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Abstract—The development of Neural Architecture Search
(NAS) makes Convolutional Neural Networks (CNN) more di-
verse and effective. But previous NAS approaches don’t pay at-
tention to the shift-invariant of CNN. Without the shift-invariant,
convolutional network is not robust enough when input data
is disturbed or damaged. Besides, taking accuracy as the only
optimization goal of NAS cannot meet the increasingly diverse
needs. In this paper, we propose Shift-Invariant Convolutional
Network Search (SICNS). It uses one-shot NAS to search for shift-
invariant convolutional network by incorporating the low-pass
filter into the one-shot model. Furthermore, SICNS optimizes
multiple indicators simultaneously through the multi-objective
evolutionary algorithm. Through training one-shot model and
evolving the architecture, we obtain convolutional networks
which are robust and powerful on image classification task.
Especially, our work can achieve 4.52% test error on CIFAR-10
with 0.7M parameters. And in case the input data are disturbed,
the accuracy of searched network is 2.96% higher than network
without low-pass filter.

Index Terms—Neural architecture search, shift-invariant,
multi-objective, low-pass filter, image classification

I. INTRODUCTION

The machine learning has shown its powerful learning

ability in a lot of areas [1]–[6], etc. As one of the methods

of Automated Machine Learning (AutoML), neural architec-

ture search has made a great contribution in the progress

of machine learning. And benefiting from this, more and

more novel and high-performance models are widely applied,

especially convolution models [7]–[11]. Although both human-

designed and automated-searched convolutional networks have

achieved excellent results on image processing tasks, these

convolutional networks don’t consider about the shift-invariant

of the network. To be specific, they tend to choose max pooling

which performs better but is not anti-aliased. As a result, when

the input image of convolutional network is disturbed (i.e.

rotates or shifts), great change will be reflected on the output

[12] [13]. For example, let [0, 0, 1, 1] as the input, the output

after max pooling (stride as 2 and kernel size as 2) is [0,

1]. But when input shifts, the output is [1, 1]. The shift of

input will have a great impact on output. The anti-aliasing

is working on making convolutional network shift-invariant,

and it can be achieved by adding a low-pass filter. In order

to joint the superiority of max pooling and low-pass filter,
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Fig. 1. The mini example of subnet and supernet. The left is a four-layer
supernet with four candidate operations, and the right is a sampled single-path
subnet.

Zhang inserts a low-pass filter between two operations of max

pooling and makes convolution network become shift-invariant

again [14]. These two operations are max operator evaluation

and subsampling respectively. Concretely speaking, we use a

blurry low-pass filter for subsampling. And the outputs of

above example logically change to [0.5, 1] and [0.75, 0.75]

due to the blurry low-pass filter. This reduces the effect of

shift on input obviously. Not only that, this trick also achieves

the similar effect in average pooling and strided-convolution.

Therefore we put the low-pass filter included in the supernet

(i.e. one-shot model) of one-shot NAS to search for networks

with shift-invariant.

One-shot neural architecture search is to speed up the

performance evaluation of NAS. In one-shot NAS, the one-

shot model training and sampled architecture optimization are

critical. One-shot NAS treats all possible networks as subnets

of supernet as shown in Fig. 1. The left of Fig. 1 shows an one-

shot model with four layers, and every layer has four candidate

operations. The right of Fig. 1 is the sampled network from the

one-shot model. Besides, searched networks inherit weights of

supernet [15], which significantly accelerates the performance

evaluation process of NAS. We use single-path one-shot NAS

[16], which optimizes weights of supernet and architecture se-

quentially instead of jointly (DARTs, [9]) or nestedly (ENAS,

[7]). Thus it decouples two optimization processes, and makes

architecture optimization process perform better in flexibility
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and efficiency. And it uses uniform sampling to sample single-

path network which is trained to update the supernet’s weights.

Combined with the above, the process of single-path one-shot

NAS is similar to the idea of meta learning [17]. The prior

tasks are sampled networks in weight optimization progress

while the configuration is weights of supernet. And sampled

networks in architecture optimization process are the new

tasks. The accuracy of image (CIFAR-10) classification is the

evaluation. Hence we formulate it as a meta learning problem

to optimize the weights of supernet. And the one-shot model

training can be more fair through training each node fairly.

