang et al. [16] CNN+LSTM 91.03 90.8 5.58 5.63 2018 Yes

Gupta et al. [6] FAWT+RF 79.95 79.99 16.66 16.44 2019 Yes

Soroush et al. [5] HcF+KNN+MSVM 87.42 84.59 9.19 11.84 2019 Yes

Yang et al. [21] Multi-Column CNN 88.49 87.44 8.12 8.99 2019 Yes

Our Model 3D-CNN 96.61 96.43 \ \ 2020 Yes

learning approaches. Compare with the deep learning method
proposed in Mei et al. [12], Kwon et al. [13] and Liu et al.
[11], our model achieved a better result about 20%, 20%, 7%
higher respectively.

In addition, the models which proposed by Mei et al.
[12], Kwon et al. [13], Liu et al. [11], Gupta et al. [6] and
Soroush et al. [5] had evaluated the performance in both of
the Two class and Four class classification task, and the last
three models using 10-fold cross-validation method. The deep
learning approach proposed by Liu et al. [11] achieved the best
performance in these previous models. Compare with these
models, our model achieved the best performance is shown in
Fig.4.

B. Result in AMIGOS Dataset

Here we use the signals which were recorded in short videos
experiment. The participant ID of 9, 12, 21, 22, 23, 24 and
33 has been removed because there are some invalid data
in the preprocessed version. The data pre-processing in the
AMIGOS dataset is the same as in the DEAP dataset, and the
signals also are segmented with 1s length. The 14 channels
EEG signals are mapped into a 9x9 matrixes (as shown in
Fig.2). After processing, the final data size of EEG signals is
45474 9x9x128.

The corresponding instance numbers of the Two class
classification task and Four class classification task in the
AMIGOS dataset are shown in Table V.

Fig. 4. The comparison of our model with previous studies in Two class and
Four class classification task in DEAP dataset

The result of each cross-validation round is shown in
Table VI, and the average accuracy of the 10-fold validation
processes is taken as the task’s final results.

For the classification in the Two class classification task, the
proposed model can achieve a better accuracy of 97.52% and
96.96% in arousal and valence respectively, and 95.86% in



TABLE IV
THE COMPARISON OF OUR MODEL WITH PREVIOUS STUDIES IN THE FOUR CLASS CLASSIFICATION TASK (DEAP)

Research Method Accuracy Increase Year EEG Only

Mei et al. [12] 2D-CNN 73.1 20.43 2017 Yes

Zheng et al. [2] DE+GELM 69.67 23.86 2017 Yes

Kwon et al. [13] 2D-CNN+STZCR 73.43 20.1 2018 No

Liu et al. [11] ResNet+LFCC+KNN 86.05 7.48 2018 Yes

Gupta et al. [6] FAWT+RF 71.43 22.1 2019 Yes

Soroush et al. [5] HcF+KNN+MSVM 81.67 11.86 2019 Yes

Our Model 3D-CNN 93.53 \ 2020 Yes

TABLE V
CORRESPONDING INSTANCE NUMBERS IN THE AMIGOS DATASET

Two Class Classification Task

Arousal Valence

Label LA HA LV HV

Threshold ≤5 >5 ≤5 >5

Instances 22901 22573 24622 20852

Total 45474 45474

Four Class Classification Task

Label LALV HALV LAHV HAHV

Arousal ≤5 >5 ≤5 >5

Valence ≤5 ≤5 >5 >5

Instances 12295 12327 10606 10246

Total 45474

TABLE VI
RECOGNITION ACCURACY (%) IN AMIGOS DATASET

Fold ID

mean & std.dev

Two Class
Four Class

Arousal Valence

Fold 1 97.22 97.36 95.87

Fold 2 97.85 97.28 96.01

Fold 3 97.70 97.48 95.20

Fold 4 97.50 97.43 95.90

Fold 5 97.64 96.70 96.10

Fold 6 96.65 96.86 95.28

Fold 7 98.01 96.53 95.78

Fold 8 97.46 96.09 96.09

Fold 9 97.48 96.92 96.13

Fold 10 97.69 96.92 96.24

Mean 97.52 96.96 95.86

StandardDeviation 0.36 0.42 0.34

the Four class classification task. Compared with the studies
of emotion recognition based on EEG signals in the DEAP
dataset, the studies in the AMIGOS dataset are less [22]–
[24]. The comparison of our model with previous studies is
shown in Table VII. It is easy to see, our model makes a good
performance in the AMIGOS dataset.

V. CONCLUSION

In this paper, we have proposed a simple and effective 3D
Convolutional Neural Network Model for emotion recognition
using EEG signals, and this model could be used for dif-
ferent tasks and datasets. The 3D CNN Model could extract
spatial and temporal features simultaneously, and it made a
good performance on the open dataset DEAP and AMIGOS.
Compare with previous studies, the recognition accuracy of
this model increases more than 5% in the DEAP dataset, and
increases more than 14% in the AMIGOS dataset. In addition,
the architecture of the 3D CNN model and the parameters
are unchanged when evaluating the proposed model in DEAP
and AMIGOS datasets. It can be proved that this model has
good generality. The advantage of the traditional machine
learning approaches in emotion recognition is comprehensible,
in contrast, the deep learning approaches often be regarded
as a black box system, and we will try to improve the
explainable of our model and find the important factors in
emotion recognition. Furthermore, we will use this model to
challenge other tasks, such as motor imagery EEG decoding
[25], [26], dementia stages classification from EEG signals
[27].



TABLE VII
THE COMPARISON OF OUR MODEL WITH PREVIOUS STUDIES (AMIGOS)

Research Method
Accuracy Increase

Year EEG Only
Arousal Valence Four Class Arousal Valence Four Class

Miranda et al. [22] CNN+RNN 61 59 \ 36.52 37.96 \ 2018 Yes

Santamaria et al. [23] DNN-FCN 76 75 65.25 21.52 21.96 30.61 2019 No

Chao et al. [24] LSTM-RNNs+DNN 83.3 79.4 \ 14.22 17.56 \ 2020 No

Our Model 3D-CNN 97.52 96.96 95.95 \ \ \ 2020 Yes
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