As the application requirements of end devices for con-

volutional networks increasing, the networks need to meet

multiple performance indicators at the same time instead of

a single, such as accuracy, parameters, FLOPs, latency and

so on. So in order to meet increasingly complex requirements

of the model, we treat architecture optimization as a multi-

objective optimization problem. And we use multi-objective

evolutionary algorithm to evolve sampled networks. We take

Non dominated Sorting Genetic Algorithm-II (NSGA-II) [18]

as the search strategy to address this problem. Optimiz-

ing multiple objectives simultaneously, we can obtain high-

performance network with few parameters. As shown in Fig.

2, incorporating the low-pass filter into one-shot model, and

formulating single-path one-shot NAS as the meta learning

problem, SICNS can search for shift-invariant convolution

model through NSGA-II. And we discuss the effect of low-

pass filter in convolutional network. Our approach can achieve

4.52% test error on CIFAR-10 with 0.7M parameters. And

the accuracy of searched network 2.96% higher than accuracy

network without low-pass filter when input data are shifted.

In summary, our contributions are as follows:

1) We incorporate the low-pass filter into supernet and

make the searched convolution networks shift-invariant.

Consequently when the input image is disturbed, the

convolutional network performs stably.

2) We formulate single-path one-shot neural architecture

search as the meta learning problem and make the

weight optimization more fair.

3) The convolutional network we searched achieves com-

petitive results on CIFAR-10. And compared with the

networks without the low-pass filter, the searched net-

work has better performance.

II. RELATED WORK

In this section, we introduce the shift-invariant and one-

shot neural architecture search respectively. And we review

their related research work.

Shift-Invariant: Shift-invariant of convolution means that

when input image of convolution shifts, output result (label)

should be invariant. But the subsampling operation (pooling

operation, the strided-convolution, etc) cause convolutional

network lose shift-invariant [19]. Removing subsampling op-

eration and using dilated convolution [20] [21] can improve

the shift-invariant, but this is very computationally intensive.

In addition, improving the subsampling operation can also

address this problem to some extent. Due to the average

pooling perform better than max pooling in shift-invariant but

worse in effectiveness [22], Lee et al. [23] propose the pooling

operation which combines the above-mentioned two pooling

operations, but this cannot be completely anti-aliased. Then

Adobe obtains shift-invariant convolutional network through

blurring between max and subsampling of max pooling [14],

this work add the low-pass filter before subsampling.

One-Shot Neural Architecture Search: As one of the

methods to accelerate performance evaluation, one-shot NAS

builds a supernet and shares weights among the subnets

that sampled from the supernet. Such that training supernet

only once, we can directly inherit the weights during the

architecture optimization process. There are some one-shot

NAS works with superior performance in recent years [16],

[24]–[26]. SMASH learns a auxiliary hypernetwork which can

output proper weights for model [24], while Graph Hyper-

Networks (GHN) get weights by using graph neural network

[25]. Single-path one-shot NAS trains single-path supernet to

obtain suitable weights [16]. Self-Evaluated Template Network

(SETN) analyzes the weight sharing of one-shot NAS and

proves that one shot NAS can work well even only with

gradient descent [26]. The above approaches can directly

evaluate the performance of networks with no training [16],

[24], [25].

Further, there are some multi-objective NAS works which

have achieved excellent results, such as NSGA-Net [27],

LEMONADE [28], etc. And as a kind of multi-objective

genetic algorithm with the most influence and the widest

application range, NSGA-II is used as search strategy of our

work.

III. METHOD

Our work, shift-invariant convolutional network search, can

be treated as a meta learning framework which is a two-

stage training process as shown in Fig. 3. We train weights θ
of one-shot model using sampled networks in the first stage

(meta training stage), and the weights can be adapted in the

new sampled networks in second stage (network optimization).

Training is performed on CIFAR-10 during overall process.

In our framework, the meta training is to optimize the

weights θ which is used to be adapted in network optimization

process. Concretely speaking, we sample network a from su-

pernet, and the weights is updated through Stochastic Gradient

Descent (SGD). Thus the sampled network is equivalent to

meta-task, and we train every meta-task only one step to

update weights. The benefit of this is that we can sample

more networks in a certain period of time. Furthermore, to

some extent, this guarantees the fairness of the weights on a

new task. With the meta-trained one-shot model, we can adapt

the trained weights θ∗ in new sampled network anew, then we

use SGD update θ∗ into the weights θ
′
∗ of network anew.

Therefore, this section is divided into three parts: i) one-

shot model, the meta training to get θ∗, ii) network evolution,

adapting θ∗ into anew, and iii) network training, updating θ∗
into θ

′
∗ of network anew.



Supernet Optimal NetworkNSGAIINetwork Uniform Sample

Weight Training Model

Conv Stride=2

Conv Stride=1

ReLU

ReLU Low-pass filter Subsampling

Strided-Convolution of Surpernet

Network Evolution Network RetrainingOne-Shot Model

Fig. 2. The overview of our framework. Firstly, we use uniform sampling to sample network from supernet, and we train sampled network to update the
weights of supernet. We incorporate low-pass filter into supernet through adding low-pass filter before subsampling in strided-convolution. Then weights are
adapted into network which is optimized by NSGA-II, so we can search for optimal network efficiently. Finally we retrain the optimal network and obtain
final model.
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Fig. 3. The meta learning framework.

TABLE I
OPERATION SPACE OF ONE-SHOT MODEL. THE LPFILTER IS THE

LOW-PASS FILTER, AND WITH REPRESENTS NETWORK THAT ADDS

LOW-PASS FILTER BEFORE SUBSAMPLING WHILE WITHOUT MEANS NOT

ADDING.

ID Kernel size Expand ratio LPfilter
0 3 3 Without

1 3 3 With

2 5 3 Without

3 5 3 With

4 7 3 Without

5 7 3 With

6 3 6 Without

7 3 6 With

8 5 6 Without

9 5 6 With

10 7 6 Without

11 7 6 With

12 1 - -

A. One-Shot Model

One-shot model (i.e. supernet) is critical in our approach.

The building of one-shot model decides the paradigm of

searched network. And the training of one-shot model can

affect the evolution of network. Thus below we introduce the

building and training of one-shot model respectively.

1) One-Shot Model Building: We choose block of Mo-

bileNetV3 [29], which combines architecture search and net-

work design, as the basic block of one-shot model due to its

outstanding performance. To be specific, the block contains

squeeze-and-excite [30], inverted residual and linear bottle-

neck [31]. The kernel size and expand ratio of inverted residual

are candidate variables of block. To search the shift-invariant

convolutional network, whether to add a low-pass filter is

also a candidate variable when subsampling. Besides, for the

purpose of making the search space more flexible, we add a

conv2D as candidate operation to search for networks with

different sizes. To sum up, the complete operation space of

one-shot model is as TABLE I, where the LPfilter is the low-

pass filter. It has 13 candidate operations, which contains 12

basic blocks with three candidate variables (kernel size as 3,

5 and 7, expand ratio as 3, 6 and LPfilter as With, Without)

and 1 conv2D.

Triangle filter is used as the low-pass filter in our supernet.

Triangle filter, as the name implies, its filter function shape is

a triangle. The weight at the center is the maximal, the other

weights gradually decrease linearly within the radius of the

filter kernel. Such that the triangle filter essentially implements

linear interpolation. This makes triangle filter suitable for

getting blurry features when subsampling. [14] compares three

different filter kernels (2, 3 and 5) and shows that the large

kernel size means better shift-invariant while small kernel size

improve accuracy more. So we set the kernel size of triangle

filter as 3 for improve both of accuracy and consistency. The

specific values of the convolution kernel are as follows:

f = [1, 2, 1],

filt = fT × f =

⎡
⎢⎢⎣

1 2 1

2 4 2

1 2 1

⎤
⎥⎥⎦,

filt = filt/sum(filt).
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Fig. 4. The example of sampling without replacement. The one-shot model has four candidate operations in every layer. And four networks are sampled at
a time, and each network has different operation in same layer.

Where f is the initial template vector for filter weights, filt is

the weights matrix, and sum is the sum of each element of the

matrix. We get the weight matrix filt throng template vector,

and then we normalize filt. Different types of filter kernels

have different vector templates. We will discuss the search for

filter types in the subsequent research work.
2) One-Shot Model Training: In the one-shot model train-

ing process, we sample i networks by uniform sampling

without replacement firstly. Fig. 4 is an example with i as

4, in which i is the number of candidate operations. In our

work, i is 13. Uniform sampling is to make the sampled

network not biased. Through sampling without replacement

and sampling i (number of candidate operations) networks, we

can ensure that each node of one-shot model is sampled and

trained. Then to obtain suitable and fair weights, we train every

sampled network only one step as mentioned above. Further,

after computing the gradients of all sampled networks, we sum

their losses and update the weights θ, instead of updating θ
each time computing gradient. This is expressed as below:

θ = argmin
θ

k=i∑
k=1

[Ltrain(N(ak, θ))],

where i is the number of candidate operations (here is 13), ak
is the kth network, N(ak, θ) is the model which is network

ak with weights θ, and Ltrain(.) is the training loss function

on CIFAR-10.

The goal of this is to guarantee that every node’s weights

of one-shot model are updated the same times. Finally, when

the maximum number of iterations is satisfied, we can get the

trained weights θ∗ of one-shot model. The specific one-shot

model training algorithm is shown as Alg. 1.

B. Network Evolution

Given θ∗, we can adapt θ∗ into a new sampled network in

network evolution process. Thus we can search task-oriented

network efficiently. In order to search for high-performance

network and apply it to resource-constrained devices, the

searched network need to meet multiple constraints. We use

multi-objective evolutionary algorithm NSGA-II to optimize

classification accuracy, amount of parameters, FLOPs and in-

ference time simultaneously. The specific steps are as follows:

Algorithm 1 One-Shot Model Training Algorithm

Input: CIFAR-10 dataset,

Sampled network ak, k is from 1 to 13

Output: Weights θ∗
Initialize the weights θ
for each training step t do

Train all nodes of one-shot model

for each training epoch do
Sample a set of networks a0, ..., ai without replace-

ment

Train a0, ..., ai on a batch training data

θ ← argmin
θ

∑k=13
k=1 [Ltrain(N(ak, θ))]

end for
θ∗ ← θ
Store weights θ∗ for one-shot model

end for

Step 1: Non-dominated sort stratifies the networks accord-

ing to the network’s non-inferior solution (accuracy,

parameter, etc) level, and to guide the search towards

the Pareto optimal solution set. If aforementioned

objective function values of network A are better

than the other network B, the network A is assigned

to the first non-dominated layer and the network B is

assigned to the next layer. Networks within the same

layer have the same non-dominated order arank.

Step 2: Individual crowding distance di calculate. This

step is to sort networks with the same arank. The

individual crowding distance of the network ai is

calculated from the objective function values of its

neighboring networks ai−1 and ai+1. After deter-

mining the individual crowding distance di of each

network ai, we preferentially choose the network

with the larger individual crowding distance.

Step 3: Elitist strategy selection keeps the excellent net-

works in the parent directly into the child to prevent

the obtained Pareto optimal solution from being lost.

In other words, we keep the network with higher non-

dominated order arank. If the non-dominated order



is equivalent, we keep the network with individual

larger crowding distance di. We stop selecting net-

work to be retained until the number of reserved

networks reaches the set number.

Step 4: Repeating Step 1 to 3 until the max epoch is met.

In this process we can get the Pareto optimal solution set,

i.e. a set of networks. To obtain the optimal network, we retrain

them in next process and get weights θ
′
∗ of networks in the

Pareto optimal solution set.

C. Network Retraining

With a set of Pareto optimal networks, we can train each

network to obtain its weights θ
′
∗ and final performance. The

weights θ∗ it inherited from one-shot model is updated to

θ
′
∗ through using SGD. Then we rank them based on their

performance and select optimal network for task requirements.

Due to Conv2D operation in our candidate operations, we

can flexibly search for the networks with different size. Thus

we can select network with different scales to meet the task

requirements. Specific experimental results are shown in the

next section.

As is well-known, anti-aliasing can be achieved by low-pass

filtering the image. And [14] proves that adding low-pass filter

before subsampling can make convolutional network shift-

invariant again. Our work aims to find out whether the network

is more likely to opt for low-pass filter before subsampling

through NAS. Such we do a set of comparative experiments

to discuss the effect of low-pass filter on network performance

and robustness to input disturbances. And we analyze the

results of comparative experiments in next section.

IV. EXPERIMENT

A. Details

Our experiments are performed on CIFAR-10. The data

are split into two parts: 50000 training images and 10000

validation images. We preprocessed the data through randomly

flipping, centrally padding and randomly cropping.

In the training of one-shot model and retraining of the

optimal network after network evolution, we adapt the same

settings (e.g. learning rate schedule, etc). The batch size is

128. The epoch of one-shot model training is 120, while the

optimal network retaining is 600.

In the process of the network evolution, the configuration

settings of NSGA-II are as follows. The population size is set

to 10, i.e. there are 10 networks per generation. The number

of generations is set to 50. The objectives is set to 4 (test error,

parameter, FLOPs, and inference time).

Furthermore, we do a set of comparative experiments: a)

searched network, b) searched network without low-pass filter.

We compare different inputs (inputs with shift and without

shift) for each experiment. Besides, in previous convolutional

network training, the data augmentation is applied to deal with

perturbation in input data, e.g. data shifting. Such that we

train the network with data augmentation and without data

augmentation respectively.

TABLE II
PERFORMANCE COMPARISON BETWEEN OUR WORK AND SOME EXISTING

WORKS ON CIFAR-10.

Model Error(%) Params(M) FLOPs(M)
ResNet [32] 6.97 0.9 -

CondenseNet-86 [33] 5.00 0.5 65

DPP-Net [34] 4.62 0.5 64

LEMONADE [28] 4.57 0.5 -

SICNS(Ours) 4.52 0.7 92

Fig. 5. Training curves for architecture evolution. X-axis is the training
generations. Y-axis is the performance of four objective, the upper left is test
error, the upper right is Flops, the lower left is parameters, and the lower right
is inference time.

B. Results

Fig. 5 shows the training curves of architecture evolution.

It can be seen that the network evolution process is gradually

converging. Four objectives (test error, parameter, FLOPs, and

inference time) are all getting smaller until convergence. Thus

it can be seen that we can search for optimal network with

few parameters and FLOPs, and the network is efficient for

its shorter inference time. And results of optimal network

retraining are divided into two parts, performance comparison

and shift-invariant analysis.

1) performance comparison: TABLE II shows the per-

formance comparison between our work and some existing

works which include both human-designed models (the first

block) and multi-objective NAS models (the second block)

on CIFAR-10. As shown in TABLE II. Our approach can

obtain competitive model. And to the best of my knowledge,

SICNS can achieve state of the art performance in models

with parameters less than 1M. The optimal model is shown

in Fig.6, which performs 4.52% test error on CIFAR-10. And

the model has 0.7M parameters, 92M FLOPs, and 15.35ms

inference time on a single NVIDIA 2080Ti.

2) shift-invariant analysis: TABLE III is the comparison of

experimental results about effect of low-pass filter on CIFAR-

10 classification task. We compared accuracy for intuitive

contrast. Our experiment shows that the searched networks are

more likely to choose to add low-pass filter before subsam-

pling. As shown in TABLE III, we can know that performance
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Fig. 6. The optimal model achieved by SICNS. k is the kernel size, and MB3 is MobileNetV3 block with expand ratio as 3.

TABLE III
COMPARE THE IMPACT OF LOW-PASS FILTERS ON CLASSIFICATION ACCURACY ON CIFAR10.

Train With data augmentation Without data augmentation
Valid Without shift With shift Without shift With shift

Searched network 95.48% 95.34% 91.14% 89.24%

Searched network without low-pass filter 95.31% 95.01% 89.50% 86.28%

has not much difference between valid data with shift and

without shift when training data with data augmentation. And

the low-pass filter can improve performance slightly. When

training data without data augmentation, the performance

difference is obvious. The classification accuracy of network

with low-pass filter is 1.64% higher than that without low-pass

filter when valid data are not shifted. But if the valid data are

shifted, the classification accuracy of the network with low-

pass filter has an advantage of 2.96%. Such that when input

data are disturbed, the robustness of network is improved by

adding low-pass filter before subsampling.

V. CONCLUSION

The paper proposes the shift-invariant convolutional net-

work search, which uses sing-path one-shot neural architecture

search. And by incorporating low-pass filter into one-shot

model, we can search for high-performance network which

is shift-invariant. Further, we experimentally compare the

effectiveness of the low-pass filter on convolutional network.

We prove that SICNS can get the competitive convolutional

network that is robust when input is disturbed. Concretely

speaking, SICNS can obtain 4.52% test error on CIFAR-10

with 0.7M parameters. And when input data shift, there is an

advantage of 2.96% on accuracy than network without low-

pass filter. In the future, we will discuss the types of low-pass

filters through NAS and consider various disturbances to the

input image.
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